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Rdsumd. Mettant h profit la birdfringence de la mdsophase colonnaire hexagonale de

l'hexaoctyloxytriphdnylbne, nous montrons qu'il existe, en dchantillon mince, deux types de

dendrites en fonction du rappon de la longueur de diffusion i~ h l'dpaisseur d de l'dchantillon.

Lorsque i~/d>50, ies dendrites sent «?D» et remplissent la totalitd de l'dpaisseur de

l'dchantillon. Lorsque id/d
<

lo, les dendrites sent «
3D

» et un film de liquide isotrope les sdpare
des surfaces qui limitent l'dchantillon. Les dendrites

«
2D

»
vdrifient la relation d'lvantsov et ant

une constante de stabilitd «(~
=

o,o41 inddpendante de l'dpaisseur de l'dchantillon. Par contre,

bien qu'elles ne vdrifient jamais la loi d'lvantsov, les dendrites
«

3D
» ant une constante de

stabilitd inddpendante de l'dpaisseur «~[io,oos lorsque leur vitesse est assez grande
(i~/d

<
i ).

Abstract. Using the optical birefringence of the hexagonal columnar mesophase of the

hexaoctyloxytriphenylene, we show that two types of stationary dendrites exist in thin samples,
depending on the ratio of the diffusion length i~

over the sample thickness d. Either

i~/d
>

50 and the dendrites are «
2D

»
and fill the whole sample thickness. or

i~/d
<

10 and they

are «
3D

»
and separated from the limiting surfaces by a film of isotropic liquid. The 2D-dendrites

satisfy the Ivantsov relation and have a stability constant «(~
=

0.041 independent of the sample
thickness. By contrast and surprisingly, when their velocity is large enough (i~/d

<
I ), the 3D-

dendrites have an apparent stability constant «~$
m

0.005 independent of the thickness even if they
do not verify the Ivantsov relation.

1. Introduction.

The problem of the dendritic gowth of an alloy has recently attracted much interest and effort

from experimentalists. This is mainly due to the discovery of the
«

microscopic solvability
»

principle according to which dendrite velocity and growth directions are selected by the surface

energy anisotropy Ii. More precisely, stationary dendrites can only grow along crystallogra-
phic directions of minimal surface energy (anisotropy e) with a stability constant,

~r =

2 D~ dip ~V, that only depends on E. The parameters p and V are, respectively, the

radius of curvature and the velocity of the tip of the dendrite, D~ is the solute diffusion

coefficient in the liquid and di the chemical capillary length. In order to test these theoretical
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predictions, several experiments have been recently performed with transparent materials such

as organic plastic crystals (succinonitrile and pivalic acid) of inorganic salts (NH~Br). The

main results of these experiments, gathered in two recent review articles [2], show that the

theory-experiment agreement is only qualitative, even if there is now no doubt that anisotropy
plays a central role during dendritic growth. The discrepancy between theory and experiments

may be explained by the fact that the problems are still numerous, for example experimentally
for the measurement of the surface energy anisotropy e, and theoretically to take into account

the lack of axisymmetry of real three-dimensional dendrites [3]. Another problem, not

mentioned by Gollub but crucial experimentally, concems the confinement of the dendrites

due to the finite thickness of the samples. In general, it is admitted that dendrites are free when

the diffusion length i~
=

D~/V is smaller than the sample thickness (d in the following). This

affirmation is based on the fact that, experimentally, the product p
~ V is found to be constant

when i~
<

d [4]. In the following, we show by experiments performed in thin samples that this

criterion must be reconsidered and that the confinement effects may be important even if the

product p~ V is found to be constant.

In order to tackle this problem, we have chosen to study a discotic liquid crystal, the

hexaoctyloxytriphenylene. The pure compound has a hexagonal columnar-isotropic phase
transition at 86.I °C. It has several advantages over classical materials first, it orients

spontaneously in homeotropic anchoring in thin samples (I.e. with the columns perpendicular

to the glass plates) second, its physical constants (surface tension, anisotropy, diffusivities

and kinetic coefficient) and its phase diagram are known [5-7] ; third, it is very easy to grow

dendrites [5a, 6] ; finally, it is birefringent, which allows us to visualize the three-dimensional

structure of growing germs.

The plan of the article is as follows. In section 2, we describe the experimental set-up and the

optical method of three-dimensional visualization of the germs. In section 3, we focus on the

transient regimes which lead to dendrites and on global properties of growing germs. Finally,
properties of 2D- and 3D-dendrites are given in section 4.

