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Abstract. It is shown that the probability density functions of velocity increments at

small scale in turbulent flows turn to an universal (Gaussian) shape when conditioned to a

precisely defined energy transfer rate Et The standard deviation «(Et of this distribution de-

pends on Et following
a

Kolmogorov like relation a~
=

CEt -I with
a Reynolds number dependent

coefficient C.

Introduction.

One of the main properties of fully developed turbulence is the small scale intermittency- We

usually consider that its qualitative signature is the non-Gaussian shape of the probability
density function (hereafter noted p-d-f) of the velocity increments defined by 6u(1)

=
u(x +

I) u(x) for I lying within the inertial or
dissipative range (for clarity, we shall consider the I

parallel component of 6u: dull)).
This stretched exponential-like tail shape of the p-d-f of 6u(1) changes when the distance

decreases from the largest inertial scales to the smallest dissipation ones. In other words,
the shape of the p.d,f. of 6u(1) normalized by its standard deviation a&u(o is not self-similar

with I iii. When analyzing via the scaling exponents (p defined by < 6u(1) >~
r-

l~P
,

the

consequence of this change is the non-linear behaviour of (p with p in constrast, for instance,
with the predictions of the p-model [2]-

Another problem concerns the use of the relation between the statistics of the velocity
increments 6u(1) and the local energy transfer rate averaged over a ball of size I, Et

~3
6J ~j (~)

l

However, for some authors, II can be taken as a relation between two random variables if vi is
the typical velocity of structures of size [3] For others (Frisch [4]), vi is 6u(1) but the equality
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only means that the two quantities "have the same scaling properties, I-e- that moments of the

same order have the same scaling exponents". Is there a possibility to experimentally clarify
this point?

The objectives of this paper are, first, to study the statistics of the velocity increment 6u(1)
conditioned to the statistics of the energy transfer rate et in the whole range of inertial and

dissipation scales and, second, to test statistically the previous relation.

In section I, we give experimental results on conditional p-d-f- of 6u(1) measured in two

different Reynolds number turbulent flows. Section 2 is devoted to the dependence of the

averaged value of the conditional variable 6u(1) /~, on its standard deviation a&u(i)~ and finally,
e<

in section 3 we give experimental data in order to test the Kolmogorov relation (I).

I- As is said in the introduction, we have studied the statistical distribution of the

velocity increments 6u(1) at a given scale I, conditioned to the value of Et

Using the homogeneity and isotropy assumptions at small scale, the energy dissipation rate

