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Abstract. Thin films of symmetric diblock copolymers on a flat solid surface form lamellae

parallel to the substrate. The uppermost layer of the film may be incomplete and made of

domains with a
thickness equal to the lamellar period L. We investigate these domains both

theoretically and experimentally. The domain edge is associated with
a

dislocation in the lamel-

lar order which has been observed by transmission electron microscopy. We extend the linear

elasticity theory of smectic liquid crystals, to include the effect of the surface tension at the

air-polymer interface. We calculate the surface profile above a domain edge and the position
(depth) of the dislocation. This profile is studied by atomic force microscopy for polystyrene-
polybutylmethacrylate films. The comparison between theoretical and experimental profiles

allows
an estimation of the smectic elastic constants and of the internal surface tension between

the two blocks of the copolymer.

1. Introduction.

Symmetric A-B diblock copolymers self-organize in the melt at low temperature and form

mesophases with a lamellar symmetry [ii. Thin lamellar copolymer films can be cast onto a

solid substrate by spin coating [2-6]. Both the solid surface and the free surface of the film

select the copolymer block that lowers the interfacial tension there and the lamellar layers lie

parallel to the substrate. For the polystyrene-polybutylmethacrylate (PS/PBMA) copolymer
films considered in section 3 below, it is the polybutylmethacrylate (PBMA) block which resides

at both the substrate and air interfaces. In this case, a perfect, defect-free, flat film can only

be made if the film thickness is an integer multiple of the lamellar repeat period L. (L is the

thickness of a A-BB-A sequence and is twice the thickness h of a single A-B layer). When the

thickness is not equal to one of these discrete values, the film locally adopts one of the "allowed"

values everywhere. Due to overall volume conservation, the upper layer is incomplete and has

been described in terms of "islands" or "holes" depending on whether the incomplete layer
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percolates or not [7]. Islands, for example, are finite domains on the surface which correspond

to an additional A-BB-A or BA-AB lamella of finite area with a thickness L
=

2h inserted

inside the film. In order to maintain the same polymer in contact with the air, this additional

lamellar domain must be inserted below the upper iayer and gives rise to an edge dislocation

line. The aim of this paper is to study both theoretically and experimentally the behaviour of

the domains and the distortion to the smectic ordering induced by the associated dislocations.

In particular we consider in detail the important role of the surface tension which acts at the

copolymer-air interface.

The elastic distortion induced by the presence of an edge dislocation in an infinite Smectic-A

liquid cristal was first studied by de Gennes [8, 9]. The local displacement of the smectic layers
is described by a continuous variable

u
which varies smoothiy throughout the sample. This

description neglects the discrete nature of the layered phase. One finds, using linear elasticity
theory, that if a dislocation line exists along the y axis, with the smectic ordering parallel to

the z-y plane at infinity, the distortion induced by the dislocation is essentially localized inside

two parabolic regions z~ =+ 4~z where z is along the layer normal. The penetration depth of

the smectic is defined as ~ =

@@ where K is the splay constant of the smectic and B its

compressional modulus.

The case of an edge dislocation in a semi-infinite smectic-A phase has been considered by
Kleman [10] and Pershan [iii using the approach of image dislocations. Kleman has shown

that the defect is repelled by a solid surface and attracted by a free surface. The shape of

a free surface above a dislocation located at a finite depth has been calculated by Pershan

who neglected the surface tension acting at the surface. The dislocation is attracted towards

the free surface and resides there, at equilibrium. The effect of the surface tension
+~

has

been considered by Lejcek and Oswald [12] who showed that the equilibrium position of the

dislocation is governed by the dimensionless surface tension r
=

+~/(KB)~/~ Whenever r < I,
the dislocation is located at the solid surface; if r > I, it is driven into the sample interior.