2. The experimental procedure.

In order to observe the free growth of the hexagonal mesophase, we sandwich a heated droplet
of isotropic liquid between two square glass plates (20 x 20 x I mm). The thickness of the

liquid cristal layer, which ranges from 2 ~Lm to 20 ~Lm, is measured by conoscopy to about

± 0. I ~Lm on an optical bench equipped with a L-A- S-E-R- and a Brace-Kohler compensator
[9]. This method is usable because the liquid crystal is birefringent.
The sample is then placed into an oven in which nitrogen circulates. This precaution avoids a

too fast degradation of the liquid crystal in contact with air (m 0.01 °C/h ). The temperature is

controlled to ± 3 mK with a temperature controller A-T-N-E- A.T. S.R.100 and is homogeneous
within 10 mK over the whole surface of the sample. The sample can be moved inside the oven

from outside with the help of a X-Y translation stage, which makes it possible to observe its

whole surface through a microscope.
The experimental procedure to grow a germ at a given supersaturation is the following first,

the solidified sample is slowly heated until in its isotropic phase (I °C/h typically). This allows

us to measure the solidus and liquidus temperatures (Tj and T~ respectively) and to know where

we are in the phase diagram (Fig. I). Then, the sample is quickly undercooled at the chosen

temperature T. The quench method, described in a previous article [7], allows us to reach the

gowth temperature in a few seconds, before the first germs nucleate. It can happen that no

germ nucleates because the chosen supersaturation is too small (A
<

0.15 ). In this case, we do

not melt completly the hexagonal mesophase in order to isolate and equilibrate a small germ

(typically 10 ~Lm) which is then cooled down at the chosen temperature.
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Fig. I. Experimental phase diagram. It has been determined as in reference [5a]. Impurity concen-

tration (in mot§b) has been estimated from the Vant'Hoff law.

When the germ is growing, it does not fill necessarily the whole sample thickness d. In order

to measure its local thickness d~, we have observed the germ between crossed polarizers after

opening the aperture diaphragm of the microscope. Under these conditions, the isotropic phase
is dark (intensity lo) whereas the columnar mesophase appears to be gray (intensity
1~ lo). On the pictures, the local intensity I depends on the local value of d~ and saturates

towards I, when d~
=

d. Let d~ be the relative thickness of the mesophase (d~
=

d~/d). Using
the optical bench, we have shown experimentally [9] that

II lo
d~

=

(I)
Ii -lo

provided that the sample is thin enough (da 20~Lm). In this formula, I, lo and

I, can be measured simultaneously if the germ touches the two limiting glass plates in its

center if not, Ii must be mesured later after complete crystallization of the sample. This time

lag between the measurements introduces systematic errors (of a few fG) which are due to the

fluctuations of the used Hg-light source. Another limitation stems from the fact that this optical
method is not applicable nearby the vertical part of the interface because the rays are too

strongly deviated in this region (Becke fringes). Experimentally, the optical intensity I is

measured with a computer-assisted imaging system composed of a CCD Black & White Video

Camera (Panasonic WV-8L200/G), of a Video Cassette Recorder (Panasonic AG 6720) and of

an Apple Macintosh Quadra 700 equipped with a Frame Grabber Card (Data Translation Quick

Capture DT2255).

In order to test this optical method and to validate the phase diagram of figure I, we have

measured the volumic fraction of solid n~ at equilibrium as a function of the chemical

