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Rdsumd. Nous avons effectud )es premikres mesures de la longueur de pdndtration smectique

1
=

~/~
(K et h dtant respectivement les constantes dlastiques de courbure et de compression)

sur des ferrosmectiques, qui sont des smectiques lyotropes dopds, et ce par une mdthode utilisant

l'observation des ddfauts crdds dans une cellule d'dpaisseur variable. En particulier, nous avons

d6termind l'6volution de 1 avec la concentration 4 en particules dopantes. Les rdsultats principaux

sont que lreste constant pour des petites valeurs de 4, puis diminue, et ceci d'autant plus
rapidement que la phase est gonflde. Nous discutons ces rdsultats et leurs consdquences sur )es

variations de K et h ceux-ci confirment et complbtent une prdcddente Etude de ces phases par
diffusion de neutrons. Nous avons dgalement observd des dislocations coin de trds petit vecteur de

Burgers, dont l'existence dans cette gdom6trie n'dtait pas envisagde pour des phases gonfldes ;

nous proposons un modble microscopique pour (valuer 1 h partir de ces dislocations.

Abstract. We report the first quantitative measurements of the smectic penetration length

1
N~,

with K and h the curvature and compression elastic constants, for ferrosmectics,

which are doped lyotropic smectics. We use a method based on the observation of defects created

in a cell of varying thickness. In particular, we determine the evolution of1 with the volume

fraction of doping particles, 4. The main experimental features are that 1 is constant at small 4

then decreases, and that this diminution is enhanced at large swelling of the phases. The results and

their consequences on K and h
are discussed they support and complement previous neutron

scattering studies. We also observe edge dislocations with very small Burgers vector, that were not

expected in such swollen phases. A microscopic model is proposed to evaluate 1 from such

defects.

1. Introduction.

Amphicolloids, which are lyotropic mesophases doped with solid colloidal particles, have

been recently made [1, 2]. Amongst them, the felt.osmectics are swollen smectic phases

containing magnetic particles, the size of which is comparable to the smectic periodicity.

(*) URA CNRS n 792.
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These hybrid systems, that arise as strata of ferrofluid separated by lyotropic membranes, have

many novel properties, the most spectacular one being a reorientation of the smectic matrix

under a magnetic field [1, 3]. The physics of such phases involves both the magnetic properties
of the particles and the elastic properties of the smectic. Here we are interested in the elastic

properties of these systems, mainly described by the compression constant of the smectic,

fi, and the curvature elastic constant K, and in the evolution of these quantities with the volume

fraction of the particles @. Theoretical and experimental studies of the elastic features of

smectic liquid crystals have been extensively performed, concentrating in the last few years on

lyotropic membranar assemblies [4]. In this paper, we study a characteristic length closely
related to the elasticity of the system : the smectic penetration length A [5] defined by :

A
=

fi

Physically, a deformation of wavevector q (parallel to the layers) decays on a length scale

I/A q~ ; a high value of A is then the indication of a «
soft

»
smectic. In order to determine this

smectic penetration length and its evolution with @, we employed a static method using the

observation of controlled defects (a «
Cano wedge

»
[6] experiment), recently adapted and

performed by F. Nallet and J. Prost on conventional lyotropic swollen smectic phases [7].

2. Principle of the experiment.

The method is based on the analysis of the dislocation network exhibited by a smectic confined

in a cell of varying thickness (the so-called Cano wedge). It has been shown that, in swollen

lyotropic phases, the organization of the dislocations is not trivial and depends strongly on A

[7].

The static elasticity of a smectic is expressed by the free energy per unit volume [5, 8]

f
=

B (d-u)~ +
Kc~

+ Kg (2)

where u is the displacement of each layer from its equilibrium situation, and c and g the mean

and Gaussian curvatures of the layers, respectively. K is the mean curvature constant of the

smectic and is related to the curvature constant K
of the lyotropic constituent membranes by

K
=

Kle [9, 10] where e
is the smectic periodicity. B is the compressibility at constant

surfactant potential [I II (and, in the case of doped phases, at constant particle chemical

potential [12]). k is the Gaussian curvature constant of the system, related to saddle-splay

deformations [8, 13].

When a smectic mesophase is confined in a glass cell presenting a thickness gradient, it has

to satisfy two conditions :

. A boundary condition of
«

homeotropic
»

orientation, I.e. with the layers parallel to the

limiting glass walls. This preferential orientation, which is a general trend in lyotropic

smectics, is specially enhanced in the doped phases [2]

. A condition of minimal free energy (Eq. (2)), which sets the periodicity to an equilibrium

value e.

