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Abstract. -Ia3d bicontinuous cubic phases are interpreted as constituted of a fluid film of

constant thickness supponed by the gyroid minimal surface. We first compute the gyroid structure

factor. Then we decorate the surface by the film. We compute the diffracted intensities and

compare to X-ray intensities measured in some lipid systems.

1. Introduction.

Recently it has been shown that a large variety of cubic phases appearing in various biological

or chemical systems can be described as triply-periodic bicontinuous phases. A panorama of

all these systems is given in Ii- Such cubic phases appear for example in lyotropic compounds
between the lamellar and the hexagonal phases [2-4]. They are different from the micellar

cubic phases which exist in another part of the phase diagram and which are not bicontinuous.

Following a similar scenario bicontinuous cubic phases with an analogous morphology appear
in copolymer systems [I, p. 363] and phasmidic compounds [I, p. 229].

The common feature to all these phases is the importance of interfaces and the fact that

mostly three space groups are observed Ia3d, Pn3m_ and rarely the space group Im3m. It has

been shown that these systems can be described in terms of a crystallography of films I, p. 83,

5, 61 (or surfaces) and that good candidates for that were some infinite periodic minimal

surfaces (I.P.M.S.) [7-91. It also appeared that the structure of the two cubic blue phases of

thermotropic liquid crystals could be described with use of the above I.P.M.S. [101. The three

cubic I.P.M.S. with the above space groups are the well-known gyroid G [I11, F and P [I?I

I.P.M.S. They divide the space into two infinite, unconnected but mutually interwoven

periodic labyrinths. Most of the experiments allowing the determination of the space groups

are X-ray diffraction experiments or electron microscope image analysis. Then, to compare

models linked to I.P.M.S. with experiments, we need to know the structure factor of these

interfaces. The structure factors of the P and F surfaces are known [131 but not that of the G

surface, which corresponds to the space group Ia3d commonly encountered in biologic

(*) Associd au CNRS.
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systems [I, p. 351. For lipid samples Luzzati and Spegt [141 proposed a structure with rods

defining two infinite 3D-networks unconnected but mutually interwoven. These rods are

somehow the cores of the minimal surface G. Both descriptions in terms of rods or I.P.M.S.

appear to be complementary. The main conceptual difference between these two models is that

interfaces built around I.P.M.S. are smooth curved surfaces, as is expected for fluid interfaces,

contrary to cylindrical rods joining at vertices [lsl which give curvature only on singularity
lines. This point may be of importance if one considers the interfaces of the cubic phases as

resulting from the release of a geometrical frustration in a curved space [5, 61.

The aim of this paper is to consider the G surface as the skeleton around which interfaces of

Ia3d cubic structures organize themselves. Section 2 is devoted to the determination of the

structure factor of the interface skeleton (G surface). In section 3 we give a simple model in

order to compute the intensity scattered by a film of constant thickness supported by the

minimal surface. We introduce a decoration of the surface with spheres and link the

geometrical parameters of the model to those of the minimal surface. In section 4 we focus our

attention to lyotropic systems. We examine the case of direct and inverse phases and compare
the calculated diffracted intensities to those measured in X-ray experiments [lsl.

2. Structure factor of the gyroid surface.

Minimal surfaces can be generated by a set of equations giving their Cartesian coordinates

r
=

(x, y, z) in terms of a complex variable
w as first given by Weierstrass

r(w
=

ro + Re (p j~ f(w R(w ) dw I, (1)

~~

where p = y exp [I al, -r, y, z are dimensionless coordinates (r
=

Rla, R defines the position

of a point on the surface and a is the cubic cell parameter) and f,(w)= I -w~,

f~,(w
=

(I + w~), f~(w
=

2
w.

Each minimal surface is defined by the complex function R(w) exp(ia ). The function

R(w
=

(1 + 14 w~
+ w

~)~ ~'~ is the same [I, p. 2371 l101 for the three surfaces P, G and F,

which transform in one another by changing the value of
a

(Bonnet transformation) [161. The

P, G and F surfaces are obtained for
a =

0,
a =

51.985°, a =

90°. It has been proved that

these surfaces could be generated with a unique surface in C~ R~ [171. The three I.P.M.S.

then correspond to a projection in R~, defined by the angle a.