supersaturation A~ defined to be

Tj T
~~

(T~ T)(I K)
~~~
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a)

Fig. 2. a) Sample at equilibrium photographed between crossed polarizers at various supersaturations

(indicated on each picture). Note that the intensity is not homogeneous within each domain which means

that there is liquid between the solid and the two glass plates. The sample thickness is d
=

IO ~m. b)

Volumic fraction of solid n~ IO versus supersaturation A~. We also reported the apparent solid fraction

(+) which is obtained by only measuring the germ area. This measurement shows the importance to take

into account the hidden liquid as long as A~ >
0.3.
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where T is the temperature (T~ <
T

<
Tj ), K the impurity partition coefficient (K

m
0.33 ) and

T~ =

86. I °C the transition temperature of the pure compound. It is easy to show that at

equilibrium n~ =
~~. In order to test this relation, we have measured n~ at different

supersaturations. This quantity is obtained by integrating d, (itself obtained from Eq. (I)) over

a surface of unit area (Fig. 2a). At each temperature, the system is held at constant temperature
during a time which is at least 10 times longer than the diffusion time across the biggest solid

grain. The data reported in figure 2b show that n~ = A~ with a very good accuracy. This result

validates the methods of measurement of both the phase diagram and of the chemical

supersaturation A~.
In the following section, we describe the transient regimes which lead to stationary

dendrites.

3. Global properties of germs in the transient predendritic regime.

So far, all our experiments in the dendritic regime were performed in very thin samples (d of

the order of a few ~Lm) and at small supersaturation (A~
<

0.4 ). In this case, we found that the

radius of destabilization of an initially circular germ is in good agreement with the Mullins-

Sekerka theoretical predictions [5b]. We also observed that the time evolution of the germ

surface area is linear without slope variation at the destabilization [6], in agreement with the

numerical simulations of Brush and Sekerka [10]. Finally, we observed that after a transient

regime, called petal-shape regime, stationary dendrites form with a well-defined stability

constant [5a, 6].

In all these experiments, we implicitly assumed that three-dimensional effects were

negligible because both the diffusion length and the radius of curvature at the tip of the

dendrites were much larger than the thickness. In this section and in the following ones, we

reconsider this hypothesis and systematically analyze the thickness effects, first in thick

samples (7-15 ~Lm) and then in very thin ones (m 2 ~Lm ).
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3.I «THICK» SAMPLE (7 ~Lm <
da15 ~Lm). Figure 3 shows the typical evolution at

A~
=

0. I of a circular germ in a 9.2 ~Lm-thick sample observed between crossed polarizers. At

the beginning (Tm T,), the germ is at equilibrium and fills the whole thickness. When the

temperature is abruptly decreased, the germ starts growing while remaining circular on the

other hand, its optical contrast changes (it becomes darker on the sides) which means that its

thickness locally decreases. That also means that the germ becomes 3D and first destabilizes in

the sample thickness (Fig. 3a). It then destabilizes in the sample plane by forming six petals
(Fig. 3b) which partly fill the sample thickness. Each petal then grows by slowing down and by
thickening on the sides as the white strip surrounding the germ shows. In figure 3f, the germ

has everywhere resticked the two glass plates (see also Fig. 3g). From this time, each petal
becomes a m>o-dimensional dendrite similar to that studied in reference [5a] and in the

following section. The passage 3D-2D is particularly visible by plotting the germ surface area

and the radius of its circular envelope as a function of time (Fig. 4). On this two graphs, the

slope discontinuities mark respectively the petal-dendrite transition and 3D-2D passage.
The germ evolution becomes different when the supersaturation is larger than 0.3 (in the

same 9.2 ~Lm-thick sample). Figure 5 shows the example of a germ growing at A
=

0.4. At this

supersaturation, the six branches of the germ never rejoin the two glass plates and lead to 3D

dendrites which are separated from the two glass plates by a thin liquid film. The relative

thickness of dendrites at this supersaturation is constant and is equal to 0.78. Figure 6 shows

global properties of this germ. As in the previous case, it clearly appears by plotting the time

evolution of the germ radius (measured at the tip of the primary dendrites, Fig. 6a) that two

growth regimes must be distinguished : the petal-shape regime during which the growth
velocity of each petal decreases and the dendritic regime characterized by a constant growth

rate. In this stationary regime, each dendrite is 3D with well-defined velocity and tip radius of

curvature. On the other hand, the time evolution of the surface area A of the germ is

qualitatively different from what we observed in the previous case (Fig. 6b) : indeed, A is no

longer linear in time and there is no slope variation at the petal-dendrite transition, the growth
remaining 3D in the dendritic regime. Finally, we have plotted in figure 6c the apparent and the

