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Abstract Using a mode coupling technique we investigate the dynamics near the isotropic-
nematic transition in liquid crystalline sidechain polymers. While in Inean field approximation

one
obtains

z =
I for the dynamical critical exponent z for the relaxation time of the order

parameter, we get from mode coupling the value
z =

1.5, a
result which is in agreement with

recent experiments done in Martinoty's group on two different classes of sidechain liquid crys-

talline polymers using electric and acoustic birefringence measurements. An analysis of recent

measurements of the dynamic stress-optical coefficient in sidechain elastomers shows that mode

coupling effects are also important in that case.

1. Introduction and motivation.

Liquid crystalline sidechain polymers, which have been synthesized first in 1978 iii, have since

been investigated in a rapidly growing number of papers (compare, for example, Refs. [2]
and [3] for reviews). Most of these investigations were focusing either on the synthesis and the

measurement of various physical static and dynamic properties in a specific liquid crystal phase

or on the static properties near phase transitions such as, for example, the isotropic-nematic
transition. Up to now much less work has been done on the dynamics of phase transitions and

on the interaction between a phase transition and the dynamic glass transition. The latter

term refers to the fact that below a certain frequency polymers behave macroscopically like a

liquid whereas above this frequency the polymer reacts like a solid due to the transient network

formed among the polymer chains.

To integrate the dynamic glass transition into the description of the macroscopic dynamics
of polymers and liquid crystalline sidechain polymers, it has turned out to be crucial to incor-

porate the strain field associated with the transient network into the macroscopic dynamics
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[4-7], when setting up a description in the spirit of irreversible thermodynamics [8]. Quite
recently we have given the linearized macroscopic dynamics of the isotropic-nematic transition

in sidechain polymers [9] generalizing earlier work on the isotropic-nematic transition in low

molecular weight liquid crystals [10-14].
In two recent important experimental papers [Is, 16], Martinoty's group has investigated,

using electric and acoustic birefringence measurements, the static and the dynamic behaviour in

two classes of sidechain liquid crystalline polymers. For the static behaviour of the modulus of

the nematic order parameter as a function of temperature in the isotropic phase, Reys et al. [Is,

16] find the same behaviour observed over two decades ago in low molecular weight materials

ill, 17], namely mean field behaviour for the static susceptibility of the order parameter.

It turns out that for liquid crystalline sidechain polymers the mean field exponent gives a

satisfactory description over a temperature range of more than 20 K starting at about I K

above the critical temperature of the nematic-isotropic transition. For the relaxation time of

the induced nematic order parameter, however, Reys et al. find a result that is qualitatively
different from that reported in low molecular weight materials. Measurements of the transient

electrical birefringence yield for the order parameter relaxation time r an exponent z =
3/2,

whereas one expects from the mean field description of the nematic-isotropic transition in

low molecular weight materials the exponent z =
I with the divergence coming exclusively

from the statics while the associated Onsager kinetic coefficient does not show any singular
behaviour near the phase transition (in conventional notation our z is denoted as zu). This is

indeed what had been previously observed in acoustic birefringence measurements [18] in low

molecular weight liquid crystals.
Naturally this qualitative difference in the dynamic behaviour between low molecular weight

and polymeric systems triggers the question concerning its origin. Even taking into account

reversible nonlinear terms in the macroscopic equations, as it has been done for low molecular

weight systems e-g- in references ill, 19] and [20], one can convince oneself by straightforward
analysis that such an approach does not give the experimentally observed exponents without

additional considerations. Thus alternative explanations need to be found going beyond the

mean
field approximation.

Here we suggest that the observed lifetime enhancement of the order parameter fluctuations

can be extracted from the mode coupling approach [21], a method that has since been general-
ized [22] and applied to a large number of physical systems including phase transitions in low

molecular weight liquid crystals [23-25]. However, here we apply this technique to investigate
the life-time renormalization arising from dissipative nonlinearities [26, 27, 22], whereas the

usual mode coupling technique [21-25] dealt with the renormalization of kinetic coefficients

arising from reversible nonlinearities. Note that the two types of nonlinearity act to modify
the dynamics in opposite ways: the former slows down whereas the latter accelerates. Here we

reformulate the theory by making use of the projector technique by Zwanzig and Bixon [28].
In the next section we present the model, sketch the ingredients of the method and give

the results for the isotropic-nematic transition in liquid crystalline sidechain polymers. In

section 3 we critically compare our model calculations with the experimental results and give

a perspective for future directions of experimental and theoretical research. In this last section

we
will also discuss possible implications of our approach for the isotropic-nematic transition

in liquid crystalline elastomers for which one has observed very recently [29], using dynamic
stress-optical experiments, also a slowing down of the relaxation of the nematic order parameter

that is different from classical mean field behaviour, while again the measured static properties
show mean field behaviour.