In the first part of this paper, we investigate theoretically the influence of a dislocation on

the surface profile of a smectic film of finite thickness using continuum linear elasticity theory.
Two cases are considered. We first study a

freely suspended film where both surfaces are free

to deform and have finite interfacial tensions. The smectic film deposited on a soiid substrate is

then considered as a limiting case where one of the interfacial tensions is infinite. We calculate

the equilibrium position of the dislocation and the shape of the free surface.

The second part of the paper reports an experimental study of the free surface of lamellar

copolymer films deposited on a solid substrate. The shape of the domain edges is studied by
atomic force microscopy. The existence of an edge dislocation at a domain edge is confirmed by

transmission electron microscopy. A quantitative comparison between the continuum theory
and these experimental results is made, with good agreement even for very thin films containing
only a few lamellar layers. The theory gives quantitative information regarding the position
(depth) of the dislocation and the elastic constants of the lamellar phase.

2. Theory.

2.I FREELY SUSPENDED smEcTic FILM. In this section we study theoretically the equi-
librium properties of a smectic-A liquid crystal film, such as the lamellar phase of diblock

copolymers. We adopt a coordinate system such that, in the absence of any perturbation to

the smectic order, the lamellar normal vector is parallel to the z-axis. We describe the local

verticai displacement of a lamellar layer from its equilibrium position with the variable
u

and

take the continuum limit where u varies smoothly throughout the sample. We restrict our

attention to straight line edge dislocations parallel to the y-axis and so, by symmetry, we need
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only consider the z-z plane. In the following, the free energies (and energy densities) are all

per unit length in the y-direction. The lamellar film has infinite extent in the z-y plane. In

the first instance it is assumed to be defect free with a thickness H. Our treatment is based

on the following classical expression for the bulk smectic energy density [9, lo, 13]:

~~~'~~
2 8z

~
2 8z~ ~~~

Here K is the bending or splay modulus and B is the compression modulus. The smectic

penetration depth is defined as ~ =

@@. This expression includes only the leading order

terms in an expansion of the energy density in derivatives of
u and is therefore only strictly

valid provided u is slowly varying. For diblock copolymer lamellar phases recent theoretical

results [13] suggest ~ m h/3 and lit
+~~~, where

+~~~ is the surface tension which acts at

the interface between the two segregated chemical blocks.

In what follows we calculate the lamellar conformations in the bulk by minimizing the total

m
H

free energy F
=

f f f(z,z)dz dz. Later we include the effect of the surface tension(s)
x=-«z=o

which act at the sample surface(s).
It is convenient to work in Fourier-space defining the Fourier transform a(q, z) of u(z, z)

as

where the front factor @ is chosen for convenience. The displacement
u is real, we must thus

require a(-q, z)
=

a*(q, z). The Fourier transform fq(z) of the free energy density is

The total elastic free energy F (per unit length in the y-direction) can be written as F
=

fZ~ dq if fq(z) dz
=

fl~ dqfq. The minimization of this free energy is straightforward and

leads to
~~(q, Z) "

°(q)~~~~~ + fl(q)~~~~ ~ (4)

Both a and fl are integration constants yet to be determined.

We now wish to calculate the lamellar displacement field due to the presence of a single
edge dislocation. Such a dislocation exists when a layer fails to span the entire sample. Of

particular interest is the deformation induced at the film free surface, which is the contour most

easily measured experimentally [7]. We proceed by first calculating the lamellar displacement
field u(z, z) in a sample of thickness H, where u(z,o) is imposed as a boundary condition.

This corresponds to the problem of a defect-free smectic film on a solid substrate, which has

some general roughness (with translationai symmetry in the y-direction). This procedure is

then generalized to treat a dislocation in the interior of a smectic film by decomposing the

sample into two defect-free portions, one above the dislocation and one below (see Fig. I). We

determine both the lamellar displacement fieid
u

throughout the sample and the equilibrium

position (height) of the dislocation.

We first include the surface energy of the air-smectic interface at z =
H in the free energy Fq.

(In the experiments described in Sect. 3 below this corresponds to the PBMA-air interface).
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Fig. I. Schematic diagram showing the lamellar conformations in the vicinity of
an

ideal12ed (step-
function) edge dislocation. Note that the dislocation is flemble.

Here aH "
a(q, H); the new term involving the surface tension

+~
is a good approximation to

the interfacial energy provided that this interface has a small slope.
The displacement field above a substrate with a given roughness characterized by a~ =

a(q, o)
is given by equation (4)

The of the free nergy with respect to the shape of the pper surface aH

quivalent
to posing

the
ontinuity~~q~z

~
G

(~)

where G
=

(I + r) /(I r) and r
=

+~/@1is
a dimensionless surface tension. This expression

has the following boundary conditions: (I) a = a~ when
z =

0. (ii) aH "
0 as +~ -

cc.(iii)

aH " a~ when ~ =
0; in this limit the lamellae are incompressible and the deformation is

undamped. The free energy of the smectic film above a rough solid surface reads then

i G 2~Hq~
Fq

=

-/lq~a~a* ~
~ ~

(8)
2 ° G e ~ Q + I

We now consider the equilibrium effect of a single edge dislocation trapped inside a bulk

sample, which has a total thickness Ht~t. The dimensionless surface tensions at the upper and

lower bulk surfaces are rup and rdown respectively. The edge dislocation is at a distance Hdown
from the lower surface and a distance Hup from the upper surface, where Ht~t

=
Hup + Hd~wn.

The discontinuity in u across the dislocation is Au(z), it has a Fourier transform Aa(q). We

make here no assumptions about the conformation of the dislocation, which needs not be flat.

The elastic distortion induced by the dislocation and its position at thermal equilibrium are

determined by minimization of the sum of the energies of the upper and lower portions. The

energy densities F/P and F/°~~, for the upper and lower portions respectively, are given by

(8) where a~ is replaced by a]P
=

b + Aa/2 for the upper portion and a(°~~
=

-b + Aa/2
for the lower portion. Since b(q) is unknown this introduces no further assumptions about the
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conformation of the dislocation. The minimization of F(°~ =
F/P + F/°~~ with respect to b

gives

