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Abstract. Recently, it was discovered that a-chiral smectic layers can undergo a phase transition

into a polar smectic. The new phase is fundamentally different from that of the existing chiral Sm-

C* ferroelectrics. In this paper we examine the underlying mechanism responsible for the new

form of ferroelectricity. A Landau theory is presented to discuss the competition between

ferroelectricity and other forms of ordering such as anti-ferroelectricity. An effective free energy is

constructed to describe the coupling between layer undulations and the polarizability of the

sample. We find that in the new phase the Landau-Peierls instability is absent and that second

sound can propagate along the layers. Our considerations call for a number of experiments which

we believe are crucial for a clarification of the true nature of the observed phases.

1. Introduction.

Ferroelectric liquid crystals have found extensive usage in both display and switching
devices [I]. The classic ferroelectric liquid crystal materials are all in the chiral smectic-C

jsm-C*) phase [2]. In this phase, the molecules are organized in layers with the axes of the

molecules tilted with respect to the layer normal. The ferroelectricity is due to the fact that the

constituent molecules are chiral : in the Sm-C* phase chirality breaks reflection symmetry in a

plane containing the layer normal, leading to an in-plane polarization. Recently the discovery
of a ferroelectric smectic liquid crystal made from a-chiial molecules has been reported [3].

The lack of chirality already indicates that an unusual mechanism is involved. Indeed, optical
and piezoelectric studies reveal that at least one of the new phases has uniaxial symmetry,

unlike Sm-C* materials which are intrinsically biaxial. This means that the polarization must

be along the layer normal which corresponds to a longitudinal ferroelectric smectic. This

implies that the polarization cannot be easily rotated by electric fields as there is no continuous

symmetry for the polarization vector. Curiously, on cooling from the high temperature Sm-A
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phase, the sample loses nearly all of its birefringence on entering the ferroelectric phase. We

will show how this observation is compatible with the uniaxiality of the sample.

The constituent molecules of the new phase have a «
polyphilic

» structure. They are a linear

assembly of four sub-groups : A-B-C-A. Here, A is a perfluorinated moiety, C is an apolar
alkyl chain, and B is a biphenyl group which carries a significant dipole moment oriented

along the chain. We will call this molecule, whose length is about 41 1, F+ in the following. A

chemically very similar molecule, F-, has an A-B'-C-A structure with the dipole on B

inverted. F- molecules are completely miscible with F+. As mentioned, the ferroelectric

phase is entered by cooling from a SmA phase. X-ray studies reveal that the SmA phase
consists of a stack of densely packed layers with an intermolecular spacing of order 3-

4 I and with a layer spacing close to the F+/F~ molecular length. For pure F+, t(e low-

temperature phase- called SmX- has a complex, striped structure [4] with in-plane
modulation. A bias electric field is required to observe the development of a strong

piezoelectric signal. For a 70/30 mixture of F+ and F- molecules, the low-temperature
phase called SmX' has a simple lamellar structure with a layer spacing 34 I and it

does develop a spontaneous polarization on cooling (somewhat below the critical temperature

T~). The natural explanation of the reduced layer spacing in the SmX' phase is that the

molecular axis is tilted with respect to the layer axis, as appears to be confirmed by the X-ray
data [4]. There can, however, be no long-range order of the Sm-C type due to this tilt, in view

of the optical uniaxiality of the phase. In other words, the in-plane projection of the tilt must be

disordered at large length scales.

The possibility of constructing ferroelectric liquid crystals from molecules which are a-chiral

but which lack inversion symmetry has been hotly debated over the last twenty years [5].

Molecules with an A-B-C structure were suggested [6] as good candidates for promoting
longitudinal ferroelectricity. We will see that in general this would promote antiferroelectric

order. Polyphilic molecules with an A-B-C-A structure [3, 6] seem more likely candidates for

ferroelectric smectics since (I) they naturally self-assemble into lamellae if A, B, and C have

different polarizabilities (it) they lack inversion symmetry, and (iii) the tendency to promote

antiferroelectric order should be much less than for simpler A-B or A-B-C molecules. On

further consideration~ there appear to be strong objections against ferroelectric smectics based

on an A-B-C-A molecular structure. First, a layer of dipoles acts as a capacitor with no

electrical field outside the plates. The layer-to-layer dipolar coupling which would have to

produce the ferroelectric polarization is thus extremely weak. On the other hand, the van

der Waals attraction tends naturally to favor antiferroelectricity : (A-B-C-A) (A-C-B-A) (A-B-

C-A) (A-C-B-A). To see why, assume that B is more polarizable than C. Antiferroelectric

layering allows closer B-B spacing as is favored by the van der Waals attraction, while the

same argument holds if C is more polarizable than B. A second problem is that a layer of

vertical dipoles suffers from strong in-plane electrostatic repulsion. Assuming, for instance,

molecules with (vertical) dipole- moments po = qo x I I with qo the elementary
charge- then the repulsive energy po/sa~ between dipoles with a lateral separation

a >
3 I in a dielectric medium with

E >

lo is of order 500 K.

Finally, the whole concept of a liquid crystal developing ferroelectricity merely because the

constituent molecules lack head-tail inversion symmetry seems suspect. If the molecules had

their heads all pointing in the same direction, then we should expect a spontaneous splay in the

sample [5]. For lamellae with no inversion symmetry this translates into a spontaneous

curvature of the lamellae. For a solid, the crystallographic axes prevent the splay but for a

liquid crystal the splay could develop and destroy the molecular alignment and thus the

ferroelectric order.