For the G surface, the dimensionless number y~' equals 2.65624.

STRUCTURE FACTOR. The dimensionless structure factor F() of the minimal surface reads

F ()
=

exp~ "~~~ d«
,

(2)
~,

where d2l is the surface element, S is the scattering vector, or in reduced units

d«
=

d2lla~,
s =

Sla with s~
=

h~ + k~ +
i~. Since the minimal surface is periodic the integral

of equation (2) has to be performed on the surface So of the minimal surface contained in the

cubic unit cell. It may be expressed in terms of the two real coordinates u =

Real (w),

u
=

Im (w in the Weierstrass plane. r is computed with use of equation (I) and the surface

element d«
=

t~(w ) du du is expressed with the Jacobian [101 t(w
= y [R(w (I + ma ).

Taking into account the symmetry operations of the space group we only perform the

integration in the sector (Fig, I) of the Weierstrass plane which generates the part of the surface
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contained in the asymmetric unit. By definition the asymmetric unit allows us to rebuild the

whole cubic cell by application of the 96 symmetry operations of the Ia3d group.
Let us point out that the symmetry operations defined in the crystallographic tables imply a

well defined origin (point O in Fig. I). We checked the program by performing a similar

integration for the P surface for which results are known [131. The precision of the calculus is

estimated from the comparison between Fooo and the theoretical value of the reduced surface

«~ =

A~/flj'~
=

3.091 [121 where fl~
=

a~ and A~ is the surface contained in the cubic cell.

Notice that «~ =

2~'~ «~ where «~ =

2.453 is the value for the primitive cell. We performed the

integration with a mesh of the surface leading to a precision of 10-~
on the amplitudes. We

give the results for the first 17 amplitudes in table1.

ir

A~-

Fig. I. Fig. 2.

Fig. I. Weierstrass plane. The dashed region is the domain of integration corresponding to the

asymmetric unit represented in figure 2.

Fig. 2. Primitive cell with the asymmetric unit in white (with some hidden pan). The origin of the cell

corresponds to the (hidden) lower venex of the asymmetric unit.

3 X-ray intensities diffracted by a film of constant thickness.

3.I DECORATION OF THE MINIMAL SURFACE. We decorate the skeleton of the minimal

surface with a film of constant thickness and restrict the description to a model with two

densities (p and po are the densities inside and outside of the film). An exact way to introduce

the decoration of the minimal surface with a film of constant thickness 2i and constant density

takes into account the normal vector N at any point Ro of the minimal surface. The

dimensionless diffracted amplitude Fj~~i then is

F/ii
~

£ Ill I,, e~ "~~ + ~~ ~l« ~IA ~3J
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Table I. The computed G structure factor for the first 17 reflections. M is the multiplicity of
the (hki reflection family. M (F())~ would cot-respond to a powder diagi"am intensity.

G Surface

hkl M(hkl) M 12

211 +0.660 24 10.454

220 +0.451 12 2.441

321 -0.092 48 0.406

400 -0.360 6 0.778

420 -0.338 24 2.742

332 +0.467 24 5.234

422 +0.282 24 1.909

431 +0.209 48 2.097

521 -0.077 48 0.285

440 -0.060 12 0.043

611 -0.245 24 1.441

532 -0.104 48 0.519

620 -0.060 24 0.086

Ml ~.162 48 1.26

al -o.199 48 1.901

444 +0.395 8 1.248

543 +0.302 48 4.378

This description leads to tedious calculations since it does not lead, in the diffraction factor,

to the factorization of the contributions coming from the skeleton (I.P.M.S.) and from the

decoration (the film). In order to get a mathematical simplification (factorization) we perform
the decoration in a simple manner which avoids a description including the normal vector at

any point of the I.P.M.S. We introduce an isotropic decoration around each point

Ro of the minimal surface with spheres of radius R, and with a spherical distribution of the

density p~( R at a point R of the sphere. This process describes a film of constant thickness

2 R,. The density profile in the film depends (as we shall see later) on the overlap of the spheres
and on the precise form of the density distribution p,([R[ ) for one sphere.

