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Abstract Liquid in grooved capillaries, made by e-g- inserting
a

plate in
a

cylindrical tube,
exhibits unusual spreading and flow properties. One example is capillary rise, where

a long,
upward tongue on top of the usual meniscus has been observed along the groove. We attribute

the underlying mechanism to a
thermodynamic instability against spreading for a

(partial
or

complete wetting) liquid in
a sharp groove whose opening angle

a is less than
a

critical value

ac = « 20. The equilibrium shape of the tongue is determined analytically. The dynamics of

liquid rising is studied in the viscous regime. When the diameter of the tube is smaller than the

capillary length, the center part of the meniscus rises with time t following a
t~/~-law, while the

tongue is truncated at a height which grows following
a

t~/~,law. Sharp groove also facilitates

release of gas bubbles trapped inside a capillary under the action of gravity.

1 Introduction.

It is well-known that capillary rise in a thin tube is inversely proportional to the diameter of

the tube iii. This law holds for partial as well as complete wetting. In this paper we show

that, when a sharp, vertical groove of sufficiently small opening angle is constructed in the

tube, a liquid tongue of macroscopic thickness appears inside the groove. The tongue extends

to arbitrarily high altitudes, independent oi the diameter oi the tube.

Our work started with the need to fill thin glass tubes with certain kind oi ionic solution,

to be used as microelectrodes in physiological experiments. A practical problem is to avoid

trapping oi gas bubbles in the tube. When tubes with a circular cross-section are used [see
Fig, la], it is very difficult to get rid of bubbles particularly in the sharp tip region. A Simple

solution was iound by inserting a plate inside the raw tube before stretching it into the final

shape using standard glass-making technique [see Fig, lb]. Tubes with cross-sectional shapes
shown in figures lc-le were found to be equally good for this purpose [2].
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Fig. 1. Cross-sectional shape of tubes used in the experiment. (b)-(e) contain sharp grooves along

the tube. The groove opening angles are:
(b)

a =
j«; (c) a =

0; (d)
a =

)«; (e) a =
)«.

The tubes which do not trap gas bubbles have a common feature that there are sharp grooves
inside. When Such a tube is held vertically, liquid on top oi a trapped bubble develops tongues
which extend down along these groove. As a result, trapped bubbles rise easily to the top
under gravity. The spontaneous flow of liquid along the grooves Suggests that there is no free

energy barrier for spreading. Indeed, when these tubes (about I mm in diameter and initially
empty) are placed vertically in contact with the solution, we discover that, on top of the normal

capillary rise, the liquid creeps up along the grooves to very high altitudes.

The new physics introduced by the groove geometry is the increased tendency for the liquid

to spread. The bottom part of the grooves which appear in the constructions shown in figures
16-e can be approximated by a wedge of opening angle a. As we shall show below, within the

classical thermodynamic theory, one can identify a critical angle

oc = gr
29, (1)

where 9 is the equilibrium contact angle. For a < ac, spreading occurs even when the liquid
does not wet the wall completely. Depending on the initial state of the liquid, gravity may
either enhance or act against spreading. In this paper we focus on capillary rise against
gravity. In this case there is an equilibrium liquid-air interface profile which can be determined

analytically. The dynamics of the rising process will also be considered.

The paper is organized as follows. In section 2 we discuss the static aspects oi the problem.
Section 3 contains an analysis on the dynamics of the rising process in the viscous regime.
Discussion and conclusions are presented in section 4.

2, The equilibrium problem.

2 I CRITICAL ANGLE FOR SPREADING. In the absence of gravity, the instability of a liquid
drop against spreading in a sharp groove with an opening angle a < oc can be seen as follows.

Consider a (fictitious) liquid column of length L that fills the bottom part oi the groove. The

cross-section oi the column is taken to be an isosceles triangle with the two equal sides on the

wall and a perpendicular of length d. For L » d, the total surface free energy of the liquid is

given by

F
=

2dLi tan(a/2) + 2dL(isL -'fsG) sec(a/2), (2)

where i, isG, and isL are the suriace tensions of liquid and gas, solid and gas, and solid and

liquid, respectively. Using the Young's formula

, cos o
= isG isL, (3)
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Equation (2) may be rewritten as

F
=

2dLi[sin(o/2)
cos 9] / cos(o/2). (4)

Equation (4) shows that, for sin(a/2) < cos9 or a < ac = gr
29 and a fixed volume V

=

d~L tan(o/2), the free energy of the column decreases without bound as L
- cc. We are thus

led to the conclusion that any liquid drop of finite extent is unstable against spreading for

a < ac.