In this article we want to investigate how these objections have been circumvented in the
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SmX' phaje. In section 2, we will examine qualitatively the balance between competing forces

at the molecular level to argue that we are dealing with a «
frustrated

» system. We also discuss

the relation between molecular tilt and birefringence. In section 3, we develop a Landau theory
for rigid-layer ferroelectric ordering. Particular attention is pa)d to the dipolar coupling. We

will show that the
«

capacitor argument »
is inapplicable due m the development of in-plane

domain structure, either at the macroscopic or at the microscopic level. In section 4, we

introduce layer undulations and show that the macroscopic response of the SmX' phase is

fundamentally different from ordinary smectics : there is no Landau-Peierls effect (I.e. there

are sharp Bragg spots) and second sound can propagate along the layers.

2. Energy scales.

2.I INTRA-LAYER. Figure I shows a layer of pure F+ molecules in the high-temperature

para-electric Sm-A phase (T
>

T~). In the para-electric Sm-A phase, some of the dipolar B

groups must be in an a-polar alkyl environment due the required disorder in the up-down

orientation of the molecules (since half of the dipoles must point up and half down). Let

AE~ be the energy cost. excluding the dipolar coupling, of flipping an F+ molecule in an

otherwise aligned sample. If the alkyl chains are not too short, this
«

demixing
» energy is of

order lo k~ T or more [13]. In the absence of the dipolar coupling, we should expect, at room

temperature, the layers to be ordered and to encounter an Ising-type phase transition at a high

temperature (around k~ T~
>

AE~).

Fig. I. Schematic structure of an
F+ layer, in the paraelectric smectic A phase.

X-ray data suggest that the molecules are locally tilted, although there is no long range

azimuthal order as revealed by the optical uniaxiality. We will define to be the tilt rotation

angle of the dipolar part B of the molecules with respect to the layer normal. The dipolar B

groups and the apolar C alkyl chains in the ordered phase (T
~

T~) are all in their proper

dipolar respectively a-polar environment. In the ordered phase, we have to include the intra-

layer dipolar repulsion we neglected in the para-electric phase. To estimate it, let

po be the molecular dipolar moment, p the dipole area density and s the dielectric constant.

Using the dipole approximation, for a two dimensional liquid of tilted dipoles, gives for the

repulsion per molecule AE~.

AE~( )
=

~° ~ d~r 3 sin~ ~

2 r~

~

where we estimated already pi pi Fa to be of order 500 K.
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According to equation (2.I), we could make AE~(~ negative by letting the tilt angle
exceed the «magical» angle H~= arc cos (1/ 3). The actual equilibrium angle

results from a compromise between the dipolar interaction and all other inter-molecular

forces. The energy cost (or gain) of tilting the B segment by an angle may be written as

W(H
=

f (cos + AE~(cos ) (2.2)

in which f(cos Hi contains all contributions to the tilt energy other than dipolar. We will

assume that fjcos Hi has a minimum for cos =

I. At a given temperature, the average tilt

* is then found by demanding that of W(H is minimal. The energy per molecule gained on

entering the ordered phase is then of order

E
=

AE~ + W(H *). (2.3)

Recall that AE~ and W(H * are both of the order of 10 k~ T or more. Under those conditions,

ordering should either occur at temperatures much higher than k~ T or not at all, depending

on the sign of E. The only case where we can have ordering near room temperature, will be

when AE~ + W(H *
>

k~ T. Considering that the natural energy scale of E is much larger than

k~ T, this tells us that [E must be close to a minimum upon varying the material parameters.

Suppose we minimize E~po,
=

*) with respect to the material parameter po, I-e- we set

%E %E
~~~~°

~ °
Pii

?Po
6 6 *

~
%Po 6 6 *

=

0

Since %E/%H
[~~ =

0 for
=

H* by definition of H* we only must make sure that

%E/%po
~ ~ ~ =

0. From equations (2. I ) and (2. 3), it follows that %E/%po
~ ~ ~ =

AE~/%po(~
~~ =

0 when cos~ H* =1/3. The energy scale (E( is thus minimized if we

choose *
=

H~, the magical angle. We thus should expect A-B-C-A polyphilic longitudinal
ferroelectric smectics with transition temperatures around room temperature to assume tilt

angles close to the magical angle
The above (very heuristic) argument also implies that longitudinal ferroelectric ordering near

room temperature of such a frustrated system should be accompanied by a strong drop in

optical birefringence, (as indeed observed experimentally). To see why, let ajj and

a~ be the molecular polarizabilities of the B part of the molecules along, respectively
perpendicular to its axis (the anisotropy is principally due to the conjugated ring on the

biphenyl group B). Next, assume the molecules to have a fixed angle with the layer normal

(z axis) but with a random in-plane azimuthal angle (recall that there is no net in-plane
polarization). After performing an azimuthal average, the polarizability tensor in the laboratory

frame becomes :

"~ ~ ~"" "~

~~ ~
~ ~

~
~

"
~

~ ~"" "
~

~~ ~
~ ~~ ~~

0 0 a~ + (ajj a~ cos
~

For tilt-angles close to the magical angle, the eigenvalues of & become degenerate and the

macroscopic birefringence vanishes.
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2.2 INTER-LAYER. We now tum to the interlayer forces. More precisely we want to know

the energy difference between two layers with parallel dipoles, e.g. (A-B-C-A) (A-B-C-A),

and with anti-parallel dipoles (A-B-C-A) (A-C-B-A). The strongest coupling is obviously due

to the A-A interaction but this term is independent of the layer orientation.

Tuming first to dipolar coupling, if we treat the dipoles on B as a capacitor plate then there is

no dipolar coupling for infinite layers, (finite size effects will be discussed in the next section).

It could be objected that the discreteness of the molecules would allow for an electric field

outside the dipolar layer. If, for instance, we model the B sheet as a square lattice of dipoles

then the interlayer coupling is ferroelectric. The energy difference per molecule between the

two orientations is :

W
>

~
~~~