~~~
~Au~~~~~own

~~~~~ ~~Aup
~~down

~~~

where Aj
=

~~ ~~~~~)
~, Gj

=

~ ~~, rj
=

+~jilt and j labels one of either up orGje ~ J~ +I I-rj
down. The lamellar displacement field for general values of Hup, Hdown, ~, rup and rdown is

given by equations (2), (7) and (9). The total free energy F(°~ of each q-mode then reads

F(°~ =

jliq~AaAa* /~~~)~~ (10)
up

+ down

In obtaining (9) and (10) we have not explicitly imposed continuity of 8u/8z (which is physi-
ca1ly required so that the normal stress is continuous) since it follows naturally from minimiza-

tion of the energy.

The minimization of F~°~
=

f F(°~dq with respect to Hup (say) gives the equilibrium position
of the dislocation. The free energy F(°~ given by (10) does not include any contribution from the

dislocation core itself: the molecules in the core (near the edge) are forced to adopt unfavourable

conformations, with an associated free energy penalty. Whilst this contribution has no effect

on the equilibrium properties of interest in the present work it would provide an important
contribution to the line tension acting at the dislocation edge and could be calculated from

the theory of Semenov [14]. In the present theory we also have neglected the bending and

compressional contributions to the free energy from the material making up the dislocation

core itself. In principle it would be possible to include these contributions, at least away

from the dislocation edge, at the expense of some mathematical simplicity (the conformation

of the dislocation would be more intricately coupled to the free energy). However whenever

the sample consists of many layers the contribution from the core bending and compression

is expected to become relatively unimportant. When there are very few layers present other

problems also arise: for example the validity of the continuum approximation; the linearised

theory must be considered as well as whether the gradient of the sample surface is small enough
for the approximation to the interfacial energy taken in (5) to be a good one. Nonetheless we

expect our theory to provide useful results in many cases.