The phase adapts to the thickness gradient both by creating edge dislocations, each one

involving a number (what we will call the
«

Burgers number ») b of layers which is not

necessarily equal to I, and by adjusting e between two adjacent dislocations. The distribution

for the dislocations was calculated in reference [7] for an axial symmetry, in the case where the

cell is produced by a spherical lens in contact with a plane. Two main terms have to be taken

into account :
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1) The defect energy of each dislocation of Burgers vector be, due to the curvature of the

layers in each dislocation (per unit length) [8, 14] :

F~ =

I K Ln
~

(3)
2 2 bc

where b~ is a short-scale (or
« core ») cut-off length. This energy favours the gathering of the

layers in a few dislocations of large Burgers vector, in order to reduce the curvature energy (as

the logarithmic dependence of b implies that F~(bj + b~)
~

F~(bj + F~(b~)) (').

2) The wedge-confinement energy of the sample between two adjacent dislocations [7]

jf3
~~

l 2 R
~~~

where f is the distance between these two dislocations. This term has an effect opposed to

F~ as it tends to reduce the distance between dislocations, I.e. it favours a pattern of small

Burgers vector dislocations. When B is large, as in thermotropic and in non-swollen lyotropic
smectics, this term is preponderant and drives the behaviour of the smectic, so that only
elementary (b

=

I dislocations are observed [15, 16].

Note that, in principle, the far-field energy F~~
due to the deformation of the neighbouring

layers outside the dislocations would have to be taken into account [8, 14j, but this energy is

linearly dependent on b (F~~ =

BAbe/2), so that it does not affect the distribution of the

dislocations (F~/f vanishes during the derivation).

Using the sample energy per horizontal unit surface of the dislocation array (F~ + F~
)li, the

authors of reference [7] determine b the value of the Burgers number that minimizes this

energy at each distance I from the center. This operation leads to the implicit expression of b

(where the values of b obtained increase with I)

~ ~~~~
=

Ln
~

l. (5)
r 3

A
2 b~

Since the geometry of the cell imposes the relation :

iii-)
=

Reb ii.)/1 16)

it is convenient to write (5) as :

fir)
=

(3 ~A ~R )"~ 3f (7)
1-o

where

j~2 113

1-o =

5.44 eb~ (8)
3 ~A ~

(') The calculation omits a term due to the Gaussian curvature which exists in principle since the edge
dislocations are not rectilinear but concentric in this geometry. The curved layers consequently bear a

saddle-splay deformation, whose two principal curvature radii are be and
I

(the distance of the dislocation

to the center of the cell as shown in Fig. I) with hew I. As m the lamellar phase K is of the order of

k [13], it is clear by comparing the two curvature terms in the free energy (Eq. (2)) that we may neglect

the Gaussian contribution kh.be towards the mean curvature term K(16- +
1/be)~ in the calculation of the

defect energy.
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,~

and 3f(x) is the inverse of g(y)
=

~ Since we only consider here the y m y~~,, branch of
Y

g~y), where y~~~ =

0.67 and.<.~,~~
=

g~y~~~)
=

2.01 correspond to the minimum of the g

function, fit is uniquely defined.

It is important to note that (F,~ + F~)/f cannot be minimized by a positive value of b when

x ~ x~,~, which corresponds to r ~
r*

=

ro/2.01 here the dislocations do not present a high
enough Burgers number b to have their energy approximated by expression (3), which is valid

only when the layers folded in the dislocations may be considered as a continuum [14]. Nallet

and Prost proposed that, in this part of the cell, the Burgers vector stops varying, keeping in a

«
quenched b regime

»
the value b~j~

=

7.54 b~ that is reached at r =

I*. According to our

experimental results, the quenched b regime does not always accurately describe the evolution

of b near the center of the cell, and one usually observes a succession of plateaux
corresponding to discrete decreasing values of b when r decreases below the domain of validity

of (3). However, we may note that the theory of reference [7] applies to the behaviour of the

dislocation pattern till the first plateau. We will then compare the experimental results with this

model where it is valid, and we will interpret the smallest b values that do not fall into this

description with a model using a discrete defect energy.

3. Studied system and materials.

Ferrosmectic phases and their structural features have been described in previous papers [1-3].

The system appears as a stack of lyotropic membranes, formed by a sodium dodecyl sulfate

(SDS) and pentanol bilayer holding water. The weight ratio water/SDS is fixed at 2.5, which

sets the membrane thickness e~~~~~~~~ at 5 nm. Between the membranes, the swelling solvent is

a colloidal suspension of magnetic particles (average diameter 7 nm) in cyclohexane, or

ferrofluid (« oil »). The phases are stable for a particle volume fraction up to 4 fb. The

periodicity e = e~~~~~~~~ + e~,j (e~~j being the thickness of the oil layers) varies between 20 and

40 nm it is driven by the ratio @~,j/@~~~~~ (volume fractions) and depends only weakly on

# Ii 7j.

The Cano cell is made of a plano-convex spherical glass lens (we used two curvature radii :

R
=

517 or 956 mm) set on a glass plane disc, the diameters of the two parts being equal to

5 cm. A drop of ferrosmectic phase is squeezed between the two parts (Fig. la), then the cell is

