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Abstract. Bifurcations up to the appearance of temporal chaos are observed when hot-wire heats

below a free surface. New obwrvations are reported, and some emphasis is laid on the

relationships between temporal dynamics produced by signal~ averaged along the hot-wire and

spatial behaviour of waves generated above it.

1. Introduction.

There is a growing interest in the study of instabilities generated by local heating below a free

surface, leading to the observation of many nonlinear phenomena including developed chaos

and intermittencies. Heating by a laser produces the so-called optical heartbeats or thermal lens

oscillations which, beside allowing fundamental investigations in the framework of nonlinear

dynamics (Refs. [1-31 and references therein) also leads to applications for concentration

measurements of chemical species [41. In another procedure to which this paper is devoted,

heating is achieved by means of a hot-wire. This allows a better control of the distance between

the heating location and the free surface. Temporal signals recorded at the ends of the hot-wire,

thus averaging phenomena occurring along the wire, exhibited various kinds of behaviour

including type II intermittency (Refs. [5-71 and references therein). On the other hand, spatial
phenomena are involved in hot-wire experiments under the form of a train of waves

propagating on the free surface, parallel to the wire, allowing an experimental study of lD

spatio-temporal chaos [8-101. In particular, Vince and Dubois [81 examined the dynamics
above a long (L

=

60 cm hot-wire showing that the train of waves may exhibit several defects

(sources and sinks) which however eventually relax to a simpler situation with 0 or defect.

No defect is observed when the distance between the wire and the surface is large. In such a

case, spatio-temporal disorganization of the train of waves may be observed. Furthermore, in

this case, the waves have a significant spatial extension perpendicular to the wire and may be

(*) U.R.A. CNRS 230.
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interacting with confinement walls. In the present paper, hot-wire experiments are carried out

with a smaller wire (6 cm), allowing a better study of temporal signals averaging along the

wire and spatial phenomena, without any lateral confinement effect. Also, a very simple model

enables us to predict under which conditions nonperiodic phenomena may be expected in the

case when no spatial defect occurs.

The paper is organized as follows. Section 2 briefly describes the experimental set-up and

the primary instability which is characterized as a supercritical Hopf bifurcation. Section 3

introduces a model relating spatial wave patterns and temporal signals in the absence of any

spatial defect. Experiments are reported to demonstrate the pertinence of the model. Section 4

presents a zoo of temporal behaviours examplifying the richness of the system. In the case of

quasiperiodicity, temporal behaviour may easily be related to the spatial organization of the

wave pattern. Section 5 is devoted to the coexistence of attractors. In sections 4 and 5, the

observed behaviours correspond to the existence of one spatial defect. In all these sections, the

relations between temporal signals and spatial patterns are discussed whenever possible.
Section 6 is a conclusion.

2. Experimental set-up and the primary instability.

2.I EXPERIMENTAL SET-uP. The experimental set-up is similar to the one described by

Rozd et al. [61, but with two modifications : (I) the wire length is 6 cm instead of 3 and (it) it is

current controlled instead of being temperature controlled.

The fluid under study is a silicon oil (Rhodorsil 47V lo) with a Prandtl number equal to 130.

The oil is contained in a tank (17 x12 x
ID cm3) whose walls are kept at a constant

temperature (To
m

25 °C) by using thermostated water. This tank is located in a thermostated

box which keeps the ambient temperature at To within 0.05 K. The fluid is heated by a platinum
wire with a diameter equal to 20 ~Lm. Its resistance can be written as

R IT)
=

Ruji + a
IT To)] (')

where Ro
~

18 Q is the wire resistance at the reference temperature Tu, a
is the temperature

coefficient of the platinum (a 3.9 x
10~~ K~ ') and T is the spatial average of the wire

temperature. The ratio of the wire length L over the wire diameter is large enough to ensure that

the temperature profile is essentially constant along the wire in the steady state, in such a way

that edge effects are assumed to be negligible [I1, 121.

The wire is soldered at the top of two thin strips and is tight horizontally (Fig. Ii below the

free surface of the fluid. Horizontality is adjusted by making the wire and its image (formed by
reflexion on the free surface) parallel when the wire is very close to the surface. The distance

between the surface and the wire is taken to be zero when the wire and its image are blended.

