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R4sum4. Nous proposons une
nouvelle description des solutions semi-dilu6es de poly61ec-

trolytes rigides. Cette description se fonde sur quelques r6sultats analytiques obtenus pour un

modble simplifi6 h deux dimensions. Les solutions
sans sel et avec sel ajout6 ant des comporte-

ments difldrents. En pr6sence de sel, la longueur de persistance d'une chaine est peu aflect6e par

ses interactions avec les autres chaines, comrne l'avait postu16 Odijk. Dans les solutions sans sel,

au contraire, la longueur de persistence varie comrne la distance entre chaines, qui dans ce cas

est identique h la longueur d'6cran. Ce comportement est sirnilaire I celui qui avait 6t6 pr6vu

par Witten et Pincus. Cependant, contrairement h ces auteurs, nous pr6disons
une transition

trbs rapide entre les deux r6gimes.

Abstract A new description of semidilute solutions of rigid polyelectrolyte chains is pro-

posed. The description is based on analytical results obtained for
a

simple two-dimensional

model. These results are then transposed to the physically relevant case of interacting chains

in three dimensions. Different behaviours are obtained for salt-free solutions and solutions with

added salt. In the latter, the persistence length of a chain is predicted to be only weakly affected

by interchain interactions, as postulated by Odijk. In salt free solutions, on
the contrary, the

persistence length should scale as the interchain distance, which in this case is also the screening
length. This behaviour resembles the

one
predicted earlier by Witten and Pincus. The crossover

between these two different regimes, however, is expected to be very sharp, in contrast with their

prediction.

1. Introduction.

In this note, we summarize some ideas and results concerning the structure of interacting
polyelectrolyte chains. We consider only "rigid" chains, in the sense of reference [ii which

means that one isolated chain is well-described by the theory of Odijk [2] or SkoInick and

(*) (URA CNRS 1325)
(**) (UPR CNRS 022)
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<Fixman [3]. This theory is summarized as follows: if a wormlike chain with a bare persistence
length lo carries a linear density I IA of monomers that interact through the long range potential
iJ(~), then the chain conformation at large length scales can be characterized by a persistence
length

~~ ~° ~ l~~Bi~~2 ~~~

where @(k) is the Fourier transform of the interaction potential. In the case where iJ is the

electrostatic Debye-Hfickel potential, iJDH(r)
=

kBT(fB IT) exp(-ltr), fiDH(k
=

o)
=

47rfB/1t~,
(fB is the so-called Bjerrum length), equation (I) gives the electrostatic contribution to the

persistence length obtained by Odijk and SkoInick and Fixman fosf
"

£B/41t~A~.
A straightforward extension of this approach to semidilute solutions could be made, in prin-

ciple, by focusing on a given chain and replacing the effect of the other chains by an effective
pair potential between its charged monomers. The effective (or screened) potential, unfortu-

nately, can easily be obtained only at the level of linear response theory. At this level, it is

related to the (charged monomer-charged monomer) structure factor of the semidilute solution

S(k) by @~~(k) =
@(k) (I cS(k)@(k)), where c is the concentration of charged monomers.