N°4 MODE COUPLING IN LIQUID CRYSTALLINE POLYMERS 545

2. Lifetime enhancement in liquid crystalline sidechain polymers.

In this section we present the model assumptions of our calculations of the lifetime enhance-

ment, sketch the basic ingredients of the method used and give the results obtained. For

a general exposition of the method as well as for the details of the calculations we refer to

our forthcoming detailed paper [32]. We investigate a continuum model for liquid crystalline
sidechain polymers expressed in terms of two field variables:

e for the elastic strain and Q for

the nematic order parameter. It is well-known [10] that the nematic isotropic phase transition

in liquid crystals is weakly first order. We start out from the following functional for the gen-

eralized energy obtained by symmetry considerations [9, 31] above and near the critical point
(for simplicity we suppress the tensorial character of Q(r) and fir)):

H((Q, e))
=

/
dr [L(VQ)~ + AQ~ + ce~ + 2UQe + (e~Q + ~1eQ~) (1)

2

where we have used the notation introduced in reference [9] for polymers and in reference [31]
for elastomers. Since our main interest is in the effects of the coupling of the nematic order

parameter Q to the strain field e, we have omitted higher order terms in Q in writing down

equation (I). The equations of motion are taken to be (we suppress the arguments r and t

unless needed)
u~~Q

=
-6H/6Q + fQ (2)

ri
=

-6H/6e + fe (3)

where a dot denotes time derivative. The f's are
thermal noise sources satisfying the fluctuation-

dissipation (FD) theorem:

< fQ(rt) fQ(r't') >= 2kBTu~~6(r r')6(t t') (4)

< fe(rt)fe(r't') >= 2kBTT6(r r')6(t t') (5)

< fQ(rt)fe(r't') >= 0 (6)

In writing down equations (4-6) we have neglected for simplicity the cross-coupling between Q

and I, which is expected not to change the main conclusions.

We make now use of the formalism introduced in [26, 27] to calculate the lifetime renor-

malization based on an equation of motion for the correlation matrix thus also exploiting

the projector approach of Zwanzig and Bixon [28]. This leaves us with (compare [32] for a de-

tailed derivation) the following general expression for the frequency dependent renormalization

AR(w) of the friction matrix R, whose unrenormalized part is
~~ ~

T

AR(w) +
/~ dte'~~£ <

~)) e~~(~~~)~
()) ~

> (7)
o B a NL ~ NL

where
a is the set of variables considered, the subscript NL denotes the nonlinear part of the

generalized energy derivative dH/da and where J' and £ are the projection on the linear
a

variables and time displacement operator in the approach of [28], respectively.
We have in our model a = (Q> e) and thus for the matrix of static susceptibilities

kBT < aka-k
>~~= Ak +

l~ ~/~~ ~
(8)

C
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The criticality is signalled by the vanishing of the smaller eigenvalue o[~~ of Ak at k
=

o where

the other one o[~~ remains positive and non-critical. We can rewrite the nonlinear part of

equation (I)
as

H~~
=

/dv(
B~~jb)j(J)j(i)

~~
'?~ (9)

= /dv((Biiijj(1)j3 + )Bii~jj(1)j2j(2) + )Bi~~jj(2)j2j(1) +
B~~~jj(2)j3)

where #(° is the eigenvector in the space of
a associated with the critical eigenvalue a[~~

and #(~) with the noncritical eigenvalue a[~~ and where the coefficients B,jk are some linear

combinations of ( and ~1and we neglect the dependence of B,jk on k which is taken to be small

near
criticality. In the expansion in the second line of (9) the terms are ordered according to

the strength of criticality.

I~~NL1+ =

fl B ~(j(J)j(1))~ ~ (~~)
6#fi)

~
2 '?