~
exp(- 2

r
dla). (2.5)

Ed

~

a

With d
>

34 1
as the layer-layer spacing, this gives W k~ T exp (- 42 ), so there is,

according to this
«

capacitor
» argument, no meaningful dipolar inter-layer coupling for a

uniform infinite sheet of dipoles.

Next, we turn to the van der Waals coupling. Let Hc~~c be the Hamaker constant for the van

der Waals coupling between two layers of C groups separated by a medium of A groups and

define HC~A_~ and If~~~~ in the same fashion. All Hamaker constants are of order

k~ T. The energy difference Wj per unit area and per layer between parallel and anti-parallel

orientations is then to leading order :

~
HBAAB 2

~ 24r (2 d~~ )~ (2 d~~ + d~ )~
~

(2 d~~ + 2 d~ )~

HCAAC 2

24
r (2 d~~ )~ (2 d~~ + dc )~

~
(2 d~~ + 2 dc )~

(2.6)
HBAAC l I

~
12r (d~ + d~ )~ (d~ + d~ + d~ )~ (d~, + dA~ + dc )~

l
~

(d~~
+d~~+dc+d~>~'

Here d~~, d~~, d~ and dc are the lengths of respectively the A group attached to the B group, of

the A group~ attached to the C group, and of the B and C groups.

If we first assume d~~ to be small compared to d~~, d~ and dc, then to leading order

~~'~ ~~i~
(,~ /)~

~~ ~2
~ A,

We decomposed here H~~~~ into A~~ and A~~ which are the Hamaker constants associated

with the van der Waals interaction of B (resp Al with B (resp A) through vacuum. Clearly,

Wij is always negative, and thus favors antiferroelectricity as mentioned in section I. The van

der Waals energy per molecule is however only of order 10~ ~ k~ T or less for the present case.

If we compute Wj for the case d~ d~
=

d~,, (and taking d~ to be the chain length of
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8 carbon atoms) then Wj drops down to 10~~k~T
per molecule! Compounds with

d~~ = d~~ have recently been synthesized [7]. The van der Waals energy contribution of a

hypothetical A-B-C ferroelectric would clearly be much larger. The dielectric contrast between

the A and C groups would again favor antiferroelectricity but now with a characteristic energy

of k~ T per molecule.

These estimates produce values much smaller than the characteristic energy scale of the

dipolar interaction. The van der Waals energy thus can only be important if the
«

capacitor
»

argument truly rules out dipolar coupling. This is in general not so as we shall see. Consider,

for instance, what happens if we have impurities present. Assume a single «foreign
»

molecule, with no dipole, inside a dipolar layer. The electrical field outside the two-

dimensional liquid of dipoles is then exactly that of the missing dipole except it has opposite

sign. Two impurities in neighboring layers then feel an attractive force and form a bound-state.

To show this, note that two impurity dipoles in adjacent layers with a lateral separation