at a fixed point x is defined by

6~(~,t)"15~ j
~~~~

Following Kolmogorov and Obukhov [5], the local average of the energy dissipation rate

e)(x, t) taken over a ball of size centered at x is

ej(x,t)
~-

j j e*(x',t)d3x'
~,_~ ~i

By also using the Taylor hypothesis to get spatial gradient from time derivative signal,
experimentalists follow the ID version of this definition to measure the local energy dissipation

rate El averaged over a linear interval of size I, for I lying in the inertial or dissipation range.
If I belongs to the inertial range, El roughly corresponds to the energy transfer rate E,

averaged over the same interval I. When is in the dissipation range, the local transfer E, can

be estimated as

~'~~
~~ " ~~~

I ~~~ Ill ~

~~
~l~~)~j

in which
~"~~~ ~

takes into account the dissipation which occurs at the scale I itself. Clearly,
I

this term increases when I goes down to the Kolmogorov scale q and it appears that its value

is no longer negligible at such a scale.

We have calculated this ersatz of the local transfer rate 5, on three different velocity signals
obtained on the axis of a laboratory jet flow (R>

=
428) and in the wind tunnel of O-N-E-R-A-

in Modane, both on the axis (R>
=

2720) and near the wall (Rx
=

1689) [6]. The ratio of the

sampling interval /hz over the Kolmogorov scale q was about 0.15 in the jet and respectively

12 and 19 in the wind tunnel which means that the spatial resolution is good in the jet and

very poor in the two flows at high Reynolds number.

practically, 5, has been calculated from the velocity data samples in the following way:

~f u~+j ui+j-i
~l(u~+m

u~
~

~' ~ i /hz m/hz
J=1
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in which I
=

m/hz.

Figure I gives a comparison between the shapes of the global p-d-f of 6u(1) and the conditional

one at a "given value" of 5, which means practically
an interval of values centered at 5, with a

constant width that we have chosen equal to < 5, > /6. In figure I, the scale I belongs to the

inertial range, respectively lo
=

40 in the jet (Fig. la), 120 on the axis of the wind tunnel

(Fig. lb and 190 near the wall (Fig. lc). The given value of e, is equal to < Et >.
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Fig. I. Global p-d-f of but (dashed line) and p-d-f of but conditioned to < Et > compared to a

Gaussian shape (parabolic in Iin-log coordinates), for lying in the inertial range. a): jet, R>
=

428,

=
40~. b): axis of the wind tunnel, R>

=
2720, 1= 120~. c): "boundary layer" of the wind tunnel,

Rx
=

1689, 1= 190~.

Figure 2 gives the same comparison for a scale chosen in the dissipation range: lo
=

10

only in the jet (in the wind tunnel, the dissipation range has not been reached). As is well-

known, the global p-d-f of 6u(1) changes from an exponential-like tail shape to a sharper and

more stretched one when goes down from the inertial to the dissipation range. On the

contrary, the conditional p-d-f of 6u(1) has a quasi Gaussian shape which remains constant
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when is decreasing; "quasi" means that these p-d-f are not symmetric but always have a weak

negative skewness like all the classical longitudinal velocity increments. Probably, in the case

of transversal velocity increments, these conditional p-d-f would be purely Gaussian. In figures
16 and lc, the tails of the experimental conditional p-d-f- move away from a parabolic shape,
which suggests a remaining intermittency. That feature clearly comes from the poor spatial
resolution (/hz

m 12 and 19) in the estimation of Et

ap(r)
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Fig. 2. Same
as

figure I, with I lying in the dissipation range, for the jet. R>
=

428, 1= 101

This quasi Gaussian shape of the p-d-f conditioned to Et has already been obtained by
Stolovitsky et al. [7] only for inertial scales. In contrast to us, these authors got bimodal

conditioned p-d-f of 6u(1) for dissipative scales. It is due to the fact that
,

in their paper, the

velocity fin (I) has been conditioned to the quantity El and not to Et as we did. We have checked

their results using El instead of Et and have found the same bimodal conditional distribution

in the dissipative range.
The results of figure I suggest that the right quantity to condition the statistics of the

velocity field is the energy transfer rate and not the dissipation one. If a non Gaussian shape is

a statistical signature of intermittency, as many people think, then those results show that the

small scale intermittency is fully contained in the distribution of the energy transfer rate and

disappears at fixed Et Moreover, this result is in very good agreement with the main physical
assumption of the empirical model of velocity p-d-f proposed by Castaing et al. ill which is

theoretically supported by the variational approach (Castaing [8]).

2. One of the consequences of the model quoted above is that the calculated distribu-

tions of 6u(1) have a non zero average value. Obviously, this point is in contradiction with

experimental data for which the mean value < 6u(1) > is always zero. In order to understand

how this average of 6u(1) is restored to zero, we have studied the dependence of the mean value

on the standard deviation of the conditional distribution of 6u(1) /~,, namely < 6u(1)
/~~ > us.

a&u(tj~ Figure 3 shows such a behaviour at a given lo
=

60 in the case of the wind tunnel.

The e~ierimental points correspond to different chosen values of et equally distributed from

zero to 2x < e, > with a step of < e, > 16. This figure clearly displays a linear behaviour
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of < 6u(1)
/~~ > on a&u(,)~~