Finally, near the edge of the dislocation the displacement field
u is not slowly varying and

the corrections to the approximate free energy (I) become important. However we retain (I)

as an approximate description of the bulk free energy, an approach which is conventional in the

literature. This may be justified on the grounds that we expect the contribution to the total

free energy from the region near the dislocation edge to be relatively insensitive to variation

of Htot, rup and rdown. In any case an extension of (I) to the regime where u is not slowly

varying is far from straightforward.

2.2 SMECTIC FILM oN A RIGID, FLAT SUBSTRATE. Throughout section 2.2 we consider

the special case of a single edge dislocation trapped in a sample of thickness Htot, which itself

resides on top of a
rigid flat surface. The lower solid surface may then be modelled by taking

the limit rd~wn
- cc in the results of the previous section. We make predictions for both the

equilibrium depth of the dislocation below the free surface Hup and the lamellar displacement
field. We give special attention to the contour of the upper (free) surface, which is the contour

measured experimentally, as described in section 3.
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2.2.I Equilibrium dislocation position. The equilibrium dislocation position is determined

by minimizing F~°~
=

f F(°~dq. Using equation (10) we find

ill
=

ii1
q2 dada* ~iiiiiili~iaiiii~i~i dq (11

In the case where rup < I (Gup > 0) we see by inspection of (11) that F~°~ is a monotonic

increasing function of Hup. Hence in this range of rup the dislocation is attracted towards the

free surface.

In the opposite limit rup
- cc (Gup -

-I)
a similar inspection of (II) shows that Hup

-

Htot/2: in this limit~ the dislocation is repelled from the surface, towards its equilibrium
position at the center of the film. This result might be expected on symmetry grounds.

In Appendix A the scaling of Hup with rup is estimated in the asymptotic limit rup
=

I + b,
where b < I. A sketch graph of the variation of Hup with rup is shown in figure 2.

These results are in agreement with those recently proposed by Lejcek and Oswald [12]
,

using the method of image dislocations.

2.2.2 Lamellar displacement field. We now seek to determine the lamellar displacement
field at the upper free surface in the presence of an edge dislocation. In what follows it is

necessary to explicitly define Au(z), the discontinuity in u due to the presence of a dislocation.

For simplicity we use the following approximate form, although we expect our results to be

relatively insensitive to the precise choice of Au near z =
0.

We again emphasize that the dislocation is flexible. In diblock lamellar systems h corresponds

to the thickness of a single A-B layer and a dislocation consists of an A-BB-A or B-AA-B

double layer with a thickness 2h, hence (12). According to (2) Au(z) has a Fourier transform

given by
Aa(q)

=
2hliq (13)

where h
=

h/(2x)~/~

fi
H

tot

1/2

l r
UP

Fig. 2. Schematic diagram showing the variation of the equilibrium depth of the dislocation Hup

(solid line), in units of the total sample thickness Htat, with the rescaled surface tension rup.
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Using (2), (7) and (9) we write the lamellar displacement field at the upper surface as

it(z, H~~; r~~)
=

~ /" Sin qz (e~~~dOW«q~ + i)(i + G~~)e~H~~q2

~ o q Gupe2~H~~~q2 ~
dq. (14)

For the special case rup
=

I (Gup
-

cc), the profile can be calculated explicitly [15].

