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Abstract. Experiments
on

the sedimentation of chains of spherical particles in
a viscous

fluid are presented in the preceding paper ill. In this paper, we compare the predictions of

numerical simulations based
on

Stokesian dynamics to the experimental results reported in

reference ill, and to analytical expressions available for this problem. For unbounded fluids, the

experimental measured velocity and the numerical results
are

compared to slender body theory.
This comparison shows a correct agreement for

a
ratio of the length of the chain to its diameter

as
small

as 5. When the fluid is limited by
a

wall,
we use

the expression given by Brenner

[3] for the friction coefficient of particles in
a

bounded fluid. We find that this relation holds

even for distances that are smaller than the length of the chain. The good agreement between

the numerical and the experimental results shows the reliability of the Stokesian dynamics for

simulating the hydrodynamical interactions between all the particles and the wall.

The problem of the sedimentation of a chain of spheres lies in the determination of its friction

coefficient which depends on the length of the chain. There is no general expression but for an

unbounded medium and when the length of the chain is large compared to its diameter, one

can use the slender body theory [2] to get the friction coefficient and then the sedimentation

velocity.
Another difficulty arises from the hydrodynamic interactions of the chain with the walls of

the vessel in which the experiment is performed. We need to know the true influence of the

walls on the sedimentation velocity of the chains. This depends on the distance of the chain to

the wall and on the length of the chain; there is an analytical result for the friction coefficient

but only when the particles are far from the wall [3].
On the other hand, we have developed a numerical method, based on Stokesian dynamics

[4, 5] which allows us to calculate the trajectories of groups of particles close to a plane
in the limit of zero Reynolds number [6]. This method takes into account the many body
hydrodynamic interactions between the particles and a planar wall, whatever the distance
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between the particles and the wall.

In the first part we introduce the analytical theories available for the problem of the sedi-

mentation of a slender body. We will then present a brief outline of the Stokesian dynamics.
In the last part we compare the experimental results reported in iii to those obtained by nu-

merical simulations for different chains of various lengths, and at different distances from the

wall. The limitation of the theoretical friction coefficient when the chain approaches the plane
will be discussed in the conclusion.

1 Analytical results.

We consider a chain of n spheres sedimenting under gravity in a viscous fluid. The particles

are monodisperse spheres touching each other. The forces on the chain are its weight, the

buoyancy forces and the Stokes drag. The velocity of the chain will depend on the friction

coefficient which is a function of the number n of particles and of the distance h from the wall.

At equilibrium, we have the relation:

which relates the sedimentation velocity un of the chain to the number of particles, the di-

mensionless friction coefficient in ((1 "1), the radius a of the particles and the difference of

density between the particles and the fluid hp. This fives the final velocity:

~~
9 p In ~~ In ~~~

where vi is the velocity of an isolated sphere. All the results are then expressed as the ratio

un/ui which depends only on n and h. However, the experimental value of Ap may vary iii,
and so does vi We then decide to choose vi so that the numerical and the experimental results

for un are equal for large values of n and h.

1.I UNBOUNDED FLUID. In the case of a chain of spheres sedimenting in an unbounded

fluid, one is interested in the behaviour of the velocity of the chain as a function of its length
1= 2na.

When n is large or, equivalently, when the chain is long, one can use the slender body theory

[2] which gives useful analytical expressions for the friction coefficients of thin elongated bodies

of various shapes. Here we consider a cylinder of length I and radius a (I » a). The case of an

ellipsoid is presented in reference iii, and the two models give similar results. Replacing with

2na, we obtain the coefficient (" for a motion parallel to the main axis, and (~ for a motion

perpendicular to it

jj

2 n

II
+ 0.307e

~
~j

~
4 n j1+

0.307e
~

~j
~

3 In(2n) 0.5e
~ ~

3 In(2n) 1 + 0.5e
~ ~

where e =
(in 2n)~~

From those coefficients one can calculate the sedimentation velocity as a function of n, using

the relation (1).
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1.2 WALL EFFECT. We now look at the sedimentation of a chain of spheres in a fluid

bounded by some rigid boundaries. The effect of these boundaries on the friction coefficient

can be estimated using the expression [3]

t
~

~ ~foJ ~~
toJ hla

In this relation, ( is the dimensionless Stokes friction coefficient at distance h from the wall,
(cc is the friction coefficient in an infinite medium and hla is the ratio of the distance from

the wall on the radius of the spheres. The value of the constant k has been determined for

various situations. For a motion parallel to a single planar rigid wall, k is equal to 9/16, and

for a chain of spheres sedimenting midway between two infinite rigid walls we have k
=

1.004.

From (I), we get for the sedimentation velocity

u(h)
= u~

i k)j
(3)

This result can be rederived using the solution given by Blake [7] for the velocity field induced

by a point force acting on the fluid near a wall.