Equation (I) yields the persistence length

fp
=

lo +
~~~ ~~

(l cS(k
=

o)@(k
=

o)). (2)
167rkBTA

In the case of Debye-Hfickel interactions the persistence length is fp
=

lo +fosf (1- 47rfBcS(k
=

o)/~r~). The determination of the persistence length would thus only require the knowledge
of the structure factor, which is a thermodynamic property of the semidilute solution and

is simply related to the osmotic compressibility. It should also be noted that the interchain

interactions lead to a reduction of the persistence length, that tends to balance the electrostatic

rigidity created by the intra-chain interactions. In the following, we shall however see that,
although this result is qualitatively correct, (I.e. the persistence length in solution is always
smaller than to + fosf)> the use of linear response theory is not justified in general, so that in

practice the usefulness of this approach is limited.

Two other theories have at present been proposed to describe semidilute solutions of stiff

chains. Odijk [4] has argued that the structure of a given chain in the solution can be described

by equation (I), or, in other words, that the single chain structure is not affected by the

interchain interactions. A completely different picture has been proposed by Witten and Pincus

[S]. In their description, the interchain interactions result in a significant reduction of the

persistence length. According to them, in a salt-free solution, the persistence length is equal to

the interchain distance (which in that case is also of the order of the Debye screening length).
As salt is added to the solution, the persistence length increases as

twp
=

), (3)

until it reaches Odijk's value.

We present in the following a discussion of interacting polyelectrolytes that consists of two

parts. We first study a simple twc-dimensional system made up of one charged polyelectrolyte
chain interacting with a liquid, or a gas, of point obstacles. In order to make contact with the

actual, three-dimensional, problem, these obstacles can be thought of as a crude representation
of the chains that are cut by the plane containing the tagged chain. Some exact results for

this model are obtained, and compared to approximate calculations and heuristic arguments,

whose validity can
therefore be assessed. We then use for discussing three-dimensional systems
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an approximate calculation which has proved to work well on the simplified twc-dimensional

model.

The picture that emerges from our calculation is intermediate between the extremes proposed
by Odijk

on the one hand, and by Witten and Pincus on the other hand. While we find that

the Witten-Pincus description should be correct for salt free solutions, it also appears that as

salt is added, the crossover to Odijk's description is much more rapid than the one described

by (3). In fact, we expect this crossover to be very sharp, taking place as soon as the screening
length ~r~~ becomes smaller than the interchain distance D cM (cA)~~/~

2. A "simple" problem: charged chain in two dimensions interacting with point
obstacles.

2.I PRINCIPLE OF AN EXACT CALCULATION. We consider a two-dimensional charged
wormlike chain, with a bare persistence length f~. The charged monomers are separated by a

distance A along the contour length and interact via a screened Coulomb potential iJDH(r)
=

kBTfB exp(-ltr)/r. This chain is immersed in a liquid of point particles characterized by its

surface density T. Each point particle interacts with the charged monomers via a potential
iJ~p(r), and two point particles interact with each other via a potential iJoo(r). The question to

be addressed is that of the effective persistence length of the chain in the presence of the point
particles [6]. At the level of Odijk's calculation for the isolated chain, this quantity can be

obtained in the following manner. For a given chain configuration which deviates ol~ly slightly
from a rodlike col~jiguratiol~, the total free energy of the system is computed to second order in

the chain curvature p(s). Here s is the curvilinear abscissa along the chain, and p(s) is assumed

to be a small and slowly varying quantity. The coefficient of the second order term is then

identified as the effective persistence length of the chain. The free energy is the sum of two

terms. The first one is simply the interaction energy between the monomers. Its contribution

to the persistence length is the sum of the bare persistence length, (, and of the electrostatic

persistence length of an isolated chain, £osf
"

£B/4~r~A~. The second term is the free el~ergy
of the point particles in the field created by the chain. By computing this second term and

expanding it to second order in p, one obtains the desired contribution from the point particles

to the effective stiffness of the chain.

The difficult step in this calculation obviously lies in the computation of the free energy

Fo of the point particles for a given configuration of the chain. One approximate calculation

involves an assumption of linear response for the point particles; this results in equation (2).
More accurate results can only be obtained for two specific systems, described below.

2. 2 EXACT CALCULATION FOR AN IDEAL GAS OF OBSTACLES. In the case where the point
particles form an ideal gas with a given chemical potential, I.e. iJoo =

o, their free energy can

be computed explicitly in terms of the potential V(r)
=

J/ dsun~o(r(s) r) created by the

charged chain in the configuration (r(s)):

Fo
=

kBT T dr (I exp(-V(r)/kBT). (4)

Of particular interest is the case where the interaction iJn~o is of the form iJn~o(r)
=

2kBT(£B IA
Ko(~rr). Physically, this means that each point particle represents the intersection with the

plane in which the chain moves of a charged rod of linear charge density I IA that lies perpen-

dicular to the plane. A dimensionless coupling constant can then be defined as

~~~' ~~~
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this is the interaction energy measured in units of kBT between the chain in a rodlike config-
uration and an obstacle located very close to the chain. We were able to compute, the free

energy of the ideal gas in the field created by a circular chain of radius R up to second order

in the curvature p =
I /R. The free energy can be written in the form:

F
=

Fo + kBT~~) (27rR)

The contribution fpo of the obstacles to the persistence length, is given by:

fpo
=

-T1t~~ f(b) (6)

where the function f(b) is calculated in Appendix A and reads

+oc

f(b)
=

dzexp (-bexp (-z)) [-bz~ exp(-2z) + exp(-z)(-z~ + z
+1)] (7)