r have an interaction energy

E(r)
=

±

~~

~ ~ ~~~

~ ~

~~~

(2.7)
~ (d + r

(d + r )

where the + sign holds if the two layers have the same polarization and the sign if the two

layers have opposite polarization. In the first case with ferroelectricic order -E jr) has a

minimum at r =

0 so the binding energy E~
=

2 pj/s d~. For the second case with anti-

ferroelectric order, the minimum of E(r) is at r=2d with a binding energy

E~
=

(2 p(/Ed~), which is much weaker. Since 2 p(/sd~ is of order k~ T, it follows that

5~~~

with more than one impurity per 102 molecules this
«

stapling
»

effect would overwhelm the

van der Waals energy and favor ferroelectric ordering from layer to layer so
F+ IF mixtures

should be able to avoid the
«

capacitor plate
»

effect. In the next section we will investigate the

competition between dipolar and van der Waals coupling on a larger scale.

3. Rigid layer model.

As discussed in the previous section, there are three types of competing interactions in the F+-

F- mixtures

I) amphiphilic interactions which tend to promote polar order in a single layer
it) dipolar interactions which favor antiferroelectric order within a single layer. In the

presence of amphiphilic interactions they tend to tilt the molecules with respect to the layer
normal and they favor ferroelectric interlayer order

iii) van der Waals tong range forces, which promote anti-ferroelectric interlayer order.

In this section, we present a Landau theory, which allows us to investigate the phase-
behavior resulting from the competition. Our first problem is the identification of the order

parameter. At the macroscopic level, this should be the longitudinal ferroelectric polarization.

We must relate this polarization to the population of A-B-C-A and A-C-B-A sequences in an

F+/F- mixture.

3. I SINGLE-LAYER FREE ENERGY. We start by assigning an order parameter m~ (x~ ) to each

layer j. To define m~ we consider (F~, F+ molecules as «
spin-up

»
if they have the A-B-C-A

or
A-B'-C-A orientation and

«
spin-down

»
if they have the opposite one (I.e. A-C-B-A,

A-C-B'-Aj. Let n/ (r~ be the number of spin-up molecules per unit area and n[ (r~ the

number of spin down molecules per unit area in layer j at point r~. The order parameter
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m~(r~ is defined as

m~ (ri )
=

n+ (ri n~ (ri ) (3.1)

Note that m~ is not equal to the ferroelectric polarization. Let 4 be the average fraction of

F+ molecules. The (two-dimensional) polarization is then

P~ (r~
=

Po 4~ m~ (r~ ) I Po(1 4~ ) m~ (r~ I

=

Po(2 4~ 1) m~ (r~ )1 (3.2)

with Po the average normal component of the dipole moment of an
F+ /F~ molecule. Note that

if 4
=

1/2, (I.e. 50 ill F+/50 ill F-) the polarization is absent even if all
«

spins
» are up.

We will describe the two-dimensional ordering of the molecules in the layers by a Landau

energy F~

F~
= ld~r

c~
(V~ m~ )~ + rm) + um)) (3.3)

2 2

We exclude the long-range dipolar coupling in F~ as it will be absorbed in the interlayer
interactions. The ordering transition occurs at r =

0. as usual in Landau theories, with

m~ cc
(-r/u)~'~ for r~0, while c~ sets the length scale f~

=

fi
over which

m~ fluctuations are correlated. No odd powers of m~ are allowed since a given state

m~(r) must have the same energies as the state m~(r) with all molecules inverted.

3.2 LAYER-LAYER INTERACTION. The dipolar coupling is most easily expressed in Fourier

space, with

m~(q~
= ld~r~ e'~~ ~~ m~(r~ ). (3.4)

The dipolar energy is then

Fd
l~i>~

~i i (qi qi Pi (qi >1~
i,i. PJ (qi PJ ( qi qi e- ~~ '~ -~'

~

(3.5)

Note that F~ is the full dipolar energy including the intra-layer coupling. The first sum in

equation (3.5) corresponds to the intra-layer dipole-dipole repulsion. Recall that locally tilting
the molecules over the magical angle greatly diminishes this repulsion this reduction is

expressed in our calculation by choosing the cut-off wave vector q[ of the order of

aj', with a~ the transverse tilt coherence length. The second sum is the interlayer dipolar

coupling. It expresses the
«

stapling
»

effect for q~ -
0, dipolar interactions vanish, but at

any intermediate scale it favors local parallel alignment of P~ in adjacent layers.

We still have to take account of the van der Waals contribution. It can be expressed in terms

of adjacent layers coupling

F ~'~
=

~'
d~r~ ~j m~ jr~ m~

~

(r~ ). (3.6)
2

We saw that van der Waals interactions favor anti-ferroelectric order, so V must be positive.
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From the arguments developed in section 2. We also saw that the van der Waals interaction

energy (per unit area) between two (fully ordered) layers with d~~ « d~~ is of order

H

96rd(~

which should equal
~' ~

(if we set (m~(
=

(m~~j
=

lla~). hence Vi Ha~/48rd(. For
2

a
'

conventional liquid crystals the energy scale of the van der Waals interaction is much larger
because of the factor (a/d~ )~. For d~

=

d~, the discrepancy is even greater.

The complete free energ~ is now :

~

F
=

£F~ + F~ +
F~~ (3.7)

>

To analyze F, it is useful to introduce the complete Fourier transform

Rl (q )
"

I
m

j
(qi e'~~~~ (3.8j

>

In terms of m (q

F
=

l~~~ m (q )( ~
r

+
~

~ P( q[ + V cos q~ d + c~
q(

(2r E

2rP( (1- e~~~~ ~)
~~

q~
~ ~ ~

+ O (m (3.9)
~ l 2 cos q~ d e~ ~-

+ e~ ~~

in which Po
=

P o(2 4 ). To analyze the nature of the ordering near r =

0, we first neglect

the O (m~) term in equation (3.9). We can then classify the nature of the low-temperature phase
by minimizing the mode spectrum s (q) with respect to q. The mode spectrum is defined here

as

F=~ ~~~ (m(q)(~[E(q)+r+~~P(q[j. (3.10)
2 (2r) E

The mode with the lowest
s

(q) will have the highest transition temperature. It is easily shown

that the minimization of
s

(q) either demands q~ m
0 or q~ =

± r/d. We will discuss these two

cases separately.

3.2. I Anti-ferroelectric interlayer order. For q~ =
± r/d, we have anti-ferroelectric order

between layers. The mode energy is

~
p 2 ~

ii If c~ >

° the minimum is found for q~ =

0. This corresponds to the smectic bilayer
E

structure S~ (Fig. 2a) [8].

rP( d
it) If c~ ~

,

the minimum is obtained for non-zero q~ and the structure corresponds
s



N° I THEORY OF LONGITUDINAL FERROELECTRIC SMECTICS 177

a)

b)

Fig. 2.-a) Schematic representation of the anti-ferroelectric bilayer smectic A phase (S~~).

b) Schematic representation of the antiphase Si. Note the antiferroelectric order both in the plane of the

layers and from plane to plane.

to the Sj antiphase structure [8], and anti-ferroelectric both from layer to layer and inside the

layers (Fig. 2b).

rP( d
-~iii) If c~ =

,

we find a Lifshitz point near r =

0. For c~ 12rPo d/F the optimum
s

wave vector in the antiphase Sj obeys

q(
>

~° ~~~ i(3.12)
d

~

pj

~

~
c~ F

with Po~
=