"~~'~~~' ~~
~~~ 2fi

~
~~2~/~(2H~t

Hup
~~~~

The sharp step in u at the dislocation is thus "smoothed out" by those layers between the

dislocation and the surface. The upper contour is significantly distorted near z =
0 over some

length I, that we call the "healing length". Thus the upper lamellar layer is approximately flat

for ix > 1/2. For simplicity, we may define quantitatively the healing length I by,

1
=

2h/~"l'~~ (16)
~

x=o

In the special case rup
=

I, we obtain

-1

~ ~~ jt
~

Hup
~~~~

Whilst the exact solution for general rup is not easily obtained, one case of interest, which

may often be relevant experimentally [7] is rup » I. For such values of rup it is possible to

estimate the scaling of I given in equation (18) below, as described in Appendix B.

I t (~Htotrup)~/~ (18)

In deriving this result we have assumed that the dislocation is close to its equilibrium position
in the center of the sample.

Figure 3 shows the dependence of the rescaled healing length I'
=

I/(~Htot)~/~
on the

rescaled surface tension rup.
In recent experiments on the PS/PBMA diblock copolymer lamellar phase [7] it was found

that I is larger by a factor of order 20 than the estimate of reference [I ii obtained by neglecting

logi
slope =1/2 .,'

° log r~~

Fig. 3. Schematic diagram showing the variation of the logarithm of the rescaled healing length
I'

=

I(~Htotrup)~~/~ (solid line) with the logarithm of the rescaled surface tension rup. The dotted

line is the asymptotic tangent with slope 1/2.

)OURN~L DE PHYSIQUE 'I -T 4, N'4, APRIL 1994 27



696 JOURNAL DE PHYSIQUE II N°4

the surface tension. This difference was tentatively attributed to the effect of the air-polymer
surface tension at the upper free surface of the film. As described in section 3 below the present
work demonstrates that surface tension must be included and that it accounts for this apparent
discrepancy.

The total elastic energy due to the dislocation F~°~
can also be calculated in the specific case

where rup
=

I

F~°~
=

h~/l / e~~~~d°WnQ~
+ I) dq. (19)

It is important to recall that the contribution to the bulk smectic energy from modes which

are not slowly varying is known to be inaccurately modelled by the linear elasticity theory of

equation (I). Near the core leading edge this corresponds to modes q z h~~ We therefore

introduce a cutoff in (19) and evaluate the integral only over (q( < q~ where q~ t
h~~ The

integral diverges without this cutoff, indicating that the energy of the high (q(-modes are

strongly overestimated. The free energy calculated this way therefore does not include the

contribution of the core of the dislocation. We obtain

~Jtot
21i~4m

qc for Hdown W (2~ql)~~
~~o~4h~liq~ for Hdown < (2~q))~~

The first of these two regimes (Hdown » (2~q))~~) corresponds to copolymer lamellar sam-

ples with many layers (since for such systems [13] ~ m
h/3). Neglecting all numerical constants

of order unity, we may approximate (20) by F~°~
ct

h@l, which, for copolymer samples,
gives F~°~

t h+~~~ (since li
m +~~~ in this case [13]).

Using a method similar to that described in Appendix B, including the cutoff at (q( = q~, it

is possible to estimate the scaling of F~°~ for rup » 1:

F~°~
t

2h~/lq~
+ h~ (~~~~~ (21)

~ tot

~

In deriving this result we have, for simplicity, assumed Hup
=

Hdown
=

Ht~t/2, I.e. that the

dislocation resides at its equilibrium position in the center of the sample. For copolymer
lamellar systems with n layers (Htot

" n h) equation (21) reduces to the approximate result