The force exerted by the sedimenting body is F m
6x~ta(cc(u + u'), where u is the sed-

imentation velocity of the chain relatively to the wall and u' is the backflow generated by
the wall. But u' depends on F, and we find from [7]: u'

=
3F/32x~th. This gives F m

6x~ta(ecu/(1- 9(cca/16h) and ( m
fool (1- 9(cca/16h). We thus recover the solution (3)

with the correct value of k.

2 Numerical method.

The numerical method is based on the solutions of the Stokes equations for the interactions

of spherical particles in a viscous fluid and has been extended to include the effect of a rigid
plane wall limiting the suspension. This method takes into account both lubrication forces and

many-body interactions, using the resistance and the mobility formulation.

For n particles, we defined the 6 x n force vector F
=

fi> fn> ti, tn) and the 6 x n

velocity vector V
=

(vi un, WI, tan where fi> fn, ti, tn are the forces and torques
acting on the particles and vii un, WI, tan are the velocities of the particles (for translation

and rotation). They are related through the 6n x 6n resistance matrix R2b and mobility matrix

M.

The resistance matrix R2b contains the solutions of the lubrication theory for two spheres
almost in contact and the solution for each individual sphere close to a rigid wall.

The mobility matrix M includes the first two moments of the force distribution on each

sphere resulting from the motion of the other particles and from the reflexion of the velocity
field

on the plane. The elements of M are calculated from the solutions given in [7]. More

details of this calculus and references can be found in [6]. Inverting M gives the many-body
contribution to the total force. This procedure allows us to take into account the hydrodynamic
interactions between two spheres induced by the presence of the wall, which permitted us to

study, for example, the trajectories of particles near a rigid boundary [6].
To get the total resistance matrix R, we add the two matrices R2b and M~~ The forces

and the velocities are then given by the relation

F
=

R-V where R
=

R2b + M~~
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For a chain of spheres which all move at the same velocity without rotation, the total force

on a particle a is the sum of the contributions of all the particles, including itself. If R"fl is

the 6x6 submatrix relating the force on the particle a to the velocity of the particle fl we have

n n~~~~~$'"~~ ~~~
'"J

d=i p=i

The total force and the friction coefficient of the chain are then

n n n

~'
~

~j ~i~ Ml~ ~iJ "

~j ~j ~~~
n=I o=I fl=I

Because of the geometry of a chain, the coefficients (,j are zero for I # j. With I
=

j
=

I we

get the coefficient ill corresponding to a motion parallel to the main axis of the chain. With

i =
j

=
2 or 3, the coefficient is (~, corresponding to a motion perpendicular to the main axis

((22 and (33 are equal far from the wall ). The ratio un/ui is then calculated as in (1).

3. Results and discussion.

The results for a motion respectively parallel and perpendicular to the chain axis and far from

the walls are given in figures I and 2. Our numerical method, however, does not apply when

the particles are influenced by two walls as is the case for the experimental results given in iii.
Therefore the numerical values presented here and calculated for an unbounded medium are

corrected using (3) with k
=

1.004. We do the same with the results obtained from the slender

body theory. We find a good agreement between experimental and numerical results for all

values of n. For the smallest values (n < 5), the slender-body theory predicts a sedimentation

velocity which can be more than two times lower than the experimental one. This was expected
because the body is no longer slender (e

=
0.43 for

n =
5), but nevertheless we notice that

this theory holds in a wide range of values of n and is already correct for n > 6 (e
=

0.33 for

n =
10).

Curves 3 and 4 show the velocity of a chain sedimenting parallel to the wall, as a function

of the distance from the wall. The distance h is ranging from 3a to 300a, and the number

of spheres is n =
17 and

n =
98. We can here neglect the influence of the other wall on

the experimental values. Again we find a good agreement between the experiments and our

simulations, except for the smallest values of h. This discrepancy seems to be due to the

experimental uncertainty in the determination of h in a
domain where the slope of the curve

is important.
The analytical solution (3), with k

=
9/16, becomes very different from the experimental

results for rather small values of h/I, depending on the length of the chain. The agreement is

correct (I% error) for h greater than a limiting value hi;m which depends on n.
For n =

17,

we have hi;m m 26a and hum/I
m 0.76. With (cc m 4.15 this corresponds to a ratio (cc/hiim

m

0.161a. For n =
98, we have hiim m 97a, too m Is and too /hiim m 0.lsla. The ratios too /hiim

are very close, so we see that too /h is the quantity which gives the influence of the wall, because

the effect of the wall depends on the force exerted by the chain on the fluid, I-e- the friction

coefficient, which varies more slowly than the length of the chain.
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4. Conclusion.

We have found that the analytical expressions given by the slender body theory (see also Ref.

iii predict correct results for rather small values of the number of particles in the chains, and

that the influence of a limiting wall on the friction coefficient can be well estimated using (3),

even for distances from the limiting wall which are smaller than the length of the body.
The numerical method agrees quite well with the experiment for any distance and any

number of particles. This verification allows us to use it with confidence to study other problems
related to particles and wall hydrodynamic interactions in a viscous fluid, such as the layering

of particles sedimenting on a plane.
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