The density at a point M of the film is

p (OM)
=

lj
p,( R (OM (Ro + RI d~R d~Ro (4)

where R is a point of the sphere. The dimensionless diffracted amplitude then is factorized as

l~hkf ~

~
P

s

R ) e~ "'~~ d~R le~ ~~~~° dli

a

sphere
So
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or with use of equation (2)

j = j,
here At~~ ~~~~ ~~~~~

F(f)~~~ is the Fourier transform of a sphere with a density distribution p~ (R ). We have chosen a

model with spheres with a constant surfacial density p~. This simply leads to

~i~ (2 Wsrs)
~ ~

~~
~~~jjjem

~

4 VP
s

Rj
~~ ~Sr~) ~ ~

~

which is the Fourier transform of a rectangular function of width 2 r~.

Let us now justify the choice of a constant surfacial density for the spheres. We show that,

neglecting second-order terms in curvature, this distribution induces a constant density profile

in the film of thickness 2 r,. At each point of the surface, we neglect the Gaussian curvature I.e.

we approximate locally the surface to a plane portion. Then all the spheres give the same

contribution to the density in a small layer of thickness dz at position z along the normal to the

plane (Fig, 3), If n, is the number of centers of spheres per unit area one obtains the density

dm in the thickness dz as

dm
= ii, p, 2 wR~ sin 0R~ do or dm

=

2 wii~ p~ R~ dz

This leads to a constant density profile in the film (in Fig, 4) [191

p (z)
= ii~ Ps 2 WR~

= p for z «
Rs (7)

z z

Rs P(z)

dz

S-
- - - - - - - - - - - - - - - - - -o

~Q

.Rs

Fig. 3. Density profile p (z) induced by ~pheres with constant surfacial density p,. All ~pheres give

the same contribution in a small layer of thickness dz.

3.2 STRUCTURE FACTOR OF THE FILM. We also introduce a Debye-Waller factor in order to

take into account some thermic disorder characterized by the dimensionless displacement

u =

AUla of the film, The total intensity for a powder diagram reads

I($f
~

AM (hki IF ~) ~ IF (il~~~
~

eXP
~~~

,

(8)
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where
a =

~
"

~ (u~), M(hki ) is the multiplicity of the reflection hki and A is a scaling factor,
3

3.3 GEOMETRICAL PARAMETERS OF THE FILM. Let us now describe the geometrical

parameters of a film of constant thickness 2 I supported by the minimal surface as seen in

figure 4, We can express the volume V~ of the film and the surface 2l~ =
2l+ + 2l_ of the two

interfaces in the primitive cell in terms of I and of quantities linked to the minimal surface, Let

us consider a surface element d~Ao at a point where the curvature radius is Ro, we get easily for

the minimal surface (d~2l_
=

d~2l+ )

d~2l
=

d~2l_ + d~2l+
=

2 d~2l_
=

2 Ii
~

d~Ao (9)
Ro

d~V
=

d~3 du
=

2 I ~~
d~Ao (10)

~
3 R(

~t z+

v
it

' ,
Ao

z_

D

Fig. 4, Film of direct (D) and inverse (II phases. A,j is the minimal surface, 3~ and

3_ are surfaces parallel to Ao at a distance f. V is the volume enclosed by the film. The dashed regions
correspond to the water.

V~ and 3~ are obtained by integration of equations (9) and ( lo) over the primitive cell, with the

use of the Gauss-Bonnet theorem

1~2 ~

~
~~

j~2

~
~

" ~

nmiive ce 0

where g is the genus of the minimal surface equal to 3 for the three surfaces P, G, F, This leads

3~ 2 2l~
for reduced parameters for the cubic cell (twice the primitive cell) s~=-=~,

a~ a~
V~ 2 V~

u~ = ~ = j
a a

s~ =

2(«~ 16 wp~) (12)

u~ =

2 («~ p
~~ "~~

(13)
3

Let us emphasize that the geometrical parameters of the film around the minimal surface

only depend on one parameter, its reduced thickness 2 p =

2 (la, The model will be valid if the



N° 2 X-RAY SCATTERING BY BICONTINUOUS CUBIC PHASES 281

radius of the sphere R~ is smaller than the curvature radius Ro I,e, p < ro. Minoration of

ro =

~' [R(w )[ (I + ma )~ in the Weierstrass plane gives ro ~
0.188. Another estimate is