The vertical position of the wire is adjusted by means of a micrometric pedestal described in

reference [131.

The wire is supplied with a constant current (I) which is controlled by using a micro-

computer. The Joule effect resulting from the current induces the heating of both the wire and

the fluid surrounding the wire. By using a second micro-computer, the wire voltage is recorded

with a sampling frequency which may be adjusted between 20 and 400 Hz. Time series of

160 000 consecutive values may be recorded.

The wire voltage U is related to the spatially average temperature T by Ohm's law

U
=

Ro[I + a
IT To II (2)

The dynamics depends on two control parameters ii) the distance d between the wire and the

free surface and (it) the intensity I supplied to the wire.
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~ SUPPORTS ~
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Fig, I. -Schematic representation of the supports of the wire.

2.2 THE PRIMARY INSTABILITY.- For a fixed distance d and for a low temperature
T, the system is steady. The free surface is deformed, producing a crest or a trough depending

on whether d is large or small. A double convection roll is established along the wire (see for

instance numerical simulations in Ref. [141). When T is increased, the system may undertake a

supercritical Hopf bifurcation [61, leading to oscillatory behaviour, if d is not too large. Waves

then appear on the free surface, propagating parallel to the wire. Some characteristics of these

phenomena may be understood, and even quantitatively predicted, by a simple model relying

on the existence of two characteristic times (I) a heat transport time corresponding to the time

required for the heat transport between the wire and the free surface and (it) a Marangoni time

corresponding to the disruption of temperature gradients at the surface [lsl.

For measuring the critical temperature T~ (critical intensity I~) at which the system becomes

unstable, the intensity is gradually increased for a fixed d up to the appearance of oscillatory
behaviour. The onset of oscillatory motion may be detected (I) optically, by illuminating the

surface with an expanded laser beam and observing the reflected light on a screen or (it)

electrically, by examining the wire voltage time series which becomes periodic at the onset [61.

The critical intensity I~ is displayed t,eisus d in figure 2a, the points below and above the

curve corresponding to steady and oscillatory behaviour, respectively. Periods Fj ' at the onset

versus d are displayed in figure 2b. Increasing d from zero, periods are first small (0. s for

330 (a) 4 (b)

$i 280 QS3
E

~
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_
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Fig. ~. The onset of oscillatory motion occurs for different values I~ of the intensity depending on the

distance d (a), with a certain period T~ I/F~ (b).
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d
=

0.2 mm), then increase in a non-regular way up to 4.5 s and eventually decrease. These

results are similar to those previously described [6, 8, 131. The critical wavelength of the

propagating waves is about ID times the distance d [6, 81. Relying on the experimental
determination of the disruption relation of these waves, it is claimed that they are neither pure

capillary nor pure gravity waves [61. Their exact nature is therefore still unknown. Let us

however mention that a connection with hydrothermal surface-wave instability disturbances

governed by the Kuramoto-Sivashinsky equation has been recently discussed [161. When the-

horizontality of the wire is perfectly well adjusted, there is no privileged direction of

propagation.

3. Spatial wave pattern and temporal signals : model and experiments.

In the steady state, the temperature is constant along the wire and can readily be evaluated by
measuring U (Eq. (2)). When waves propagate along the wire, it is assumed that the local

temperature at location.r along the wire and at time t, T(.r, t is slaved to the local state of the

waves, I.e.

T(x, t )
=

f (x vt ) (3)

qhere v is the wave velocity. This expression is allowed by the fact that waves propagate
without any deformation. Also, equation (3) assumes the absence of any spatial defect in the

wave train. When the phenomena are periodic, the unknown function f may be expanded as a

Fourier series reading

T(>., t )
=

f a~
cos

~ "~ (x vt )j + b~, sin
~ "~ ix vt )j (4)

,,

A

Whirl A' is the spatial period (wavelength) of the wave, and the constant term has been

dismissed.