~~~~ ~ ~~fAB ~ ~ ~
~~~~ (~~)

where
+~up

is the surface tension acting at the upper film surface.

3. Experimental.

The copolymer used in the experimental study was a polystyrene-polybutylmethacrylate
(PS/PBMA) of molecular mass 82,000, with a polydispersity index of1.04 [16]. It was syn-
thetized using anionic polymerization and purified by liquid chromatography. The PS sequence

has a mass of 43,000 and the copolymer is therefore roughly symmetric. As a consequence the

microdomains appearing in the ordered state are lamellar and form a bilayered smectic ar-

rangement characterized by a translational period L
=

2h of about 315 I. For PS/PBMA it

is the PBMA block which resides at both the silicon and air interfaces. Thin copolymer films

were prepared by spin-coating a dilute solution onto freshly cleaned silicon wafers. The rotat-

ing rate was tuned in order to obtain four different film thicknesses dj intermediate between

jL and (j + I)L, with j
=

1, 2, 4, 5.
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The films, initially solid and disordered were annealed under vacuum for 24 hours at a

temperature of 150 °C, which is well above the glass transition temperature of both species
and much below the order-disorder temperature of the pure copolymer. Smectic ordering
appeared, with layers parallel to the substrate and local quantification of the film thickness to

either jL or
(j + I)L everywhere. Islands of thickness L appear on a film of thickness jL when

an average thickness only slightly larger than jL is imposed.

The presence of
a dislocation loop below each island edge has been inferred previously [7].

The present experiment therefore gives a direct test of the theoretical predictions of section 2,
provided that the domains are large enough that any curvature in the dislocation loop is small

and that the treatment of section 2, based on a straight line edge dislocation, is appropriate. It

has been checked experimentally that the edge profiles are insensitive to the domain radius for

the size of domains investigated here. The Atomic Force Microscope (AFM) study of the free

surface of the films was carried out after cooling the samples to room temperature, which is

below the glass transition temperature for either blocks, leaving the samples in a solid state (for
PS Tg =

100 °C, for PBMA Tg =
30 °C [17] ). Because of the very high viscosity of the layered

structure the smectic ordering and its defects are supposed to be vitrified during the quench,
without appreciable modification. Once in the solid state the free surface topography can be

studied quantitatively using the AFM in the contact mode. A Nanoscope II instrument was

used (Digital, California). Previous similar measurements on the same system had shown that

the thickness profile above a domain edge was extremely flat, with a maximum slope
~"

m 0.I.
dz

This guarantees the absence of profile distortion due to a convolution with the probe shape
(AFM tip ). The use of different contact forces demonstrated the absence of profile distortion

due to sample tip interactions. Finally a controlled amount of homopolymer was added in order

to check that residual homopolymer is not responsible for the profile flattening [16] which is

attributed here to the effect of the air-polymer surface tension.

We mention at this point some possible sources of error: the dynamics of the dislocation

perpendicular to the smectic ordering are expected to be very slow and one should bear in mind

the possibility that its position may be "frozen in" during sample preparation, not necessarily at

the equilibrium depth. However the experimental results agree well with the equilibrium theory,
this seems to indicate that the annealing process is sufficiently thorough to leave the system

at equilibrium. One other possible source of error regards the smoothness of the substrate.

Inhomogeneities on the surface of the substrate could have dramatic effects, strongly pinning
the dislocation, not necessarily at the expected depth below the free surface. In the present
work silicon wafers were used which have a roughness much lower than 50 I.

The AFM profiles presented in figures 4-7 are obtained by measuring the surface profile
of the quenched copolymer sample at each of the four film thicknesses. The measurements

are made normally to the domain edges. The full lines on each figure represent the best

numerical evaluation of the Fourier integral in equation (14) after a three-parameter fit based

on quadratic error minimization. The three fitted parameters are the characteristic length

~, the dimensionless surface tension rup and the dislocation depth Hup. Their values are

given in table I for each of the four values of Htot
"

jL. The overall step height L may be

extracted from figures 4-7 and is found to have a constant value of 315 I. The parameters ~

and rup are found to remain constant, to within I nm and I unit respectively. This gives some