According to (3.12), when Po is of the order of Po~, the period of the
rd

Sj antiphase parallel to the layers is of the order of a few d's which agrees well with

experimental studies of the Sj phase [9].
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3.2.2 Ferroelectric interlayer order. For q~ =

0 we have ferroelectric interlayer order. We

must minimize the spectrum

2rP( (1 +
e~~~ ~)

~E(qi )
=

~

qi
_~ ~

+ Ci qi + V (3.13)
(1 e ~ )

with again three cases

2rP( d
I) If c~ >

then q~ =

0 is the minimum. The corresponding phase is a longitudinal
3

s

ferroelectric (Fig. 3a). We will denote it by S~~.

2rP( d
ii) If c~ ~

the minimum is obtained for non-zero q~. The structure is that of a3
s

«
stripe

»
phase, with an interlayer ferroelectric, and an intralayer anti-ferroelectric arrange-

ment (Fig. 3b).

~
~

ji2
iii) If c~ =

°
we again have a Lifshitz point. In its vicinity, on the modulated side, the

3
F

a)

b)

Fig. 3. a) Simple view of the ferroelectric smectic A. b) Schematic representation of the stripe phase.
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optimum wave vector obeys

ql~
m

~~
~~ ~

°~

l(3.14)
d~

~

P

~

~
3 c~ E

with Po~
= so, again, the period should be of the order of a layer thickness or more2 rd

Can we now decide whether ferro (B) or anti-ferro (A) interlayer ordering is realized ? First,
2rP( d

for c-1 ~
,

when the mode energy always is lowest for q~ # 0 the dipolar energy3
F

ji 2

favors the (B) case while the van der Waals energy favors (Al. If °
m V, we should expect (B)

~

Ed

and if
~~%V

we expect (A). From the earlier estimates of the energy scales (Sect 2)
Ed

jj 2
° k~ T and V « k~ T ferroelectric interlayer order is expected unless 4

m
1/2 where

~~

2rP( d
p~mo and anti-ferroelectric interlayer order should be seen. For c~ >

,

the
3

s

S~~ anti-phase structure (A case) has a mode energy E(q~
=

0)
m

V. However, for the

q~
=

0 S~~ phase (B case), F(q~ ) is really singular in the limit q~ -
0 (see Eq. (3.13)) and a

separate discussion is required.

3.2.3 Longitudinal S~~ ferroelectric phase. To gain insight into the singular behavior of

s(q) in the small q limit, we expand equation (3.13) for small q :

s (q
m

~ ~~~ l ~~
+

h I P
~

q Vq) d~ + V (q~ d « ) (3.15)
Ed q) + q

2
F

3 2

If we would naively first set q~ =

0 and then q~ =

0 we would find only the van der Waals term

V, in agreement with the
«

capacitor
» argument of section I. This is however incorrect.

Minimize F(q) with respect to q~. This leads to

~ ~8rP(qi m q= (3.16)
Fdc

and, to lowest order,

F(q=>
=

~)~~ + 2 l~~()° q~ + V (3.17)
~ ~

where

c~
~ -~

c =

Pod. (3.18)

Minimizing s(q~ ) next with respect to q= shows that for ?
>

0 and for P(led
m V we must

choose q~ as small as possible. For a sample consisting of a slab of thickness D, this means that
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q~ r/D. With q~ given by equation (3.16), our longitudinal ferroelectric S~~ does not really

have a macroscopic ferroelectric polarization. The polarization in the plane has a modulation

length f~
=

~~

qi

l~~ ii

f~
>

,fi ~ ~ (3.19)
8rP(

This size is the geometrical mean of a macroscopic and a microscopic length. For sample
thicknesses of about loo microns, like those of reference [3], one expects f~ to be of micron

size. If the SmX' phase corresponds to the S~~ phase, then the interpretation of their

observations should be reinvestigated, since only the difference between
« up »

and
«

down
»

domains could have been observed. The true polarization Po could thus be orders of magnitude

larger than the measured one.

In summary, for c-1 ~

2rP(d/3
s

and for P(/Ed
m V, we expect a phase with in plane

modulation of the polarization
on a length-scale of order the layer spacing and inter-layer

ferroelectric order, while for c-1 ~
2 rPj/3

s we expect a phase with in plane modulation on a

«
mesoscopic

»
length-scale of order f~ and inter-layer ferroelectric order.

Having found the optimal (q~ wave vector does, however, not mean that we completely
know the precise nature of the low temperature phase. One could, for instance, imagine

structures which are the superposition of a series of modulations, all with the same

q~ (. This would be controlled by the non-linear O (m~ term in equation 3.9. By analogy with

dipolar-coupled magnetic thin films (as discussed for instance by Garel and Doniach [10]) we

expect competition between two basic structures a stripe phase with a single wave vector

and a «
bubble

»
phase (Fig. 4) with

qi1+q21+q31
=

° (qi1(
=

(q21(
=

(q31(

Fig. 4. Bubble phase.

2rP( d
For the case q- 0 and c~ ~

,

this
«

bubble
» structure would seem to have no

3
F

macroscopic ferro-electric polarization. However, in the Fourier expansion of m~(r),
one
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encounters a term m(q
=

0) [m(qi
~,

q~ =

0) m(q~
~,

q~ =

0), m(q~
~,

q~
=

0)] with

qj
~

+ q~
~

+ q~
~ =

0 In the
«

bubble
»

phase, this term imposes m (q
=

0 # 0. This type of

longitudinal ferroelectricity is quite different from the S~~ phase. In that case, we were dealing

with a longitudinal ferroelectric with liquid in-plane order while the present «bubble
»

ferroelectric really is a ferroelectric crystal. If the coefficient u of the m~ term in

equation (3. I I) is wave vector independent then the
«

stripes
»

have always a lower energy

than the
«

bubbles
»

in the absence of external fields (as shown in the Appendix). However, for

u wave vector dependent, a «
bubble

»
phase may be possible.

4. Macroscopic properties of S~~.

We now consider the part of the phase diagram of section 3 where we indeed have a para-

electric ferroelectric transition (I.e. an S~ S~~ transition at a temperature T~). What will be

the macroscopic response of the new phase ? More precisely, if we study the X-ray diffraction

line shape very close to a Bragg spot or probe the S~~ ferroelectric sample with sound waves,

how will the response differ from that of an ordinary smectic ?
«

Macroscopic
»

actually means

here that we are interested in length-scales large compared to the layer spacing d but still small

compared to the domain size f~ described in the preceding section.

It is well-known that for smectics, the macroscopic properties are largely controlled by layer
compression fluctuations and by layer undulations. We thus must relax the rigid layer

constraint of section 3. Let u (r) be the vertical displacement of the layers. If we demand that

the polarization P(r) is anchored to the layer normal then

P(r>
=

P (r> (I, Vu>. (4.li

If we are not too close to T~ we can assume P (r
=

(P ) + bP (r with (P ) the spontaneous

macroscopic polarization (w (m) Po) and bP « (P). The fluctuation free energy for

T
~

T~ is then

AF
=

l~~~ B ~~' ~

+ Kj(V(u)~j +

e~ (V(u)
+ ejj

~~
bP

(2r)~ 2 it %z

+
bP~

+ c~ (V~ bP )~ +
d~r d~r'

~ ~~ ~~ ~~~~