real volumic fractions of solid (respectively n]PP and n~) contained within the hexagonal
envelope of the germ. These two quantities decrease in the petal-shape regime and tend

towards two different constants in the dendritic regime. It is worth noting that n, tends to

A~ in agreement with the impurity conservation law in a stationary regime while

n]PP saturates to a larger value given by n]PP
=

n~/(d~) where (d,) is the average relative

thickness of the germ (d~)
m

0.78 in this example).

Let us now describe what happens in a very thin sample.

3.2
«

THIN
» SAMPLE (d<5 ~Lm). The thinner the samples, the more difficult the

visualization of the 3D-effects. This is only due to the lack of optical contrast on the pictures
when the liquid crystal layer is thin. In spite of these difficulties, we performed similar

experiments in a 2 ~Lm-thick sample, and we observed that, in such a sample, 3D effects are

not visible through the microscope at very small supersaturation (A~
m

0.I ), even during the

transient petal-shape regime during which the growth rate decreases (Fig. 7a). This is

confirmed by the measurement of the evolution law of the germ surface area as a function of

time (Fig. 7b). Contrary to what happens in thick samples (see Fig. 6b), there is no noticeable

variation of the slope dA/dt [5, 6], which means that the growth process is 2D during all the

experiment, even before the germ destabilizes in its basal plane. This behavior remains

unchanged as long as A~ is small (typically A~ <
0.3).

The situation is different at large supersaturation (typically when A~ ~0.5). The germ

behavior is then similar to what happens in thick samples with formation of 3D-dendrites. In

this case, the envelope of the germ is hexagonal and n]PP is clearly larger than the imposed
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0. I id 9.2 ~m and AT 6°). At the beginning,
the germ touches the two glass plates. It first destabilizes in the sample thickness la) before developing a

hexagonal modulation in the horizontal'plane (b). In (f~ the six petals touch the glass plates on the sides.

The time interval between two photographs is lo min. In jg) we show the time evolution of the transverse

section of a petal taken along the growth direction. The time interval between two profiles is 10 min.
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supersaturation A~. This means that, even in very thin samples, there is a liquid film between

the solid and the limiting glass plates.
The main conclusion of this section is that there exists a critical supersaturation

A~* below which the dendrites are 2D (I.e. touch the two glass plates) whereas they are 3D

above ii-e- separated from the two glass plates by a liquid film). This supersaturation does not

change a lot with the sample thickness and typically ranges between 0.3 (for thick samples) and

o_5 (for thin samples). In the following section, we focus on physical properties of stationary

dendrites.
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@

Fig. 5. Germ at A~ 0.4 photographed between crossed polarizers. The time interval between two

photographs is 15 s.

4. Physical properties of stationary dendrites.

We have shown experimentally the existence of two types of dendrite. In this section, we give
their main properties in the stationary regime while insisting on the finite thickness effects.

A dendrite is characterized by its two radii of curvature at the tip and its velocity.
Experimentally, we are only able to measure the velocity V and the radius of curvature in the

plane of the sample p. Because of the narrow size of the region that can be fitted by a parabola,
this last measurement is delicate and noisy, particularly at large supersaturations. Indead, the

side-branches appear closer and closer to the tip when ~~ increases. An example of parabolic fit

is shown in figure 8. The velocity is much easier to measure thanks to the Video Cassette

Recorder.

Thanks to the optical measurement of the relative thickness of the crystal and the

measurements of V and p, we have analyzed the two types of dendrite separately.
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Fig. 6.-a) Radius of the circular envelope of the germ of figure 5 versus time (~~=0.4,
d

=

9.2 ~m). b) Its surface area ver.«us time. c) The apparent and real volumic fractions of solid inside the

hexagonal envelope of the germ. Note that n~ tends to A~ contrary to n[PP which is larger.
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4, I TWO-DIMENSIONAL DENDRITES. These dendrites have already been studied previously
[5a, 6]. In this subsection we show that their properties do not depend on the sample thickness

even if they are not strickly 2D because of the presence of a meniscus in the sample thickness.

Indeed, the liquid partly wets the glass plates with an equilibrium contact angle close to

30° [9].

In figure 9, we have plotted their stability constant ~r =

2 D~ c©~/p~ V as a function of the

sample thickness. Within the experimental error, this quantity is constant and equals
~r(~= 0.041±0.01. This value is in good agreement with that we found previously
(~r(~

=

0.039, [5a]) but is larger than the theoretical value calculated by Ben Amar by taking
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Fig. 8. Best parabolic fit of the tip of a two-dimensional dendrite.