2

In the limit where b is small (strong screening or weak coupling) the linear response theory is

valid and f(b)
=

3b~ /8 in agreement with (2). For large b (weak screening or strong coupling),

one gets
fpo ct

-T~r~~(In b)~ (8)

The interaction with the obstacles thus always reduces the persistence length of the chain. As

could be expected,in the strong coupling regime, the decrease of the persistence length depends
only very weakly on the Bjerrum length (logarithmically). It has been shown in reference [I]
that the Odijk or SkoInick and Fixman theory is valid only if the polymer chain is locally

rigid enough. We have assumed here that this condition is satisfied even when the interchain

interactions are taken into account.

2. 3 EXACT CALCULATION FOR HARD DISK INTERACTIONS. When the interaction between

the point particles and the monomers is a pure hard core repulsion, the contribution of the

obstacles to the persistence length vanishes identically. This can be seen from the fact that

the free energy of the point particles only depends on the volume excluded by the polymer
chain. This excluded volume (or rather surface) is exactly the same for a bent chain and a

straight line, provided that the radius of curvature is much larger than the diameter of the hard

core interaction. The difference between the hard core interaction and the screened Coulomb

interaction is striking, and illustrates the sensitivity of local properties such as the persistence
length to the detailed nature of interparticle interactions.

2.4 APPROXIMATE CALCULATION: SUCCESSIVE ANGULAR DEFLECTIONS. The results of

sections 2.2 and 2.3 have the advantage of being essentially exact. They do not, however, give
much insight into the physical processes that lead to an increased flexibility of the chain. Worse,
they are not easily transferable to the physically relevant three-dimensional situation. In this

section, we describe an approximate calculation of the effect of the obstacles, which does not

suffer from the same problems. The calculation goes as follows. We consider a charged rodlike

chain that passes within a distance
r

of a fixed obstacle. The minimal energy configuration for

this chain is not a straight line, because of the interaction with the obstacle. Instead, the chain

is deflected in the vicinity of the obstacle. Let 6(r) be the angular deflection of the chain (see
Fig. I). This deflection depends on the interaction between the particle and the chain, and

on the stiffness (both intrinsic and electrostatic) of the chain. We moreover assume that the
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chain undergoes uncorrelated collisions, and that the probability of finding an obstacle within

a distance r from the chain is given by the Boltzmann factor exp(-V(r)/kBT). Under these

assumptions, the mean squared angular deflection caused by the obstacles for a contour length

s along the chain is

< 6~(s) >= ST
j~

dr exp(-V(r) /kBT)6~(r). (9)

Fig. 1. Schematic representation of the deflection of a rigid chain by an obstacle.

This deflection adds up to the fluctuations of the orientation that results from the intrinsic

and electrostatic rigidities, s/(fo + fosf). We therefore identify the total persistence length as

I
=

I
+ r /°° dr exp( -v(r) /kBT)02 (r) (io)

itot (~0 + ~OSF
0

The angular deflection 6(r) can be computed if it is small in the case of screened Coulombic

interactions considered in section 2.3, iJn~o(r)
=

2kBTfB/AKO(ltr). We find (see Appendix B):

°~~~
~° ~llsf1 ~~~~ ~xPi-l~r) jii~

When the electrostatic rigidity is dominant (tosf » lo ), this reduces to 6(r)
cM 87r~rr exp(-ltr)

The interaction V(r) between the particle and the (straight) chain, on the other hand, is given
by