The spatial average of the temperature along the length L of the wire then reads

j L

T(t
=

T(,i, t At (5)
L

o

which becomes :

T(t)
-

i,,f
loco, CDs

~ i~ vii Csn sin
~ i~

vi (6)

where

C[~,
=

~"
sin (2 arn

~ +'
(l cos (2 arn

~
(7)

n A n A

~~~ ~' ~°~

~
~~

'~~~ ~
"~ ~~~

which also gives the form of the time signal U(t) which is proportional to f(t), with the

constant term dismissed.

If the number of waves L/A along the wire is an integer p, then C[~,
=

Cl',~
=

0 and

f(t) is also zero (or actually a constant). On the other hand, if L/A
=

~p +1/2), then the

coefficients are zero if n is even. In such a case, the spectrum of the signal will not exhibit

peaks at frequencies 2 Fo, 4 Fo.. where Fo is the fundamental frequency.
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Averaging (T)~ over a time period of the signal T(t ), we obtain the total power of the signal
P (L/A which reads

The function f(x vi ) being unknown, it is tentatively assumed that only aj is different

from zero in relation (4), leading to

P
=

2 a( ~ ~ sin~ I
lo)

2 wL A

This result is displayed as A
=

,,I
versus AIL in figure 3. In the framework of this simple

model, the dimensionless ratio AIL appears to be a pertinent parameter to organize the results

in the absence of any spatial defect. Let us remark that the control parameters are

I and d (Sect. 2.I). For I, given, depends on d as demonstrated in references [6, 81.
Therefore, parameters might be taken as the control parameter I and the model parameter
(AIL). The control parameter I would modify the function f(,i vi of equation (3). This

function being assumed to be unknown in the above simple model, I is no longer a relevant

parameter in this restricted framework.

1.o

O.8

~'~
PI

~

~ ~ ~~

P2

0.2

O.0
O,10 O.25 0.40 O.55 O.70 0.85 1.00

~ / L

Fig. 3. A
=

f (A ) ~imple model.

Experimentally, the total power of the signal is extracted by computing the power spectrum

and summing power spectral densities over all frequencies. For a fixed current I, the

wavelength A is adjusted by changing the distance d, decreasing when d decreases. In

reference [61, the wavelength A has been measured by using a laser reflection technique, the

reflected image being studied by a photodiode array. In the present paper, we measured the

propagation time t~ of a wave over the length L of the wire, yielding the wave velocity

v
=

L/t~ and the characteristic frequency F yielding the period T, leading to A
=

LT/t~. An

example of experimental results is displayed as A versus d, for1
=

250 mA, in figure 4,
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Fig. 4. -A f(d) : experimental results for /
=

250 mA.

exhibiting the pertinence of the model (Fig. 3). In particular, for the right bump in which

d evolves from 3.4 to 1.4 mm, AIL evolves from about to 0.5. For the next bump,
AIL evolves from 0.5 to 1/3. During these experiments, the direction of propagation of the

waves remained unchanged. This situation can be sketchily represented by the following
diagram

----.

Figure 5 displays a time signal and its power spectrum for L/A
=

3.5 ± 0. I, illustrating the

simplicity of the dynamics when L/A is of the form ~p + 1/2 j, p being an integer. Although all

harmonics are present, the amplitude of the peak 2 Fo, for instance, is much smaller than the
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Fig. 5. Time signal and power spectrum density (PSD) obtained for L/A
=

3.5 ± 0. (d
=

0.74 mm

and / 280 mA). U is given in arbitrary unit.
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amplitude of the peak 3 Fo. This situation corresponding to AIL
1

0?9 is indicated by the label

P in figures 3 and 4. The signal power being large, the Signal/Noise Ratio (SNR) is very large

too. Conversely, figure 6 displays a time signal and its power spectrum for L/A
=

2.0 ± 0. I,

which is very different from (p + 1/2), p integer (label P2 in Figs. 3 and 4). The signal is more

complicated, even harmonics are bigger and the SNR is significantly deteriorated.

8200

'F#
~ 74fl~
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e -50 3 Fo

iii -100

©-

-150
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Fig. 6. Time signal and power ~pectrum density (PSD) obtained for L/A 2.0 ± 0. (d
=

1.45 mm

and / 250 mA).

Actually, the states in which the total power is a minimum are special states. They mark the

transition between two bumps, one for which L/A reads N + r, 0
< I <

I, N integer
~

0, and

another one for which L/A reads N + r + I. According to the aforementioned idealized simple

model, the power minima are 0 (Fig. 3). Actually they are not, probably partially due to the

fact that such minima are very difficult to detect experimentally (Fig. 4). In the absence of any