2. 2 EQUILIBRIUM SHAPE OF THE TONGUE. When the groove is placed vertically, spreading
is countered by gravity. In a cylindrical tube, the macroscopic rise z of the liquid is limited to

a finite value even in the case of complete wetting. In contrast, for tubes with sharp grooves,
the finite free energy gain per unit length in the groove [see Eq. (4)] is able to overcome

the gravitational energy pgz per unit volume, provided the product dz is sufficiently small.

Thus a thin tongue oi the liquid can climb up to an arbitrary height along the bottom oi the

groove. The width d of the tongue, however, should be inversely proportional to the height.
Note that the tongue is not a precursor film. It is completely describable within the classical

thermodynamic framework.

To determine the equilibrium profile of the liquid-air interiace z(x, y),
one has to solve the

equation [I]

Pgz =
21H, (5)

subjected to the boundary condition that the contact angle of the liquid at the wall is 9. Here

p is the mass density of the liquid (or
more precisely, the difference between the mass density

of the liquid and that of the gas), and H is the mean curvature of the interface. To obtain a

complete solution to (5) for the geometries illustrated in figure I, one has to resort to numerical

means. Here we are mainly interested in the profile of the tongues. The problem can then be

simplified by considering liquid rise in an infinite wedge formed by two planar vertical walls at

an angle o, as shown in figure 2a.

a

z

R

x

(a) (b)

Fig. 2. (a) A wedge of angle
o

formed by two vertical planes. Thin lines illustrate equilibrium
capillary rise. (b) Horizontal cross-section of (a). Liquid is confined in the region OCBDO.

Anticipating a slow variation of the cross-sectional shape of the tongue with the height at

high altitudes, one may, in a
first approximation, ignore the interface curvature in the vertical
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direction. According to equation (5), the horizontal cross-section of the tongue should then

take the form of a dart with a circular base, as illustrated by the closed area OCBDO in figure
2b. The radius R of the arc is given by

R
=

a2/(2z), (6)

where a =
[21/(pg)]~/~ is the capillary length. The angle between the tangent of the circle and

the wall at the point of intersection is 9. From the geometry one obtains the following equation

relating the distance d
=

OB and the radius R of the circle,

d
=
Rl~°~ i). (7)

~j~ _~y
2

Combining (7) with (6), we see that the width of the tongue is inversely proportional to the

height when the opening angle a is less than ac.

It turns out that the leading order correction to (7) can also be calculated analytically when

the ratio R/z
=

(a/z)~ is small. For this purpose let us introduce polar coordinates (r, #) in
2

the horizontal xv-plane centered at A,

x =
X r cos #, y = r sin #, (8)

where X
=

d+R is the distance between O and A. The liquid-gas interface position is specified,
for small R/z, by

r(#, z)
= R[1 + (~)~e(#) + j. (9)

z

The mean curvature H can now be expressed in e.
After some algebra the final result is given

by

~ 2~
~

~~~~ ~~~ ~ ~ ~ ~~ ~ ~~ ~ ~"
~~~

~ ~' ~~~~

where x =
X/R

=
cos9/ sin(a/2). Inserting (10) into (5) and using (6),

we obtain, to leading
order in (R/z)~, $

~ ~ ~ ~~ ~ ~~ ~ ~" ~~~ ~' ~~~~

Equation (11) has a general solution which respects the #
-

-# symmetry,

The constant C in (12) is to be determined by the contact angle 9 at the wall. From the

geometry we see that the polar angle 11 (> 0) at which curve (9) intersects the wall satisfies

rsin(#i +
°)

=
X sin

° (13)
2 2

Setting the angle between the interface and the wall (in three dimensions) to 9, we obtain,

e cos 9 +
~~

cos(11 + a + cos 9(1 X cos 11 )~ =
0. (14)

d# 2 2
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Combining equations (12-14) gives

c
=

~°~

j4 + 3 sin~ 9
(~r

20
a + sin 20) cot

jj (15)
2 sin -a

2

Figure 3a Shows cross-sectional profiles of the interface calculated using (12) (solid lines) for

the case a =
~gr and 9

= gr.
The heights oi the cross-sections are at z

la
=

1.5, 2, 2.5 and
3 12

3. The convergence to the circular profiles (shown by the dashed lines) is very iast as z
la

increases. Figure 3b shows the vertical profiles of the interface for the same set of parameter
values. Solid line gives the contact line oi the liquid with the wall, while the dashed line is the

profile on the bisector of the wedge.
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Fig. 3. Equilibrium profile of the tongue in an infinite wedge of opening angle a =

~
7r.