2 a

obtained from the mean curvature radius calculated with the use of the Gauss-Bonnet theorem

(Eq, (I Iii

1- ~~~°
=

4
w (I g

=
d~Ao

Primiive ceil
R( ~(

fi
We obtain °

=

0,25, We shall then impose in the following fits p <
0.25.

a

4. X-ray intensities diffracted by Ia3d lipid cubic phases.

For lipids systems the film which decorates the minimal surface is a film of water (containing

the polar heads) for direct phases and a film of paraffinic chains for inverse phases. The

calculated intensities (Eq. (8)) depend on two parameters the film thickness 2 r~ and the

strength of the thermal disorder a.
We shall now focus our discussion on the parameter p

which can be deduced either from macroscopic measurements or from an estimate of the

molecular parameters. For macroscopic criteria we use the relation

~c ~w ~ ~part'

where V~ and
V~~~~ are the volume respectively occupied by the water and by the paraffinic

chains. The macroscopic measurement commonly given in the literature [15, 201 is the volume

fraction C~
~~j =

V~/n~ occupied by the water. The molecular parameters are the volume

v~ occupied by one paraffinic chain and the surface so occupied by one polar head.

4, I DIRECT PHASE. V~
=

V~ and equation (13) is simply

C~~~j
= u~ =

2 («~ p
~~ "~~

(14)
3

To relate p to the molecular parameters we use V~~~ =
Nuo where N

=
2l~/so is the number of

paraffinic molecules contained in the cubic cell. Simple algebra leads to the dimensionless

equation for p

~~
" p~ 16 wmp~ + «~ p + m«~ =

0, with m =

u~/s~ a. (15)

4.2 INVERSE PHASE. V~~a
=

V~ which leads, with use of equation (13) to

~~
~

3

' Cvpoi
=

2 «cp
~ (16)