defect, a periodic behaviour is observed in the domains corresponding to the bumps and non-

periodic behaviour is observed near the minima. On the other hand, in the presence of a defect,

non-periodic behaviour may be observed up to (A IL about equal 0.5, I-e- when there are at

least two waves on the wire. With two waves and no defect separating the two waves, only

periodic behaviour has been observed.

As an example of non-periodic behaviour, let us consider the time series and its associated

power spectrum in figure 7 for L/A
=

3.0±0.1 (labelP3 in Figs. 3 and 4). The power

spectrum has been evaluated by averaging 10 spectra built from 8192 data points. This state

has been characterized as being chaotic, in the spectrum, the chaos leads to a broadband

contribution at frequencies smaller than the fundamental frequency (Fo). There, with waves

propagating in the same direction, the observed simple periodic behaviour corresponds to a

case when there are ~p + 1/2) individual waves along the wire, p being an integer, while,

conversely, more complex behaviour may be expected when there is an integer number of

waves along the wire. The physical reason why it is so remains to be identified.

In order to discuss the relation between temporal signals and spatial patterns more

extensively, the free surface is filmed by means of a thermal camera, allowing us to record the

time evolution of the temperature field. To match the small sampling frequency of the camera

(25 images per second), experiments must be carried out in a small frequency regime such as
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Fig. 7.- Chaotic behaviour observed for a minimum of the total power for L/A =3.0± o-I

(d 1.0 mm and / 260 mA).

for d
=

3.5 mm, 1
=

260 mA. In this case for which the state is periodic, the temperature of a

point located on the surface, on the vertical above the wire, has been recorded during a few

periods leading to the temperature profile of an individual wave displayed in figure 8. This

temperature profile owns a strong similarity with the surface deformation profile published in

reference [6], figure 15. The profile in figure 8 may be viewed as an oscillation made of two

steps : (I) an increase of the temperature for x/A ranging from to 0.4, due to the arrival of heat

from the heating source followed by (it) a decrease due to the Marangoni disruption of the

temperature gradients.

is

~s

~

~ lo
~

$

5

0
0.0 0.2 0.4 0.6 0.8 1.0

x / I

Fig. 8. Spatial temperature profile of the waves observed when the wire is far from the surface

(d
=

3.5 mm). T is given in arbitrary unit.
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The question then arises to know to which extent the information gained by measuring the

average temperature T(t) from U(t) is equivalent to that gained by measuring a local

temperature T(>.o, t ). In some cases at least, the answer is positive. First, this is the case for the

trivial situation of the basic stable state in which both f and T(xo), Vxo, do not depend on

t. Second, this is also the case for a periodic state in which both I(t and T(xo, t) are periodic

in time, with, furthermore, the same period. Next, we consider the case of a chaotic signal in

which the spatial pattern exhibits one sink where counter-propagating waves encounter and

disappear, according to the diagram : ----.
It then appears that the temporal chaos of the

time signal is correlated with a spatial chaotic behaviour of the sink whose position is observed

to be chaotically wandering. In figure 9 this statement is illustrated by comparing several time

signals (I) the average temperature T(t) (a) (it) a local temperature in a small domain of the

surface in which the sink motion is confined (b) and (iii) a local temperature recorded far away
from the sink (c). The strong similarity between figures 9a and 9b, showing six synchronized

groups of oscillations (separated by vertical lines), visually illustrates the correlation between

the chaotic average temperature T(t) and the chaotic spatial motion of the sink. On the other

hand, the comparison between figures 9b and 9c indicates that the spatial chaotic behaviour

associated with the sink is indeed strongly localized. As a whole, the system remains strongly
organized in space and the information of the sink wandering is then transferred to the average

temperature in an easily way.

Therefore, in spite of the apparent complexity of the system which is open and involves

propagating waves, the spatial auto-confinement of defects allows us to characterize states

with a small number of degrees of freedom by using the tools of nonlinear dynamics.