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0.033 ' ). This theory-experiment

discrepancy could be due to meniscus effects but we did not observe a clear dependence on the

sample thickness. Moreover, this discrepancy is often observed in 3D-experiments [2] where

there is no meniscus so that we believe that it could rather be explained by the presence of

experimental noise. Indeed, Brener and Ben Amar [[[j have recently shown that any

perturbation tends to increase the value of ~r. We also found interesting to plot in figure 10 the

stability constant as a function of the ratio i~/d of the diffusion length over the thickness. This

graph shows that i~/d~50 for all 2D-dendrites. This inequality is strong and shows the

difficulty to make 2D-dendrites at large supersaturation.
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1') This value is different from that given in reference [8] calculated by taking D~/D~
=

0.3. New

experiments of directional solidification [9] have given D~/D~ 0.6.
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Finally, we also checked (Fig. II) that these dendrites follow the two-dimensional

Ivantsov's law relating the Pdclet number P
= p V/2 D~ to the supersatuation A. We recall that

this relation reads

+ cc

A~
=

?
fi exp(P exp (- s~) ds (3)

li

It is represented in figure II by the solid curve.

,,
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i Axisymmetric 3D-dendrites ,'
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have
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from equation j6) with B = - 0.5 for flat D-dendrites (dotted curve).

This last curve
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to endrites with a radius of curvature twice a~ small in

as in the
horizontal

plane.
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To go farther, we also tried to verify the 3D-Ivantsov's relation. If the dendrite is

axisymmetric, this relation reads

A~
=

P exp (P l~
~ ~~P ~~ ~ ds (4)

p
s

In figure II, we plotted this function (dashed curve) and we reported the experimental points
corresponding to dendrites for which i~/d al (only these dendrites have a well-defined

stability constant). These points lie systematically below the theoretical curve corresponding to

3D axisymmetric dendrites. This might be due to their flattening in the horizontal plane, since,

in general, p ~
d/2. We thus tried to fit the tip of our dendrites by an elliptic paraboloid of

equation

~2
x~ +

~ ~
=

2 py (5)

where p is the tip radius of curvature in the horizontal (x, y) plane and B a parameter
characterizing the eccentricity of the elliptic section in a vertical plane perpendicular to the

growth direction. We know, from the Horvay and Cahn calculations [12], that such a

paraboloid is a possible solution to the growth equations. In this case, the Ivantsov relation

becomes

A~
=

P ,fi
exp ip l~

~ ~xP ~- S dS
(6)

P s (s + PB

where P is the Pdclet number calculated with the radius of curvature in the (x, y) plane.
Experimentally, B<0 since p~d/2. In figure II, we plotted theoretical law (6) for

B
=

0.5 (dotted curve). This curve is above that corresponding to axisymmetric dendrites.

Consequently, it is impossible to explain the experimental results in this way.

Kinetic effects may be relevant to explain the discrepancy between theoretical and

experimental Pdclet numbers. Indeed, the fastest dendrites grow with velocities of a few

microns per second. In the case of the hexaoctyloxytriphenylene, the kinetic coefficient has

been measured and found to be equal to p =

130 ~Lm/s/K [7]. If kinetic effects tend to decrease

the growth velocity [13], it remains difficult to compare our experiments to the existing
theoretical results because of the non-axisymmetry of the observed dendrites.

5. Concluding remarks.

We have shown that two types of stationary dendrites exist depending on the values of the

supersaturation A and the ratio i~/d.
If A is small (A~

<
Al

m
0.3-0.5) and as long as

i~/d
~

50, the dendrites fill the whole

sample thickness and can be considered as two-dimensional. In spite of the presence of a

meniscus, they satisfy the 2D Ivantsov relation and have a well-defined stability constant

which is independent of the sample thickness (~r(~
i

0.041 ). As in many other materials, the

value of this constant is larger than that calculated theoretically [2]. This disagreement is

currently ascribed to experimental noise.

At large supersaturation (A~ ~
A~*), dendrites separate from the glass plates and become

three-dimensional. Then they grow faster than 2D-dendrites since i~/d
<

10. In general, it is

not possible to attribute to them a well-defined stability constant, except at large enough
supersaturation when i~/d

<
I (~r(

-
0.005). On the other hand, the 3D-Ivantsov relation for

free dendrites is not fulfilled, even when the flattening of the tip region is taken into account (in
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this case, the disagreement is still larger). Even if Pdclet number and kinetic effects may in part
explain the behaviour of both ~r

* and P when A~ increases, we think that the dendrites are not

free and still feel the confinement effects between the two glass plates, even when

i~
=

d/3. Consequently, it is not enough that
~r be constant and i~

<
d, to assert that a dendrite

is free.
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