confidence in the fitting procedure since these are material parameters which are not expected

to vary with the film thickness. Combining these parameters, and using the fact that PBMA

is present at the free surface with a surface tension +~up =
23.5 dynes/cm in the melt [18], we

can estimate the elastic constants for the lamellar sample. We find B
=

10~ dynes/cm~ and

K
=

10~~ dynes. These values are comparable to those found in classical bilayered smectics
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Fig. 4. A plot of the local film thickness against position, measured along an axis parallel to the

substrate and normal to the domain edge. The average thickness di is intermediate between L and

2L. Dots display experimental results. The full line
was

obtained numerically from equation (19) for

the best parameters Hup, rup and
~.

Fig. 5. Same
as

figure 4 for
an average film thickness d2 such that 2L < d2 < 3L.
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~~~ 2x103 sx10~ 0
sx10~ 2x103
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Fig. fi Fig. 7

Fig. 6. Same
as

figure 4 for an average film thickness d4 such that 4L < d4 < 5L.

Fig. 7. Same
as

figure 4 for an average film thickness d5 such that 5L < d5 < 6L.

[12]. Using the relations K m +~~~h/3 and B m 3+~~~ /h [13] we can estimate the value of +~~~,
which is a quantity that is difficult to access directly. We find

+~~~ =

li
=

0.9 dynes/cm (23)

which is a quite reasonable value. Also h can be estimated as 300 I. Although this has the

right order of magnitude, it is not in agreement with the value of L
=

2h. The discrepancy

may be due to the inadequacy of the molecular model of reference [13] for the copolymer which

assumes that all the chain ends reside on the lamellar surfaces or to the finite molecular weight
in the experiment. This would also affect the value of the internal surface tension +~~~.

It is interesting to compare the free energy of the dislocation in the film to the free energy of

the same lamellar domain deposited on the surface of a dislocation free film. In this last case
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Table I. Parameters obtained from the fit of the surface contour to the present theory for
copolymer lamellar films of various thicknesses.

j 2 4 5

Htot 315 630 1260 1575

~ 100 104 102 106

Tup 27 27 27 26

Hup 10 20 50 350

the polymer with the higher surface tension is in contact with the air at the edge of the domain.

The corresponding cost in interfacial energy is Fd
"

A+~h where A+~ is the difference between

the surface tensions of the blocks of the copolymer, of order 10 dynes/cm for PS-PBMA. The

free energy of the dislocation is given by (22) to which one must add the core energy. A scaling
analysis suggests that the core energy is of order F~ t h+~~~. The very small value of

+~~~ in

(23) shows that the creation of a dislocation inside the film is favorable.

The depth of the dislocation below the free surface also depends on the total film thick-

ness. There is only a small apparent change in Hup as the sample thickness is increased to

1260 I. However, on increasing the film thickness further to 1575 I there is a sharp jump to

Hup=350 I. The amplitude of this jump clearly corresponds to the thickness of one lamellar

layer. Finally figure 8 shows the variation of the profile width I, as defined by (16), with the

square root of the film thickness. A linear dependence is observed, in agreement with (18).
This work has been based on the assumption that steps in the free surface are associated with

the presence of a single dislocation inside the copolymer film. Experimental verification of this

is given by figure 9 which reproduces a TEM micrograph of an ordered copolymer film deposited

on a hard polymeric substrate. The copolymer is slightly different from that discussed above, it

is polystyrene-polymethylmethacrylate with a molecular mass of102,000 and a polydispersity
index of1.05. Thin films exhibit the same kind of ordering and surface steps as described in
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Fig. 9. Cross-sectional TEM micrograph of
a

PS-PMMA film with
a

total thickness Htot such that

13L/2 < Htot < 15L/2. PS is black and PMMA white. The lower part of the picture (black) is the

polymeric substrate.

this work but they are made of an odd instead of an even number of monolayers. A cross-

sectional slide of about 500 I thickness was made according to the preparation technique
reported earlier [19, 20]. Staining of the PS phase was achieved by treatment of the section

with Ru04 vapor. Diffusion of the staining agent in the direction normal to the lamellae is

probably responsible for the dissymmetry between the apparent thicknesses of PS and PMMA

layers. However, the lamellar period L
=

400 I, is in good agreement with previous results on

the same material [21] and the topology of the defects is expected to remain unaffected. The