+oc

~~~~ ~~~~j~ /_~ ~~ ~°~~~~~ ~ ~~~~~~~ (12)

=
kBTbexp(-~rr)

Using (II and (12), the integral over r in equation (lo)
can be computed as:

/« «

dr exp(-V(r)/kBT)6(r)~ ct647r~1t~~ du exp(-bexp(-u))u~exp(-2u) (13)
o

and the total persistence length is approximately

trot ~f ~osf Ii +
all) in~

) ~

(14)
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In this last result, we have introduced a numerical coefficient a that accounts for the approx-

imations made in deriving equation (9). Provided that the correction to Odijk's result is not

too large, we see that this result agrees with the exact result derived in section 2.2, equation
(8). That the two results agree only to first order in T is not surprising, since the approximate

calculation relies on the assumption that there is no overlap between two successive deflections,

an assumption that can be correct only for small obstacle concentrations.

Finally, we note that equation (lo) also gives the correct answer in the case of hard core

interactions considered in section 2A. In that case, the deflection is 6(r)
=

o for r > a, while

exp(-V(r) /kBT)
=

o for
r < a, so that the integral over r in (lo) vanishes.

2.$ NUMERICAL SIMULATIONS. It is rather difficult to test these ideas by computer sim-

ulations. The difficulty stems from the fact that the calculations are valid, in principle, for

infinitely long chains only. End effects are small only if the chain is much longer than the length
scale over which it perturbs the liquid of obstacles. For the interaction considered in section

2.2, and for an ideal gas of obstacles, the perturbation extends over a few screening length
1t~~ (typically, according to (12), (lnb)1t~~). Therefore, if e.g. ~r~~

=
30A and In(b)

=
2.S, a

chain of length at least loooA should be used This chain should be enclosed in a much larger
simulation cell containing a correspondingly large number of obstacles (in order to avoid in-

teractions between periodic replicae). The number of particles involved would rapidly become

prohibitively large.
One result that can be tested through numerical simulations is the one established in section

2A, I.e. that hard obstacles do not affect the persistence length. Figures 2a and 2b display
snapshots of a short (300 monomers) charged chain immersed in hard disk liquids of various

densities. The hard core diameter a is equal to the screening length, 1t~~
=

30A. A statistical

analysis shows that the presence of the hard disks does not modify the angular correlations

along the chain, which remain identical to what was described in ill. Very different is the

situation illustrated in figure 3, where the interaction between the monomers and the point
particles is now the "soft" potential 2kBT(tB/A)Ko(~r), the interaction between the point
particles still being a hard-disk interaction. Although in that case end effects preclude a detailed

statistical analysis, the configuration of the chain is clearly much more strongly changed by
these "soft" obstacles than by the "hard" ones.

3 Semidilute solutions.

3. I ANGULAR DEFLECTION BY A RIGID ROD. We now consider a three-dimensional so-

lution of charged wormlike chains, similar to that studied in section 2. The concentration

of charged monomers is denoted by c. The overlap concentration c* is defined as usual

as c*
=

(L/A)/R~, where R is the size of the chain in the dilute system and L the con-

tour length. In the semidilute regime (c > c*), the distance between chains D is defined

through c =
(D IA) /D~, where we imply that the chains are straight rods at scales smaller

than D. We distinguish between salt-free solutions where ~~~
=

(47rfBc)~~/~
mJ

D, and

"strongly screened" solutions, where a concentration c~ of monovalent salt is added so that

1t~~
=

(47r£B(c+ 2c~))~~/~ < D. For salt-free solutions, c*
=

I/(AL~). For screened solu-

tions, we first limit ourselves, in order to simplify the discussion, to relatively short chains, I.e.

chains that are rodlike in the dilute regime, so that c*
=

I/(AL~). Longer chains are briefly
considered in section 3A.

Clearly, this three-dimensional problem is much more complex than the twc-dimensional

one
studied in section 2. It seems reasonable, however, to assume that the influence of the
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Fig. 2. a) Snapshot of a
typical configuration for a charged polymer chain interacting with obstacles.

The chain is a charged wormlike chain characterized by the parameters A
= tB> L

=
300A, (

=
100A,

1/~
=

30A. The obstacles are
hard disks of diameter a =

30A, the surface fraction occupied by

the disks is ~ =

«a~r/4
=

0.07. The monomer-obstacle interaction is of the hard core type, with
a

diameter a.
b) Same as figure 2a, except that the surface fraction of the disks is now ~ =

0.28.
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Fig. 3. Same as figure 2b, except the interaction between the monomers and the hard disks is now

a
soft interaction, kBT(tB/A)K0(~r).

other chains on the statistics of one given chain can be described through the same kind of

"deflections" that has proved useful in describing the interaction with the obstacles. Two chains

interact if they are, locally, within a distance smaller than ~~~ from one another. The most
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likely configuration for the interaction of two chains is thus the one in which the two chains are,

locally, perpendicular straight rods separated by a minimal distance r. Other configurations,
such as two locally parallel chains, would cost much more in energy, and are therefore very
unlikely. More precisely, for two rods separated by a minimal distance r < ~~~, the energy
penalty of a deviation b6 from the perpendicular configuration is of order kBTfB1t~~A~~(b6)~.
In the case of interest tB~~~ » A~ and this energy is much larger than kBT except for

very small deviations (b6)~ < ~rA~/fB. We can therefore safely assume that the dominant

configurations are the ones where the chains are perpendicular.
The problem of the angular deflection of a charged chain by a perpendicular charged rod is,