4. A zoo of temporal behaviours.

All the states analyzed in this section are generated by the presence of a single sink point, I-e-

the simple model discussed in section 3 is no longer relevant. The process of production of the

sink will be discussed in section 5. Yet, even with a single sink point, many different kinds of

behaviour may appear, simple or complex. Typical transient times needed to reach the

(a)

I
I I I

I ' I

I I

I

~
l I

$
(b)

(c)

0 20 40 60 80

Time (s)

Fig. 9. -Comparison between averaged along the wire and local temperatures at the free surface

(d
=

0.9 and / 280 mA).
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described asymptotic states are short, at worst a few seconds. The obtained states are very

stable. They may be observed without detectable modifications during runs lasting several

hours. Reproducibility is very good when the ratio AA/Ad is small in figure 4, in which

AA is the modification of A induced by the variation Ad of d. In particular, this is the case for

the first two bumps (starting from the rightj down to d
i mm.

4. QUASIPERIODICITY. The sink point separates two domains in which waves propagate in

opposite directions. Wave frequencies in each domain are found to be slightly different. Two

frequencies are therefore present in the system, leading to quasiperiodicity if these frequencies

are incommensurable. The difference in frequencies also implies that the sink point, I-e-, the

point where the waves meet, must move.

A wire voltage time series is displayed in figure lo, its power spectrum (Fig. 17b) exhibits

two incommensurable frequencies Fj
=

2.osl Hz and F~
=

2.199 Hz (AF,
=

± o.oo3 Hz).

The attractor is a 2-torus which may be reconstructed in a 3D-phase space using the time-delay
method. The intersection of the reconstructed torus with a Poincard section is displayed in

figure I. Frequency incommensurability implies that all the surface of the torus is visited.

6500

£
~ 55i0

4500
o lo 20

Time (s)

Fig. lo. Quasiperiodic behaviour of U(t) (d
=

0.62 mm and /
=

260 mA).
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Fig. ii- Poincard section of the 2-torus.

Let P, be the successive points in the Poincard section of figure I I and B be the barycenter of

the set of points, I
=

0,
,

N. The phase angle ~b, of points P,, I
=

I,
.,

N is defined as the

angle (Po BP, ). From the ~b,'s, taken in the range (0, 2w and then normalized in the range
(o, I), we

obtain the first return map ~b,
~

=

f(~b, ) displayed in figure 12. After fitting the

data by parts, by using a least squares method associated with a SVD (Singular Value
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Fig. 12. -First return map for the phase angle defined in the Poincard section.

Decomposition) algorithm, the slope of the curve may be evaluated at each point

~b,. The Lyapunov exponent of the map can be computed afterward by using [1711

j N

A
= p jj in f'(~b,)) (i1)

,-,

This Lyapunov exponent, which is also the greatest Lyapunov exponent of the time series, is

then found to be A
=

0.063 ± 0.005, indicating a nonchaotic behaviour.

4.2 CHAOTIC PHASE INTERMITTENCY. The temporal evolution is displayed in figure 13, its

careful examination shows that the groups of oscillations are of different lengths. The spectrum
exhibits two frequencies F

=

1.024 Hz and F~
=

1.106 Hz near a frequency locking of ratio

Fj/F~= I. However in contrast with the previous case where two incommensurable

frequencies led to quasiperiodicity, we are here faced with chaotic phase intermittency. The

only other experimental observation of phase intermittency we are aware of has been obtained

in Rayleigh-Bdnard convection by Bergd and Dubois [18].

To illustrate this phenomenon, figure 14 displays a few points in a Poincard section of a 3D-

time delay reconstruction. The points are numbered in chronological order. There is a regular
drift from points to 10 followed by a slowing down for points to 14, produced by the

proximity of the frequency locking, and then by a large change from point14 to 15. This

behaviour is characteristic of the phase intermittency phenomenon.

1800

# 1300

5
800

300
0 15 30 45 60

Tbne (s)

Fig. 13. Chaotic time series of phase intermittency. The longest group of oscillations is in the middle

(d 1.04 mm and /
=

290 mA ).
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Fig. 14. Illustration of the interrnittent variation of the phase angle in the Poincard section.

The first return map ~b,
~

=

f(~b, ), is shown in figure 15, exhibiting two channels nearly

tangent to the bisector, associated with the intermittency. This map is more complicated than

in the previous case
(Fig. 12) with the result that the map Lyapunov exponent is difficult to