~~~

(4.2)
2 4rFjj (l( /j (r r'), (r r')~]

The first term in equation (4.2) is the standard energy cost of layer fluctuations in a smectic

with compressional modulus B and Frank bending energy Ki The second term describes the

flexoelectric effect a curved layer hay a
polarization proportional to V~ u and a compressed

layer a polarization proportional to
~

since both terms break inversion symmetry. They
%z

couple to P and describe the tendency to instability for a ferroelectric smectic described in

section I. The third term is the fluctuation energy of a d
=

2 ferroelectric with
Ejj - cc at the

critical point. The last term is the Coulomb energy due to charge fluctuations V P in an

anisotropic medium with dielectric tensor

F~ 0 0

F~~ =

0 s~ 0

0 0
Fjj

assuming that there are no free charges.
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Far below T~, we can neglect
«

amplitude
»

fluctuations, I.e. we can set bP
=

0. The

remaining layer undulations have a fluctuation energy

AF
=

~~~ Bq)
+ q~ Ki +

~~

~

(
Uq

~ (4.3)
(2r ) 2

Fjj qz +

~

qi

with u~ the Fourier transform of u(r). The Coulomb energy thus produces an effective q

dependent Ki bending energy :

K~~(q)
=

Ki +

~~

~

(4.4)

Ell qz +

~

qi

which diverges as q -
0. Physically, a layer undulation produces a charge fluctuation and the

Coulomb repulsion then enhances the stiffness Ki. This has obviously a stabilizing effect on

the smectic state. The cross-over length

A
w

(FKI/(P)~)'~~ (4.5)

where this effect becomes important is of order 102 I if we assume that every molecule has a

dipole with a
51 charge separation, if we set s

lo, and if we take Ki
>

10~~ erg/cm.

The equipartition theorem predicts

"Q ~~ Bq) +
~(~q q~

~~ ~~

This renormalization has important consequences for X-ray diffraction. In the absence of the

Coulomb interaction, Kj~~
=

Ki, and d~q u~ ~) diverges logarithmically. The Bragg peak

intensity is proportional to e~ ~~~~~~~ and is thus zero. However, in our case this logarithmic
divergence is cutoff at q~

=

I/A

~~ ~

k~ T (EKj )~~~
~ ~~ ,~ ~

ao IF )

with ao a microscopic cutoff. We even could use X-ray stydies to measure the true microscopic

value of (P) since the Bragg peak intensity I~ cc
e~~'~~~~

at (G
=

n2r/d) is :

kBTG~

( ~ )l/2
,~

~~ a)
ii

)
~~'~~

and thus has a power-law dependence on (P)
Another interesting consequence of equation (4.3) concems the propagation of second sound

along the~layers. For ordinary smectics this is an overdamped mode with a relaxation rate

T~
~~ ~~

with J~ the visco~ity. In the present case, second sound would obey an equation of

~1

motion

jp j2 1(4.9)
2 ~

=

q~ Kj +
~

"qipllq~ +'l~l
Qi

F~ ql
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with p the mass density. The associated mode dispersion is then

~iKj q
(

q~ » I/A

wq ~

'~ (4. lo)
4P (P)~

2 ~~ 2
~~

s~
'~~~ '~~~

q~ « I/A
2 p

so for q~ « I/A and for q~ % l~ ~ ~~~~
~~~ we would have a propagating mode. The