as mentioned in section 2.2, exactly identical to the problem of the deflection by an obstacle

studied in section 2.4, when the interaction iJn~o is given by 2fB/AkBTKO(~rr). From these

arguments, we conclude that we can use equation (11) to describe the deflection of a given
three-dimensional chain by other chains.

The problem is now reduced to the statistics of the angular deflections encountered by a

given chain, which determine its persistence length. These statistics are very different for

salt-free and for strongly screened solutions; these two cases are considered separately in the

following sections.

3. 2 THE STRONGLY SCREENED CASE: DEFLECTION BY AN IDEAL GAS OF RIGID RODS. In

the strongly screened case, the semidilute solution can be pictured as an ensemble of wormlike

chains with a diameter ~r~~ much smaller than the interchain distance D. Each chain has a

total persistence length, (tot, that results from the balance between the electrostatic interactions

inside the chain and the deflections caused by other chains. We assume that the deflections

for
a tagged chain are the same as those that would be caused by an ensemble of rods of

length L' ci (tot, at the same charge concentration as the actual solution. This amounts to

neglect the fact that successive sections of size L'
are tied together in the same chain. In

a semidilute solution, where the correlation length is smaller than the chain size, this is a

reasonable hypothesis: sections of the same chain that are sufficiently far apart behave as

independent entities. A confirmation that this picture is meaningful is given by the fact that

within the mean field approximation that we use, the final results do not depend on the precise
value of L'.

The solution of rods equivalent to our original solution has a concentration c'
=

cA IL'. The

tagged chain interacts with this solution of rods. In the spirit of Onsager's calculation for the

isotropic-nematic transition, we assume the absence of positional or orientational correlations

between the rods (the question of the existence of a nematic order will be addressed below).
This means that the solution of rods responds to the perturbation introduced by the tagged
chain as an ideal gas. In the absence of interactions, the number of rods lying within a

distance
r of the tagged chain would be of the order rL'c' per unit of contour length. This

number must be weighed by a Boltzmann factor corresponding to the interaction between

the chain and the rod. Following the discussion of section 3.I, we approximate both the

Boltzmann factor and the angular deflection by the values appropriate for a chain and a rod

in the perpendicular configuration. We certainly overestimate this way the number of rods

that deflect the tagged chain, and we probably underestimate the magnitude of the deflections.

These approximations are accounted for by a numerical coefficient
a in the final formula for

the mean squared deflection. After a contour length s along the chain, we find a total change
in the orientation

m

< 6~(s) >= asL'c' dr exp(-V(r)/kBT)6~(r). (lS)
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The total persistence length is obtained from (lS)
asi

~
acA~

(16)itD~ "
~O'F

~
~ ~~ ~~~

1GiB

For the screened solutions that we are considering, the second term inside the square brackets

is small, since both 1t~~ and A are much smaller than the interchain distance D
=

(cA)~~/~
The conclusion is therefore that the persistel~ce lel~gth ala chail~ is ol~ly weakly affected by the

il~terchail~ il~teractiol~s. Odijk's picture of semidilute solutions should be essentially correct in

this case.

An interesting by product of our description in terms of uncorrelated rods is the osmotic

pressure of the solution. The osmotic pressure of the solution of rods is given, according to

Onsager's theory, by fl
mJ

kBTC'~L'~~r~~ The regime considered in this section should thus

correspond to an osmotic pressure of the polyelectrolyte solution varying as
kBTC~A~~~~

3. 3 SALT-FREE SOLUTIONS: DEFLECTION BY STRONGLY CORRELATED CHAINS. The case

of salt-free solutions is radically different. Here the interaction range ~r~~ is of the same order

of magnitude as the interchain distance D, so that a chain is constantly in strong interaction

with its neighbours. Strong positional correlations exist between neighbouring chains, which

have a preferred distance equal to D. The existence of these correlations and of a prefered
distance D manifests itself through the existence of a peak at qn~ax =

27r/D
mJ

c~/~ in the

structure factor of the solution. Very roughly, the solution could be modeled as a set of chains

filling all sites on a lattice with lattice spacing D. This "lattice" picture strongly suggests that

the persistence length of a given chain cannot exceed the lattice spacing D as long as its bare

persistence length lo is smaller than the lattice spacing D. This stems from the fact that the

electrostatic rigidity described by Odjik has its origin in purely el~ergetical considerations. The

energy of a configuration of the chains on the lattice, however, does not depend on whether the

chains are curved at scales larger than D or not. Therefore a rigidity with an energetical origin

cannot come into play at scales larger than D. Note that the argument here is very similar to

Flory's argument concerning the ideality of chains in melts. The electrostatic rigidity, like the

excluded volume, is "screened" by the presence of the other chains on a lattice where every

site is filled.

A second argument supporting the same conclusion can be given on the basis of equation
(11). When applied to two perpendicular chains separated by a distance ~r~~, this equation
predicts a deflection of order unity. This means that after a contour length D, a chain undergoes

a deflection of order unity, since it necessarily has interacted with a neighbouring chain lying

at a distance D
+~

~r~~. Therefore the persistence length is smaller than D. At scales smaller

than D, the chain remains rigid due to its own electrostatic interactions, so the persistence
length is of order D

mJ