The contact
3

angle is chosen at 0
= «.

a) Horizontal cross-sections of the tongue (thin solid lines) at heights
12

zla
=

1.5, 2, 2.5 and 3 (from right to left). Dashed lines give the zeroth order approximation, b) The

contact line (solid)
on

the wall and the vertical profile (dashed)
on

the bisector of the wedge.

3. Dynamics.

When a thin tube with sharp grooves is made in contact with a liquid, the build-up of the

equilibrium height consists of three stages: (I) an initial "rush" into the tube, which typically
takes less than 10~~s [3]. The flow in this period can be quite turbulent. (ii) viscous rising in

the center part oi the tube towards equilibrium. (iii) development of tongues. In the iollowing

we only consider stages (it) and (iii). Here the dynamics is controlled by the viscous flow oi

the liquid which limits transport oi matter needed to reach final equilibrium. For simplicity we

assume that processes (it) and (iii) are separated in time, though in practice there may well be
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an overlap. Our considerations iollow closely previous work on wetting dynamics as reviewed

by de Gennes [4] and by Leger and Joanny [5].

3. I VISCOUS RISE IN A CIRCULAR TUBE. Let us first consider rising in a thin circular tube

without grooves. The hydrodynamic equation governing the viscous flow oi the liquid in the

tube is given by [6]

-i7
~

+ gZ + Ui7~V
#

0, (16)
P

where u is the viscosity coefficient oi the liquid. The inertia term has been ignored. As usual,
no-slip boundary condition on the wall is imposed.

The driving force for the flow is the unbalanced pressure drop across the liquid-gas interface

at height h,
bp

=
pgh 41cos 9 ID

=
pg(h h~q), (17)

where D is the diameter of the tube and h~q =
2a~ cos9/D is the equilibrium height of the

interface [7]. The contact angle 9 has a weak dependence on velocity which we ignore here [4, 5].
In the following we make the further approximation that v has only a vertical component. For

an incompressible fluid, this implies that uz depends only on the horizontal coordinates (x, y).
In this case equation (16) reduces to the Laplace equation

(al + di)U~ =
bP/(UPh). (18)

The solution to (18) is given by

uz = jjbp/(uph)jjr~ (D/2)~j, (19)

where r is the distance to the center of the tube.

From equation (19) we obtain the flow rate per unit area

r(l12)2
/~~~~ ~~ /$h ~~)~ ~~~~

Identifying (20) with the velocity of the interface and using (17), we obtain,

T 8u 2 h
~~~~

This equation can be easily integrated to give

~
ln

1 ~
=

~

,

(22)
heq heq 8 C°S ° 2a

~

to

where to
=

u/(ga) is a characteristic relaxation time of the liquid, typically less than 10~~
s.

For h/h~q < I or t « to(2a/D)~ the rising is diffusive,

/~~ ~ 3 /2 i /2

~
2 cos~2 9 2a to

~~~~
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It crosses over to an exponential decay