extract by using relation (I I ). Therefore, the greatest Lyapunov exponent has been evaluated

by studying the temporal evolution in a reconstructed phase space, according to an algorithm

developed by Rosenstein et al. [19], leading to A
m

0.20 s~ '. This positive value indicates a

chaotic behaviour. The probability distribution of the duration of one apparent rotation in the

Poincard section is displayed in figure 16. The presence of chaos is also confirmed by the time

series power spectrum (Fig, 17a) which exhibits a noisy background, to be compared with the

power spectrum of the previously discussed quasiperiodic signal in figure17b.

4.3 TYPE-I PSEUDO-INTERMITTENCY. Type-) intermittency is generated by the loss of

stability of a limit cycle when a real eigenvalue of the linearized Poincard map crosses the

unit circle at (+ and leads to time signals made of laminar phases interrupted by chaotic

bursts [201. This kind of behaviour has been previously observed in hot-wire experiments [5-

1.0
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o g

~

_~

j~ ,,'''
o.5

'i
o.6 / ~~"~'
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~~

# " ,' ff
fl

,
,'' a o.3

~ 0A ,w
f~ ~

~'
~P

,,'' 0.2

0.2
,

,,''
l'' ~

0.0 '
'"

o_0
0.0 0.2 0A 0.6 0.8 1.0 9 II 13 15 17

Phase(I) Lengdl (s)

Fig, 15. Fig. 16.

Fig, 15. First return map far the phase angle.

Fig- 16. Relative probability distribution of the time required for one apparent rotation in the Poincard

section.
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Fig. 17. Comparison between two power spectra : (al chaotic phase intermittency, (b) quasiperiodi-
city.

211. In this section, we present a case sharing many common points with type-I intermittency
stt.icto sensu except for the presence of hysteresis (discussed in the next section), hence the

name of type-I pseudo-interrnittency.
By varying the distance d, we observed a bifurcation from a periodic state to the attractor

displayed in figure18. The dark region is reminiscent of the old limit cycle which lost its

stability. The first retum map based on the successive maxima of the signal exhibits a channel

near the bisector as in theoretical models (Fig, 19). The probability distribution P (L) giving
the probability P of observing a laminar phase of length L is shown in figure 20. The maximal

probability is for L
m

40 s. For larger L's, the probability decreases fast. Moreover, there is a

second significant peak of probability for L
m

10 s. Such characteristics are in fair agreement

with theoretical results [22].

1250

1250

'~ l150
( fl

850

1050 ,'

450 950
450 850 1250 950 1050 l150 1250

u(t) Max(I)

Fig. 18. Fig. 19.

Fig.18. -Reconstruction of a 2D-attractor of type-I pseudo intermittency (d=0.6mm and

/ =285mA).

Fig. 19. First return map for the maximum of the time series.
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Fig. 20. Relative probability distribution of the length of laminar phases.

Figure 21 displays the power spectrum evaluated by averaging 29 spectra built from

4 096 data points. The broadening of the distribution around 40 s induces a spectral domain at

small frequencies where we may write PSD cc F~" The exponent a is equal to 2.6 which is

quite far from theoretical results where a m
[231. Our experimental value cannot be compared

with other experimental values, due to the lack of experimental intermittency spectra in the

literature.
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Fig. 21. Average power spectrum density in logarithmic scales.

5. Coexistence of attractors.

Another classical feature of nonlinear systems is the coexistence of multiple attractors, each

attractor being surrounded by its own basin of attraction. This behaviour occurs in hot-wire

experiments, I-e- for a given parameter vector (d, I ), the state of the system is not necessarily
unique.

Examples are provided by two experiments performed with a constant current1
=

295 mA.

Each experiment starts with the wire located at d~, far from the surface. Then d is decreased

step by step down to d~. Finally, d is increased from d~ back to d~. At each step, the time series

fit is recorded and the power spectrum is computed. The free surface spatial state is also

observed, to possibly emphasize the relation between temporal behaviour T(t) and spatial
behaviour of the waves.
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5. FIRST EXPERIMENT. Here, d~
=

3.0 mm and d~
=

0.56 mm. Three different cases may
be distinguished.

(I) For d ranging from 3.0 down to 0.94 mm, all individual waves propagate in single
direction, say from the right to the left, according to : ----.