~~~

Finally, we note that the osmotic pressure in the regime considered here should be dominated

by the counterions, so that IT
mJ

ckBT.

3.4 CROSSOVER PROBLEMS, DISCUSSION. The two extreme regimes discussed in sections

3.2 and 3.3, namely c~ =
o and c~ » c, are separated by a crossover region, where c~ +~ c and

the screening length ~r~~ is only slightly smaller than the interchain distance. Experimentally,

this crossover could be studied by progressively adding salt to a solution of fixed polymer

concentration. The arguments presented in sections 3.2 and 3.3 imply that the persistence

length increases very sharply from ~r~~ to £osf when the added salt concentration c exceeds

two or three times the counterions concentration c.
This can be seen from equation (11). The
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angular deflection caused by a chain located at a distance D from a tagged chain decreases

exponentially when the product 1tD increases. For c~ =
3c, ~D ce lo and 6(D)

m o.02.

This means that the chains located at the average interchain distance become very inefficient

at deflecting the tagged chain. The tagged chain is thus deflected only by other chains that

approach it within the range 1t~~, and the statistics of these -rare events is correctly described

by the theory presented in section 3.2. Thus for c~ > 3c we can expect trot m £osf. For c~ < c

on the other hand the screening is dominated by the counterions, and £tDt
"

D
r~

1t~~. We

thus predict, like Witten and Pincus, an increase in the persistence length as salt is added to

the solution. Their original prediction, however, was of
a smooth increase, with a persistence

length given by (3), and is thus very different from ours (see, however, [7]). Finally, we also

note that the osmotic pressure has a sharp crossover when D ci ~r~~ If the interchain distance

D is smaller than the screening length, the counterions clouds of different chains overlap and

the counterions are roughly uniformly distributed, the osmotic pressure is that of a perfect gas
of counterions. When D becomes larger than ~r~~, the counterions clouds no longer overlap
and the osmotic pressure decays steeply as

exp(-~CD). When the screening length is much

smaller than the interchain distance, the interaction between chains is equivalent to a hard

sphere interaction and the Onsager theory for hard rods can be used.

Another relevant crossover is the crossover between dilute and semidilute solutions. For

salt-free solutions, the situation is simple: for c < c*, the polymers are practically rodlike

objects. Both fosf and ~c~~ are larger than the chain length. When
c increases beyond c*,

the persistence length starts to decrease as c~~/~, and the polymers become progressively more

coiled. For short chains (L < fosf) in a screened system, on the other hand, the persistence
length does not change at c*. Finally, for long chains in a screened system, the semidilute

regime must be divided into two regions: at low concentrations, the correlation length is larger
than fosf, so that we have a semidilute solution of flexible polymers with a persistence length
fosf. At higher concentrations, the correlation length becomes smaller than fosf, and the

description of section 3.2 applies.

4. Concluding remarks.

In reference [I] two kinds of polyelectrolytes were identified. Flexible polyelectrolytes have

a small intrinsic rigidity or a small charge density. In a salt solution the persistence length
of isolated flexible polyelectrolytes is of the order of the electrostatic screening length as first

proposed by Katchalsky [8]. Rigid polyelectrolytes have a large intrinsic rigidity and a large
charge density and accurately described by the theory of Odijk [2] or SkoInick and Fixman [3],
their persistence length is larger than the screening length.