We also note that the bilinear terms in H denoted as EL become

~L (°~~'§~~~~'~
+ °i~'§~i~'~) (11)

We first consider the relaxation time renormalization of the critical mode which is signalled by
of with small k and thus we can take for small k

of~
=

b(k~ + (~~) (12)

xi~~
" a~~~ + a(~~ (13)

where ( is the correlation length of critical fluctuations which diverges as (T Tc)~l/~ at

criticality.
With this preparation and making use of equation (7) and the equation of motion for ak we

find for the lifetime ri of the critical mode

Ti °~ )~~ 5
~

_~ ~~ ~~ ~~~

On the other hand, the presence of the first term of equation (9) implies that the phase
transition is first order. If the transition is second order or only weakly first order, the coefficient

Bill must vanish or is at most very small. In this case the second term in equation (9) comes

in and yields the contribution

Ti +~ )~~ 2
~

_~~ ~~ ~~~

Next we proceed to look at the non-critical mode whose relaxation time r2 is calculated by
the same procedure. We obtain
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Now, since both the critical and non-critical modes enter the coupled dynamics of Q and e,
the strongest critical anomaly that can appear there arises from the non-critical mode whose

relaxation time r2 behaves as
(T Tc)~~/~ in agreement with the experimental finding

on the

dynamics of Q. If this interpretation is correct, the same critical anomaly should appear in

the dynamics off, I-e- the elastic relaxation.

Here we presented the results of a perturbative calculation of relaxation time renormalization

which gives the relaxation time diverging as (~ in the lowest order in agreement with the

experiment. At this stage, however, we should point out the preliminary character of this

conclusion. For a completely satisfactory calculation we need to go beyond the first order

perturbation theory, for instance, by making the calculation self-consistent. These are the

challenges left for future study.

3. Discussion and perspective.

In this paper we have indicated how the life-time enhancement with a critical exponent z =
3/2

observed experimentally in liquid crystalline sidechain polymers near the isotropic-nematic
phase transition can be extracted from a generalized mode coupling approach. The result

obtained is due to cubic cross coupling terms between the strain field associated with the

transient network and the nematic order parameter.

As expected on the basis of our model, the shear viscosity q showed no critical behaviour

[Is, 16] in the experiments. Also the experimental observation that the dynamic coefficient ~t

coupling order parameter variations and flow diverges [Is, 16] is consistent with our results.

Furthermore we predict that the elastic relaxation time associated with the transient network

must also show the same critical exponent for the singular behaviour as that of the nematic

order parameter.
While we have considered up to this point the isotropic-nematic phase transition in sidechain

liquid crystalline polymers, our analysis can be expected to carry over directly to this phase
transition in sidechain liquid crystalline elastomers. In these systems it will actually be relevant

for all finite frequencies, whereas for the polymeric case the analysis given only applies for

frequencies above that for the dynamic glass transition for which a transient network exists.

This expectation appears to have been confirmed by recent measurements of the dynamic
stress-optical coefficient near the isotropic-nematic transition in liquid crystalline sidechain

elastomers by Sigel et al. [29], who observed over a large temperature range a slowing down

that is much stronger than that expected for mean field behaviour (z
=

I). For the sample

called LCE-5 in [29] we extract from the data presented and plotted in figure 8c for the exponent

z =
1.55 + 0.I. For the sample called LCE-1 [29] we deduce from figure 7c z =

1.65 + 0.2; in

this case it is rather difficult to get an exponent, since, as Sigel et al. noted, the data were

obtained in two different sets of measurements, which were performed a considerable amount

of time apart. Clearly the experiments described in reference [29] had not been done having in

mind the possibility of a non-mean field behaviour. It appears therefore to be very important

to repeat this type of experiments on new well characterized samples and to determine more

precisely the value of the exponent z.

Motivated by experimental results, we have focused in this note exclusively on the dynamic

exponents near the isotropic-nematic transition. In the future we will investigate how the

presence of a transient or permanent (elastomers) network will change the critical dynamic

behaviour near phase transitions between other liquid crystalline phases in both, polymeric
and elastomeric materials, when compared to that obtained for low molecular weight systems.

Clearly those phase transitions will be preferred in these studies that can be second order
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or weakly first order including the nematic to smectic transitions and the uniaxial-biaxial

transition in nematics.
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