~i 'l

i pKi l12

second constraint is severe~ It requires that qj %- For Kj ~10~~erg/cm,
A 'l

J~ =

I poise, and A
=

10~ I,
q j ' must exceed 10~ I. This restricts the new mode propagation

to macroscopic wavelengths. but it should be achievable experimentally. Note however that

we assumed that there was no electrostatic screening. In the presence of free ions, the effect

would be absent unless the Debye length significantly exceeds A (J~/pKi)~~~

As we increase
ejj and approach T~, amplitude fluctuations in b p become more important. If

we integrate over the &p fluctuations we find :

AF d~ ~

(~i ql
+ ejj qj>2 +

~ ~l ql IF i~

~
~

~~~ ~
~~~~ ~~

2 2

~~~~
~~ q~~ ~~ ~~

"q
~ (4. I11

~ ~i qi +
~ ~~" ejj

qj
+ ~~

~j

In the small q limit, we can absorb the flexoelectric term in a renormalization of

Kj:

K)
=

Kj 2 rEjj
e( (4.12)

As we approach the critical point ejj - co, this renormalization drives K)
to zero and triggers a

bending instability. This is exactly the destabilizing splay of ferroelectricity discussed in

section I. It means that we cannot have a simple Ising-like second-order transition at

q~
=

0. If we look at the mode spectrum for q~ =

0

E(q
I

K ~4 ~

(P )2
~

i e2 ~4

~ 2 i
qi

~ ~

~~ ~ l
~

(4,13)

4
7T El

~ ~~ ~~

then for ejj '
=

0 and (P)
=

0 (the critical point), the minimum of E(q~ is at

~2 j/2

~~
2 c~Ki ~~'~~~

In the critical region, we thus expect to first find an anti-ferroelectric phase with in-plane
modulation before we reach the true S~~ phase. However, as we enter the (P) lo phase

deeper, this modulation should disappear once
K) again becomes positive. The reason is, that

away from the critical point, ejj and e~ should have values in the S~~ phase comparable to that
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of ordinary smectics for which K) indeed is positive. Thus, in the case of a (near) continuous

onset of longitudinal ferroelectric order we should expect to encounter a modulated phase in

the critical region due to the ferroelectric
«

splay
»

effect. In the case of large first-order

transition, the instability may be suppressed.

5. Conclusion.

Our study for longitudinal ferroelectric ordering has produced a variety of structures. By
varying temperature and/or the mixing composition of the F+ and F~ molecules, we ought to

encounter a rich sequence of phases. Suppose, for instance, that we varied the F+

concentration 4, and thus fro, in the low temperature region. Since P(
cc (2 4 -1)~,

we

W°Uld f'~st dec~ease P~ till 4
=

1/2 where P(
=

0 and subsequently increase it. If, for

4
=

0, fi((4
=

0 ) die m c~ and if #((4
=

0 )/Fd » V, then we should first find the
«

stripe
»

phase anti-ferroelectric with in-plane modulation. As we increase the F+ concentration, the

«stripe» phase should transform to the S~ ferroelectric when P((4)d/E drops below

c~. As we keep adding F+ molecules, P((4)/Fd should eventually drop below V near

4~l/2 and we should encounter the S~~ double-period anti-ferroelectric. Increasing

4 beyond 1/2 should invert the sequence. The resulting phase sequence is

Stripe
- S~~ - S~~ - S~~ -

Stripe

~b

Even more complicated phase-sequences are possible if the
«

bubble
»

and Sj phases are

allowed.

If we increase the temperature in the S~~ longitudinal ferroelectric we find, assuming a (near)

continuous transition

S~~ -
Stripe

-
S~

The complete topology of the 4 T phase diagram is thus likely to be quite complex. since the

stripe phase near T TF could be connected in the 4 T phase diagram to the stripe phase near

4 0 and # 1.

According to the recent X-ray work of Ostrovski et al. [41 the ordered phase jSmX) of the

pure compounds F or F' is indeed a stripe phase but slightly more complicated than the one we

describe here. The structure is very close to that of figure 3b, but the layers are shifted by half a

period from one domain to that of the neighboring one, (leading to extinction of the (001)

Bragg peak). Our model does not allow this structure (although it could be included). In view

of the small measured coherence lengths.
we feel that more experimental work is needed to

determine definitively the actual structure.

The predicted S~~ ferroelectric phase, may well correspond to the (SmX') 75/25 mixture. If

so, it must have a complex structure since according to our results it should consist of lateral

mesoscopic domains. Since these domains are not coupled to any simple optical property they

may not be easily detected but it would be important to reveal their existence. Indeed, if they

constitute an intrinsic part of the physics of the SmX phase, then the polarizations measured up

to now are probably only a small part of their actual value (as they are due to residual inbalance

between ferroelectric domains). One can think of several ways of measuring this true

polarization :
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. investigating the size dependence of the measured polarization. For layers parallel to the