Estimation of p in terms of the molecular parameter is straightforward as
2

= m. Combining
~

equations (12) and (13) we obtain

~~~ p~ 16 "mp~
«;p + m«c

=

0 (17)
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4.3 COMPARISON wiTH EXPERIMENTS. We now want to compare the above I-P-M- S. model

with the experimental data of Ia3d structures, namely the two direct and three inverse lipid
phases of references [14, lsl. Observations and results are summarized in tables II, III and IV.

Let us first note that the I.P.M.S. model gives a prediction for the amplitude signs. This has to

be compared with the signs deduced in very nice recent experiments [201 by confrontation of

the electron density profile computed from X-ray diffraction analysis with freeze-feature

electron micrographs. The F$) signs and those selected in [201 are in complete agreement for

the first lo reflections. This is not the case for the complementary model with rods [141. At

first sight it seems to be in favour of the I.P.M.S. model. But one has to be aware of the

decoration influence. A modification of r~ changes the signs via the oscillations of

sin (2 wr~ s II (2 wr~ s ) (Eq. (6)). In our cases this occurs for si"~ =

0.5 this and affects the signs
after the 10'h peak, as can be seen in details in tables II, III and IV.

As we claimed earlier, the theoretical intensities depend on two parameter r,, a
and on an

arbitrary scaling factor A. Let us emphasize that 2 i~, in the model with the above decoration is

the film thickness. We have determined these factors in order to fit at best the data, using a

least mean square fit criterion. In each case we have computed the factor

I(1, ~~~
j~, ~~~

)2 1/2

~ i
fit

where I,~~j and I~~~~ are the theoretical and observed intensities of the I-th reflection.

N is the total number of reflections.

For each compound we have verified (Tab. V) the agreement between the r~ value

determined by the fit on intensities and the p value derived from macroscopic [15, 201 or

microscopic data [2 II using equations (14) to (17). The calculated intensities for the decorated

I.P.M.S. fit quite well the data and the A values do not greatly exceed the uncertainty on the

measured intensities. A values obtained for the rod model are much larger than that deduced

from the I.P.M.S. model. However the rod model does not take the (211) reflection properly
into account. On the contrary the I.P.M.S. model takes all the reflections into account and

focus on the most intense ones. Nevertheless in order to perform the comparison between the

two models we have also performed a fit excluding the (211) reflection and leading to different

sets of intensities1(~ and A * values. In order to lighten the presentation we only give in detail

the resulting intensities for the Gal compound. The A * values for the two models then become

more comparable but nevertheless still with better values for the I.P.M.S. model. Let us note

that results for the I.P.M.S. model are all the more satisfying since it only includes two

parameters, contrary to three in the rod model. The radius of the cylinders r around the rod

plays a role similar to that of the radius of the sphere r~ in the I.P.M.S. model.

a
is the same parameter in the two models. The extra parameter s

in the rod model is the gap of

the cylinder length introduced at each end of the rods [lsl.

S. Conclusion.

In this paper we give an interpretation of the X-ray diffraction patterns observed in cubic

phases with symmetry group Ia3d within the frame work of models linked to minimal surfaces.

The governing idea is the organization of films around the gyroid minimal surface taking into

account the curvature of the interfaces. In this spirit we have computed the structure factor of

the G minimal surface. The result for the series of amplitude signs is note worthy. Indeed this

series corresponds to a relevant density map selected in [201. The simple sphere model is

promising since the associated intensities fit the experimental data quite well. It would be of



N° 2 X-RAY SCATTERING BY BICONTINUOUS CUBIC PHASES 283

Table II. hit>erse phases. I~~, obseri>ed intensities reported from [lsl. I~~~ fit by the rod

(j 1 )2 </2

model fi.om [lsl. I~~. fit by the I-P-M-S- model. A
=

z ~~~ °~~ w>here N is the
N

total number of ieflectioiis. A * corresponds to a fit for the I-P-M-S- model excluding the (211)

i~eflection. i" (dimensionless quantio') is the sphei"e radius r~ in the I-P-M-S- model and a

cj'linder radius in the i"od model. a: Coefficient in the e,rponential Debj~e-Wallei" term.

D column Amplitude sign dei"ii>ed fi.om [201. MS column Amplitude sign for the I-P-M-S-

model. 3,1 is tfie sum of tfie intensities.

D Ms

211 12350 12355 +

922 +

321 17 + +

4o0 88 + +

420 595 + +

332 1216

422 432

431 431

521 41 0 +

5 0 +150 +

376
~ ~

l 2 0 +

12 +

631 173 +

91 0 + +

155 5 + +

A 672

16859

JOLRNAL DE PHYSIQUE It T 4 N' 2 FEBRUARi 19Q4
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Table III. Inverse phases. Notation is the same as in table II.

Lecithin

ohs ms ms

211

519

321 + 21 30

52 + 38

<20 + 52

332 95 57

422 23 11

<20 5

<20 0

9 0 +

133 611 3

1

620 0

Ml 4

78 28 9

+ 21 6

81 22 22

22

14576

interest to describe more precisely a film of constant density around the minimal surface. This

would lead to a more sophisticated model taking into account the local properties (normal and

curvature) of the surface (Eq. 3) [221. Details of the density profile (polar heads contribution...)
could also be introduced. These refinements would be of interest only in comparison with

precise intensity measurements on Ia3d structures for different compounds.
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Table IV. Direct phases. Notation is the same as in table II.

D hkl
ms D

+ + &X4 +

+ + +

321 14

31

28 31

+ +

+ 422 51 + +

431 +

a

*

iisoi

Table V. Estimate of the parameter p. pi is derived from equation (14) (respectively
Eq. (16)). C~~~j values are taken from [lsl and [201. P2 is derived fi.om equation (15)
(respectiN>ely Eq. (17)). To calculate the parameter m, we

take uo
=

27.4 + n 26.9 l~, the

volume occupied bj~ one paraflinic c'hain of
n

carbon atoms, and
we estimate the surface

s~ occupied by one polar head from [141 llsl and [2 Ii- r~ is the vafiie used in the I-P-M-S-

fit.

Lw Gal KC12

0.12 0.10 0.05 0.07

0.13 0.10 0.05-0.1 0.0G0.1

0.098 0.085 0.09 0.09
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