~ ~~~ '~ ~~~
8

~s
9

~ ~
~~~~

at t ci to (2a/D)~.
The important result of the above calculation is that the typical rising time of the liquid

is inversely proportional to the third power of the diameter of the tube. Another interesting
phenomenon is that, although the equilibrium rise h~q is higher when the tube is thinner, the

time it takes to reach a given height h < h~q is actually longer, t(h) ci to h~ /(aD). The diffusive

regime exists only when the diameter is significantly smaller than the capillary length. The

approximation that v has only a vertical component is not correct close to the top of the liquid
column or at the root of tongues. However, we expect that the qualitative behavior oi viscous

rising is captured by (22).

3.2 DEVELOPMENT oF TONGUES. In the above discussion we assumed that the equilib-
rium meniscus shape (but not the height) at the center of the tube is established at the end

of stage (I). The rising in stage (it) is then governed by the unbalanced pressure drop, com-

pensated by the viscous forces in the liquid. This description does not apply directly to the

tongue region: the equilibrium interface extends to infinite height which can not be established

in any finite time. A more plausible picture is that, at a given time t, there is a fully-developed
tongue truncated at some height hm(t). In addition, there can be an incipient tongue above

hm(t).
A simple estimate for hm(t) can be made from equation (23). The equilibrium thickness oi

the tongue at hm is oi the order oi a~ /hm [see Eq. (6)]. Assuming that the viscous flow up to

this level is similar to the one in a tube oi diameter D
=

a~ /hm,
we obtain irom equation (23)

hm Cf
a(t/to)~/~ (25)

Equivalently, the time ior the tongue to reach a height h is given by

T Ci
to(hla)~. (26)

It turns out that a more detailed calculation presented below gives the same result as the

simple-minded estimate (26). Let us start with the approximate equation

(al + aj)u~
=

~(z), (27)

where

~(z)
= (g + ~dzp) (28)

" P

The term d)uz, which is omitted in (27), will be shown to be small. In addition to the no-slip
boundary condition uz =

0 on the solid walls, we demand that the tangential stress vanishes

on the liquid-gas interiace, dnuz
=

0.

To fix the solution to (28), one has to speciiy the shape oi the cross-sectional area. For

Simplicity we assume that all cross-sections oi the tongue have the same shape, and are

parametrized only by the linear dimension R(z). In this case solution to (28) can be writ-

ten as

Uz(x, v, z)
=

-@(x/R, v/R)R~~, (29)
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where is the solution to a dimensionless equation which vanishes on the walls and is positive
inside the region oi interest. We are now in a position to justiiy that d)uz is indeed negligible:

it is smaller than ~ by a factor (R/z)~, which is a small number in the tongue.
The final step is to write down an equation for R(z, t), which can be done using the continuity

equation for
an

incompressible liquid,

dtA + dzU
=

0. (30)

Here A
=

AOR~ is the cross-sectional area, U
=

fdxdy uz(x,y)
=

-UOR~~ is the total

velocity in the vertical direction, and Ao and Uo are positive numbers which depend only on

the geometry. Combining (30) with (28) and using P
=

Po -'f/R, we obtain

dtR~
=

(Uo/Ao)dz
~R~

+
'~ ~dzR).

(31)
" P"

Equation (31) has a stationary solution (6). We now consider a linearized form of (31)
around this solution. Writing R

=
(a~/2z)(1+ b), we obtain,

tidtb
=

~ d)b dzb b, (32)
~ ~

where ti
"

8toAo/Uo. Equation (32) admits a scaling solution

&( t) ~( (zla)
~' (t/ti)1/3 (33)

The scaling function A satisfies

4 ~
3'~ 1)

d~l u2
~ ~' ~~~~

Thus the characteristic relaxation time for the build-up of the fully-developed tongue at height

z is given by (26).
In the long-time limit, b

-
0, so that A(0)

=
o. The second boundary condition may be

chosen to be A(cc)
=

-I. A numerical integration of (34) then yields the solution shown in

figure 4. For
u » I we have A

=
-1+ 4u~~ + O(u~~). In the opposite limit u « I we have

A ci
-0.0317u~[1 u~ + O(u~)].

18

4. Discussion and conclusions.

In this paper we have shown that a liquid drop oi finite extent is unstable against spreading in

a groove whose opening angle is less than some critical value a~. Spreading to infinite heights
takes place even when the liquid has to climb upwards against gravity. However, the thickness

oi the liquid tongue decreases with increasing height. In addition, the total amount oi liquid
in the tongue is finite: it is oi the order of a~D where D is the diameter of the tube.

Since the equilibrium thickness of the tongues is proportional to a~/z [Eq. (6)], at very
high altitudes, microscopic interactions such as van der Waals and double-layer iorces become

important [1, 3-5]. Taking
a =

I mm and the range oi molecular interactions at I pm, the

macroscopic description used in this paper breaks down when the height exceeds I m. This

regime is leit ior iuture investigation.
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Fig. 4. The scaling function that appears in equation (33).

In a tube whose diameter is smaller than the capillary length, the approach to equilibrium
is controlled by viscous flow oi the liquid, which yields a

t~/~-law ior rising of the center

meniscus and, at a later stage, a slower t~/~-law for rising of the tongues. For pure water at

room temperature, the surface tension and kinematic viscocity coefficients are given by ~t c~ 73

dyn/cm and u ci
10~~cm~ Is, respectively. This yields a =

0.38 cm and to
"

u/(ga) ci 3 x
10~5

s. Using equation (26),
we

find that the time it takes for the liquid to reach I cm, 10 cm,

and I m are then 10~~ s, I s, and 10 min, respectively. In our experiments with colored

solutions, rising seems to be much slower than that predicted above. This may possibly due to

contact-line pinning by dirts on the wall of the tube or a change of wetting properties by ions

in the solution, or a combination of both effects. We have not, however, checked quantitatively
whether the scaling laws break down as well.

The analysis presented in this paper offers an explanation for the fast release of bubbles in

tubes with sharp grooves. Such tubes may be more of a common occurrence than rarity in

living bodies, ior which liquid transport is oi crucial importance, and where capillary iorces are

of relevance. Our findings may also be of use in solving engineering problems where trapping
of bubbles is hazardous. We hope our prel1nlinary study will inspire further theoretical and

experimental investigations in this area, particularly on the dynamical side.
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