Flexible polyelectrolytes thus only have one characteristic length scale and it seems reason-

able to study them by constructing scaling laws. This was done some time ago by Pfeuty [9]
and de Gennes et al. [8]. In the absence of salt, the correlation length of the solution, the

persistence length of the chains and the electrostatic screening length are all of the same order

of magnitude and scale with the monomer concentration as
c~~/~

For rigid polyelectrolytes, there are several relevant length scales, the screening length, the

distance between chains and the persistence length. The arguments presented in this paper, in

agreement with those of Witten and Pincus, show that in a semidilute solution in the absence

of added salt the three length scales also become equal and scale as
c~~/~. This is the same

result as for flexible chains; the intrinsic rigidity of the chains therefore does not seem to be

important for the properties of salt-free semidilute solutions.

As salt is added, we predict a sharp increase of the persistence length when the density of
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the salt becomes larger than the density of counterions, followed by a slow decrease described

by Odijk's theory. In the strongly screened regime the persistence length is larger than both

the screening length and the distance between chains and does not depend significantly on

interchain interactions.

All the results obtained in this work have been discussed at the level of scaling laws where the

numerical prefactors are supposed to be of order unity. In some cases however large numerical

prefactors or logarithmic corrections seem to appear such as in equations (13, 16). We do not

believe that they will have any effect on the scaling regime but their precise values may control

the width of the crossover regimes which have only been discussed qualitatively here.

Another important limitation is that we have assumed throughout that the polyelectrolyte
solution is an isotropic liquid. Two types of ordering may occur but do not seem to be observed

experimentally. Just below the overlap concentration, in the absence of salt, one may expect the

formation of a crystalline phase where the positions of the centers of mass of the macromolecules

are on the sites of a periodic lattice. The existence of this crystalline phase would not affect

our results qualitatively as explained in section 3.3. For strongly screened solutions, the chains

become very anisotropic and may undergo an isotropic to nematic transition. The critical

concentration for this transition is of the order of the Onsager concentration for rods with

a length equal to the persistence length tosf (when the electrostatic persistence length is

larger than the intrinsic persistence length) and a diameter of the order of d
=

~c~~ In b: co =

~C~A/tB In b. At constant polymer concentration, one would thus expect nematic ordering as

soon as the salt concentration c~ is larger than the counterion concentration c and smaller than

the value where the polymer concentration becomes equal to the Onsager value. Experimentally

no nematic ordering is observed (except when the intrinsic persistence length is very large).
This may be due to the fact that a section of chain of size fosf is not very anisotropic:
its asymmetry ratio is a =

£osf/d
=

b/(87rlnb). Computer simulations [lo] show that a

nematic phase is observed if the asymmetry ratio is larger than 4-5; this would thus require a

prohibitively large value of the coupling constant b.
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Appendix A.

Ideal gas of obstacles in two dimensions.

In this appendix we explicitly calculate the free energy of an ideal gas of obstacles interacting
with a twc-dimensional curved chain. The test chain is bent on a circle of radius R and

interacts with the obstacles via a screened Coulomb potential. The obstacles can be viewed as

infinite rodlike chains perpendicular to the plane of the test chain. We consider one obstacle

at a distance c from the curved chain. We measure the position of a point on the obstacle by
the curvilinear abscissa £' where the origin is taken in the plane and on the tagged chain by
the curvilinear abscissa £ the origin being taken at the point of minimal distance between the

tagged chain and the perpendicular obstacle. The electrostatic interaction energy between the

two polymers is

~'(C)/~BT
"

iBA ~ /~~ di di' ~~~~

~

'~~~ (l~)
-«
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In the limit where the radius R is large, the distance d between points at positions f and f'

can be expanded in powers of the curvature I/R to second order.