sample holder, it should depend on the sample lateral size L~ and oscillate between zero and

±
f~ /L~

. sweeping a microelectrode over an oriented ferroelectric sandwich (the domain size

should be of micron size for a loo ~m thick slab) ;

. studying the field-induced transition from the domain S~~ structure to a true homogeneous

ferroelectric. If we use equation (3.16) to estimate the electrical field required to force

q~ ~
0, then this demands E m P o/Fa~ d. This is a very large field since it really supresses the

ferroelectric inter-layer coupling. However, near T~ the effect may be observable i

. performing X-ray intensity measurements. This would probably give the most reliable

values of (P ), according to section 4.

Pretransitional studies of the divergence of the dielectric constant
Ejj

and the flexoelectric

coefficients are also of great interest. The coupling between the order parameter (the
polarization) and the

«
soft

»
undulation mode should lead to the analog of Fisher-renormalized

critical behavior in deformable magnets. The critical properties of undulation modes coupled to

an order parameter which breaks inversion symmetry (I.e. the AF of Eq. (4.2) in the absence of

Coulomb interaction) were in fact studied by Golubovic and Wang [I il. The long-range
dipolar coupling may~ however, affect their results. We refer to their paper for a discussion.
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Appendix A.

In this appendix we compare in mean-field theory the relative stability of the ferroelectric

smectic A phase with an order parameter m(x~, z)
= mo, the stripe phase with an order

parameter m(r~, z)
= m~

~5
cos q~ r, and the

«
bubble

»
phase (three-dimensional fer-

roelectric crystal) with an order parameter :

m(r~, =)
= mo +

(
m~

~
cos (q, r~

=1

~

~l + ~2 + ~3 ~

~ (~l(
~

(~2(
~

(~3(

The free energies computed from equation j3.9) are

for the ferroelectric smectic A,

F~
=

jfq~ ml
+ um) (A.2>
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for the stripe phase, and

F~
=

fo ml
+

" ml + f~ ml
+

~ um( +
~

umo
ml

+
~ um( ml (A.3)

2 4 2 1 8 3 2

for the
«

bubble
»

phase. Here, u is the coupling coefficient of the m~ term in equation (3. II ),

and fo and f~~ stand for the coefficients of the second order term taken at the relevant wave

vector in equation (3.9).

Minimization of (A.I), (A.2) and (A.3) leads to

fj
~°

4u'

f2
qF~=-/

6u

(Fo cos~
+ f~~ sin~ H)~

~~

4 u

cos~
+

~ sin~
+ 6 sin~ cos~

+ 4
~

cos
sin~

2 3

where we set mo = m cos 6, m~ = m sin 6 and minimized F~ for constant H.

If we first ignore the bubble phase, then the ~fo, f~~ phase diagram is very simple. If

fo
=

0, with f~~
>

0 we find a second-order phase transition to an S~ ferroelectric phase. If

f~~
=

0, with fo
>

0 we find a (mean field) second-order phase transition to a stripe phase.

Finally, if both f~
~

0 and fo
~

0, we find at fo
=

~ f~ a first-order ferroelectric-to-stripe
1

~3
1

phase transition.

In order to look for any stability domain of the bubble phase one has to compare
successively, F

~
to Fo and F~, for any possible H. This is an algebraic exercise which does not

present any difficulty. It tums out that F~ is always larger than either Fo or F
~

so that within

this description scheme the
«

bubble
»

phase is never more stable than the others. There are,

however, reasons to introduce q dependent fourth order coupling constants, e-g- due to

concentration fluctuations, in which case it becomes possible to observe the crystalline
ferroelectric «bubble» phase. A simple way of showing this possibility is to compare

Fo, F~ and F~, on the first order Fo
=

F~ line. The free energies are then

F~
=

f~~ m) +

~ um(
2 8

~
_l

~ ~2 ~~U~4 ~lf ~2 ~5~~4
~~2 ° ° 4 ° 2 Qi ~ 8 ~

~
/~~~° ~~

~
"~~~ ~~

with A
= ~c = v =

I corresponding to the case of a wave vector independent u.

Demanding that F~ be at least equal to Fo and F~ on this line, leads to the conditions :

tg
=

-2
~

v
3

y=-~v~+6~c-~i=0.
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When y ~
0, this opens up a stability domain for the

«
bubble phase

»
between the stripe phase

and the ferroelectric smectic A.

The same description applies to a discussion of the stability of the biJayer S~~, the antiphase

Sj and a three dimensionally modulated phase SB. The corresponding order parameters would

be

S~~ m (x~
,

z )
=

,5
mo cos q~ z

Si m (x~, z )
=

2 m~ cos q~ z cos q~ x

S% m (x~, z =

Qj
mo cos q~ z +

( ~
m~ cos q~ z cos q, x~

, i

'fi

qi+q2+q3 =° (qi(
=

(q2(
=

(q3(

The corresponding free energies would be given by (A.I, A.2) and (A.3), provided

u is replaced by P
=

~
u. Again, for u constant the SB phase is not stable. However, an

2

appropriate q dependence of u could stabilize the S% between the Sj and the S~~ phases. This

Sfi Phase may correspond to A. M. Levelut's
«

crenelated
» structure [12] in'which

case it

should be a crystal.
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