,

decreasing from positive to negative values as a&u~,)~~ increases.

This remarkable feature o~curs for any scale and any flow and leads to a linear cleilicient K

apparently independent of the scale I. A study of its dependence with the Reynolds number

asks for more than our three examples but note anyway that K is roughly the same for the

three of them.
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Fig. 3. < bit, /~~ > versus a&u~
~~

on the axis of the wind tunnel. R>
=

2720, 1= 60q
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Fig. 4. p-d-f- of bu(I) obtained by the superposition of quasi-Gaussian p-d-f- with several modal

and standard deviation values.

As we discussed previously, Castaing et al. iii have shown that the p-d-f of 6u(1) can be

fitted by a superposition of Gaussian p-d-f with different standard deviations a&u~,) increasing
from very small values corresponding to the top of the global p-d-f to large ones taking into

account the tails as is shown in figure 4.
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Figure 3 indicates that the narrowest Gaussian which contributes to the most probable value

of the global 6u(1) are positively shifted, whereas the largest Gaussian are negatively shifted

leading to the negative skewness of the longitudinal p-d-f- This result clearly explains what

was first seen by van Atta and Park [9], that is, for a given scale I, the most probable value of

the global distribution of 6u(1) is always positive and the negative skewness is only due to the

largest and rare negative fluctuations of 6u(1).
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Fig. 5. a&u~ versus (E.I)~/~ normalized by (< EL > .L)~/~, where L is the integral scale of each

flow. a): axis ~) the wind tunnel. R>
=

2720. (0):
=

24q; (+):
=

60~; (A):
=

120~; (o);

=
250~; (.);

=
2500~. b): "boundary layer" of the wind tunnel. Rx

=
1689. (0):

=
38~; (+):

=
95~; (A): 1= 190~; (o);

=
380~. c): jet. R>

=
428. (0): 1= 1.5q; (+);

=
5.28q; (A):

=
9.8~;

(o);
=

20q; (x): 1= 40~; IA):
=

60q; (+): 1= 120~; (.):
=

240q.
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3. Knowing the value of a&u(tj coresponding to each Et we have studied their mutual

behaviour in order to test relation (I). In figure 5, we have plotted a&u(i)~~ versus (I.Et)~/~;
variables have been normalized with the integral scale L and the correspondir~g energy transfer

rate < EL >. At very large Reynolds numbers (Fig. 5a, R>
=

2720 and Fig. 5b, Rx
=

1689),
for different scales ranging in the inertial range, relation (I) is well verified by experimental
data; we have namely

a&ujij~~ =
C(I.st)~~~

where the coefficient C does not depend on the scale I. However~ the a&u(tj~~ decreases to a

non zero value when the scale I goes to zero. Again, it is due to the poor
estim(te of Et at small

scale I which overestimates the value of a&u(t)~~ The experimental values of the factor C are

roughly equal to: C(2720) m 4.8 and C(1689)~m 6.2. Even though these C(R>) coefficients

are underestimated, it seems that they decrease with the Reynolds number since the factor

C(1689) is a priori more reduced by experimental error than the C(2720) one.

In figure 5c (jet, R>
=

428), experimental data tends to the origin of the axis which denotes

a
good experimental estimate of Et at small scale I. But the merging of experimental data

obtained at different values of the scale I is not so good, in particular we get a systematic shift

for each scale I. We have no satisfactory explanation for this systematic shift. In particular, it

cannot be fully explained by the finite size of the E, interval correspr~iiding to a single point. It

could be artificially corrected by a different dependence of
a uersw (1° with o > 1/3). Note

however that the dispersion of the points is of the order of the shift which yields to think to

a sampling artifact. The slopes of the different pieces of this curve are roughly the same, at

least for inertial scales and their common value is about C(428)
=

15.

Thus, relation (I) is experimentally well verified only for inertial scales as assumed by
Kolmogorov. This suggests that the energy transfer rate E, averaged over an inertial separation

is indeed an inertial quantity and not an inertial and dissipative one as proposed by Kraichnan

[10]).

Concluding remarks.

We have shown that the velocity field 6~(1) at small scale is intrisically Gaussian (within the

skewness of the longitudinal case) and the intermittent non Gaussian shape of its p-d-f is only
due to the intermittency of the energy transfer rate E,. This result confirms that quantitative

intermittency can be defined only from energetical quantities as assumed in the variational

approach proposed by Castaing [8].
As these conditional p-d-f are Gaussian, they are completely characterized by their stan-

dard deviation, even for the longitudinal case, where we have shown that the mean values

< dull)
/~~ > are not zero but depend

on a unique way on the standard deviation. The scaling
law of the standard deviations a&u(,)~~ on the value of E, is experimentally, for inertial scales,

in good agreement with the well-kno~in relation of Kolmogorov. Our results clearly indicate

that this scaling depends on the Reynolds number value. In the inertial range, our experimen-
tal data lead to similar results than those reported by Praskovsky ill], Thoroddsen and van

Atta [12] and Chen et al. [13]. Since in these papers the velocity increment 6u(1) has been

conditionaly averaged over a fixed value of E) (and not of E, as done by us), no comparison can

be made for scales I lying in the dissipation range.
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