It is then convenient to introduce the distance p and the angle 6 such that t
=

pcos6 and

f'
= p sin 6. The electrostatic interaction energy can be written as

V(c) /kBT
=

tBA~~
/

d6p dp
~~~~

~

~~~
(19)

This integral is calculated by changing variable from p to d

V(c) /kBT
=

27rtBA~~ /~~ dd exp(-~cd)
1

~ ~ ~) ~ ~
+

~~~ ~ ~~~~ ( ~°~~ ~
~j (20)

ICI
6R

where the brackets denote an average over the angle 6. The interaction potential can be recast

as
V(c)/kBT

= Vo + (Vi /R) + (V2/R~) with Vo "
bexp(-~c(c(), Vi

"
-cb/2 exp(-~c(c() and

and V2 "
exp(-~r(c() [3c~ /8 + (c( /(8~c) + 1/(8~c~)].

The free energy of the gas of obstacles (4) can then be expanded in powers of the curvature;
the second order term which gives the persistence length reads

+m +m

F2/kBT
=

T/R 27rcdc Vi exp(-Vo) + 27rdc (-V~~ /2 + V2) exp(-l§) (21)~~m ~m

The calculation of this integral gives the result of equation (7) in the text for the persistence
length.

Appendix B.

Calculation of the angular deflection.

In this appendix, the computation of the angular deflection of a chain by an obstacle in two

dimensions (Eq. (ll)) is briefly described. The geometry is illustrated in figure I. Taking the

tangent to the chain at the point of closest approach as the x, we can parametrize the chain

contour as:

z(s)
=

j~ ds' cos(o(s'))
c~ s j~ ds'

~~
dsi

~~
ds~

~° ~°

°
~

° ° °
~~~~~~

(22)

»(S)
= £~ dS' Sin(°(S))

C~ £~ dS'£~ dsi
I

where s is the curvilinear abscissa along the chain and (cos(6(s)), sin(6(s))) defines the tangent
vector at abscissa s.

The principle of the calculation is to write the interaction with the obstacle in the form

E;nt
=

Cte +
/

ds g(s) (~ (23)
s
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and to balance this energy against the curvature energy

E~urv
=

(( + £osf
/

ds
~~ ~

(24)
2 ds

Here we have made the simplifying assumption (see [I]) that the electrostatic stiffness
can be

approximated by a local curvature term. This balance yields for the deflection

~~~~
/~

~~~
~

( +~osf
~~

~~ ~~~~ ~~~~

In order to cast the interaction energy into the desired form (Eq. (23)),
we expand the

interaction between a monomer and the obstacle using:

Ko ~c [x(s)~ + (y(s) + r)~)] ~~)
=

Ko ~c
[s~ + r~)

~~)

~~~ '~
~~~ ~ ~~~

~~~

j~2

~2jl/2 /~ ~~'
~~ ~'~ ~~

(26)
The interaction energy becomes

E;nt
=

E;nt(rodlike configuration)

~~~~~~'~~ ~
~~

~~

j~2

~2jl/2 ~~ '~
~~~ ~ ~~~

~~~ /~ ~~'~~ ~'~ ~~
~~~~

which can be written in the form (23) with

~~~~ ~~~~~~'~~ ~ ~~~ ~~'
~~~ ~~~2 ~~ '~

~~~ ~ ~~~
~~~

~~~~

The integral appearing in equation (25) can finally be obtained using the following transfor-

mations:

/~~ dS 9(S)
"

~~~GiBA ~ /~~ dS /~~ dt
~~

~~
Kl (~ [r~ + (S + t)~j ~~)

o o o [r2 + (s + t)2]

~'~~~~ ~ ~~~ ~~

j~2

~2jl/2
~~ ~~ ~~~ ~ ~~~

~~~
~~~~

To obtain the second line in (29), we have used the transformation u = s + t,t
=

fu and

integrated over f. Using the integral representation of Ki, we can transform this formula into

+m +m +m ~2/
ds g(s)

=

-2fBA~~r~~ /
dt
/

du

~~~ ~ ~ ~~ ~~~ ~~
~~

cos(~rrt)

~~

=

-2tBr~A~~ /~~ pdp /~~ d# ~~
~ ~~

sin~ (#) cos(~rrp cos(#)
o o

(I + P

Here the transformations x =
u/r

= p sin # and t
=

pcos# have been used. Finally, using
formulae (9.120) and (I1.444) in ill],

one has:

£~" dS 9(S)
=

2fBr~A~ £~" PdP~i

l~~~/~
Ji(~GrP)

~~i~

=
(87r)~/~tBr~r~~A~~(~rr)~/~Ki/2(~cr)

which combined with (25) yields (11).
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