ii) For d decreasing further down to 0.56 mm, and also for d increasing back from 0.56 up

to 1.46 mm, there is a sink point on the left part of the wire, according to the diagram

(iii)

irection, but now rom the left to the right : ----.

All signals are periodic, except near the minima
of

which

not given).
Therefore,

it is observed that the resence of a sink does not necessarily a

omplicated behaviour. In measured on both sides of
the

sink were

identical and the sink location was constant.

5.2 SECOND EXPERIMENT. Here, d~
=

2.5 mm and d~
=

0.76 mm. The square root of the

total power (A i>eisiis d is displayed in figure ?2. Again, three domains can be distinguished.

1-o

0.8

1

0.6 /
1~f i

0A

'

'

0.2 (1
1

0.0
0.5 1.0 1-S 2.0 2.5

d (mm)

Fig. 22.- Evolution of A
,~

with d showing three different domains for the second experiment.

(I) For d ranging from 2.5 down to 0.84 mm (dashed line), the waves propagate from the left

to the right (----) and signals are periodic.
(ii) For d decreasing further down to 0.76 mm and then increasing back up to 1.24 mm

(white circles), there is a sink in the right part of the wire (----) and signals are not

periodic, as presently discussed.

(iii) Finally, for d increasing again up to 2.5 mm (black circles), waves propagate again
from the left to the right (----) and signals are periodic.

The appearance and disappearance of the sink therefore exhibit a strong hysteresis. The

states of the system in phases (it), I.e, in the presence of the sink, are rather complex as

illustrated in figure 23 where attractors are reconstructed for d
=

0.84 (a), 0.88 (b), 0.92 (c),

0.96 (d), 1.00 (e) and I.16 mm (fl. Poincard sections for each attractor are shown in figure 24.

The evolution of the attractors from (a) to (fl, and particularly from (a) to (dj, shows a

gradual simplification of the structure corresponding to the unfolding of the top-right dark zone

and to the fact that the central part of the attractor becomes less and less visited.
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Poincard sections show that the attractors are essentially two-tori with a probability of

presence evolving to a more discontinuous repartition from (a) to (fl. In particular, in (fl, all

data points are contained in eight disconnected boxes.

In la), we are faced with phase intermittency, the arrow pointing to a dark zone where the

phase evolves slowly. The disappearance of phase intermittency may then be followed up to (fl
where the presence of eight distinct domains corresponds to a frequency locking near the

rational 7/8
=

0.875. Indeed, the power spectrum then shows two basic frequencies
F, and F~ in the ratio F,/F~

=

0.88.

One also has to remark that the appearance and disappearance of the sink occur when the

total power is close to a minimum. On both sides of the minimum, the number of individual

waves is changed by a value of I.

Both experiments indeed show the presence of hysteresis connected with the coexistence of

attractors. When the wire is far enough from the surface (d m 2 mm ), we always found a single
periodic state. On the other hand, when the wire is closer to the surface, multiple attractors

may be present. For example, for d
=

1.0 mm, we may observe (ij a periodic state with all the

waves propagating in the same direction (it) a periodic state with a sink point or (iii) a

quasiperiodic state with a sink point.

6. Conclusion.

New experimental results on instabilities produced when hot-wire heating a fluid below the

free surface have been presented. In spite of the interaction of many phenomena (heat

conduction and convection, Marangoni effect, wave propagationj, the system can be reduced

to a dynamical system with a small number of degrees of freedom. Some emphasis has been

laid on the relations between temporal averaged temperature signals and wave spatial patterns

along the wire. In the present case where only one defect at most is present in the train of

waves, it has been demonstrated that there is a strong relationship between temporal and

spatial behaviour. Many different kinds of behaviour may be observed and analyzed in a

precise way, thanks to the very good Signal/Noise Ratio achieved, including quasiperiodicity

or type-I and type-]] intermittencies. A simple model enables us to predict in which situations

complex behaviour may be expected. Interesting future investigations would include the study

of hot-wire forced experiments in which the supplying current I would be modulated.

Experiments along a very long hot-wire allow the experimental study of spatio-temporal chaos.

Also, the unsolved issue to understand the exact nature of the waves is warranted to be of

utmost interest.
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