picture clearly demonstrates the presence of
a dislocation inside the film. Moreover, it proves

that such dislocations do not always lie against the free surface of the film. It is difficult to

draw any other reasonable conclusions concerning the location of the defect or the bending of

the trapped semi-infinite layer. Indeed, the substrate is rather rough and the films too thin to

allow for more accurate comparisons with the model.
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4. Conclusions.

In this paper, we have presented a study of the domains which form in one incomplete layer
of a lamellar copolymer film. The associated edge dislocations have been observed directly by

transmission electron microscopy. The precise shape of the free surface above the edge of the

domain results from a balance between the elastic distortion created by the dislocation and the

surface tension at the copolymer-air interface. The role of surface tension is apparent when one

compares the present results with the classical theory of Pershan [iii, where surface tension

effects were neglected: Pershan's prediction for the so-called healing length is much smaller

than the observed one. The present work demonstrates that when surface tension is taken into

account, the profile can be accurately predicted.

Our theoretical model is based on a continuum description of a freely suspended smectic film.

It includes the effect of bending and compression as well as the surface tensions at the upper and

lower film surfaces. We have given special attention to the case where the lower sample surface

is rigid and flat and the upper surface is free. We find that the equilibrium position of the

dislocation is at the free surface whenever the dimensionless surface tension rup
=

+~up/4i
is less than unity. As rup is increased above unity the equilibrium dislocation position moves

away from the surface, approaching the sample centre as rup
- cc. The experimental system

PS/PBMA exhibits the lather large value rup t 27.

A direct calculation of the lamellar displacement field involves the numerical evaluation of

a Fourier transform, in constrast to the infinite sum over image dislocations required in the

representation of Lejcek and Oswald [12]. This may prove more convenient in many situations.

We find that the conformation of the upper lamellar contour can be given in a simple closed

form in the special case where rup
=

I. For rup » I the width of the free surface profile

I varies as I t
(~Htotrup)~/~ where ~ =

@@ is the smectic penetration length related

to the mechanical properties of the lamellar material and Htot is the total sample thickness.

This provides a simple explanation of the discrepancy between the experimental results and

the classical theoretical estimate [I ii of I.

The experimental results obtained by atomic force microscopy are well descr(bed by this

theoretical model even for the smallest film thicknesses, where it would appear at first sight that

the discrete nature of the layers is an essential feature. Although for each film thickness the fit

of the experimental data involves three parameters, we have some confidence in the results since

the material parameters are actually independent of thickness. This allows a determination

of the elastic constants of the smectic and an estimation of the internal interfacial tension

between the two blocks of the copolymer. The results are in agreement with other estimates.

The depth of the dislocation below the free surface is also obtained and could be compared to

more systematic observations by electron microscopy.

Future developments of this work could involve a more thorough study of the interaction

between dislocations and of the kinetics of relaxation to its equilibrium position upon annealing.

Appendix A.

Equilibrium dislocation position: sample at a flat substrate.

For the case when rup
=

1+ 6 with 6 < 1 we calculate the equilibrium dislocation depth Hup
from (11) by assuming that Hup

=
eHtot with e < I. We then expand (ii) in powers of b and e,
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keeping only the leading order terms. Minimization of F~°~ with respect to Hup then leads to

Hup
=

Htot(b/2)~/~ (24)

where we recall that b
=

rup I with b < 1.

Appendix B.

Calculation of I for rup » 1.

For the case when the surface tension at the free surface is very large rup
=

I16 with b < I

we have Gup
=

-(1+ 2b) to leading order in b. We assume that Hup m Htot/2 and expand
(14) in powers of b, keeping only the leading order terms. In order to calculate I one needs to

estimate
~"

,

which involves an integral over all q-space. However the contribution from
ax

~~~

the range q = [0, #], with #~ ct
b/~Htot, dominates the integral. An estimate of this then gives

equation (18), to within a numerical prefactor of order unity.
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