sealed with cyanoacrylate glue in order to prevent evaporation. The phase is then annealed by
heating it to the isotropic phase (the L3 «sponge» phase), and slowly cooled down

(0.2 °C/mn) to obtain homogeneous anchoring over the whole cell, with the layers parallel to

the glass boundaries. This stage is the most delicate of the experiment, since the cyanoacrylate

glue does not always mechanically resist the temperature increase (up to 60 to 80 °C). On

correctly annealed samples, the observation under optical microscope shows concentric

dislocations, laid in a very regular way (Fig. lb). The position of each dislocation is plotted by

positioning it in the eyepiece, and displacing the cell with a micrometic displacement stage. It

is worth stressing that, as the particles absorb light strongly, these defects are not easily

observable between crossed polarizers, and have to be observed with a strongly converging

light. Using this method, it is possible to distinguish the dislocations even in thin regions.

Moreover, the presence of the green-absorbing panicles renders light quasi monochromatic

and improves the contrast.

4. Data treatment.

The experiment provides directly the position (distance r to the centre) of each dislocation,

pinpointed by its rank n in order to plot a r in graph (Figs. 2a and 2b). The local slope of this
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r

a)

~ j

b)

Fig. I. a) Experimental set-up. Hatched parts glass lens and plate b) optical microscopy picture of

an array of dislocations bar
=

0. mm.

graph is I(I)
=

r(n + I r(n ), and its theoretical expression (directly or by the mean of b)

has been displayed in section 2. The theory gives I
versus r, and we want to compare it to our

experimental data that are in the form r(n

In the low b region (r
~

i* ), as long as b
=

b~~~
=

7.54 b~, the relation between I and n is

simply :

r(n)
=

~/2 Rneb~,~ (neb~~~)~. (9)

This regime is completely specified by the geometry of the cell and the b~~~ value, so that its

shape does not depend on A and appears as part of a concave down ellipse part. It crosses over

through an inflexion point (at r#r*, depending via ro on both parameters A and

b~) to the convex «
fit-regime

»
described hereafter, which is mainly dependent on A.

For r ~
r*, as the slope of the experimental curve varies quite slowly, we construct the

theoretical curve by using the recurrence relation r(n + I)
=

r(n)+I(r(n)) where f is

calculated using equation (7) and proceeding to a numerical integration of f. Since
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Fig. 2. a) (-) : experimental r(n ) graph for 4~~i/4~~,~,
=

5.25, 4 2.8 9b (R
=

517 mm this

plot appears as a line because the dislocations are too close to be resolved on the graph (- -) The

corresponding theoretical curve whose parameters are displayed in table I, and which provides
r*

=

7.9 mm b) same set of curves for 4~~j/4~~~~,
=

4, 4 2.26 9b (R 956 mm ). Here r*

9.3 mm at small r appears the discrepancy with the model of reference [7], discussed in section 2 and

section 5.2; c) experiment of figure 2a: representation of the Burgers vector of each dislocation

(be Ir/R) I,eisus I. The experimental uncertainty is emphasized by the use of the local slope of the

experimental I(n) points in the calculation of be. Thick line theoretical curve with the parameters of

table I : note the cross over between the two regimes at r
I* d) Burgers representation for the

experiment of figure 2b. The decrease of b at small
r

from the first plateau is observable even though its

accuracy is not sufficient at this distance from the center to allow one to clearly distinguish the steps.
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Fig. 2 (continued).

fit (x) cannot be expressed analytically, we approximate it numerically by the § (x) function,

constructed in order to have the same value and slope for.<-=>.~,~ (.<-~~~ =2.01 and

y~~~ =

0.67) corresponding to the extremum of the g function defined in section 2 and to

present a reasonable maximal square deviation about the fit function

& (X)
= Xmm + (C Lfl (I + aj (X ymin + a2(X Ymm)~) + a3 (fi Ymm)~)~ '°)
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with

c. =

206.94 aj =

4.903 x
10~~

a~ =

4.298 x 10~ ~
;

a~ =

3.749 x
10~~

; v =

1/2.421

For x=ilro~ II (which corresponds to i~22r*, and will appear as matching the

experimental explored interval), the maximal square deviation between fit and its approxi-
mated formula with the coefficients expressed here is less than 0.I fb. We thus use

§ instead of fit when calculating the theoretical curve, and we determine A and

b~ for each experiment by adjusting them through a least squares method, for the two regimes

at the same time.

We note that relation (5) shows the existence of a linear relation between b~/r~ and Ln b, far

simpler than the complex relation between I and n that requires the use of the non-explicit
function fit. We nevertheless do not work with this relation because it uses, through b, the

finite difference f
= r (fi + I(n ) of the experimental points, which is more sensitive to the

experimental uncertainty than the r(n) points. The variation of b with I (that is to be

appreciated in Figs. 2c and 2d) is especially enhanced in b~/r~ and prevents its use in precise
estimates.

In a few cases (indicated in Tab. I), it happened that the contact could not be perfectly
achieved at the center of the cell, a state that is easily detectable as the ferrosmectics are

strongly coloured. The modifications induced by a nonzero thickness at the center of the cell

are calculated in the appendix. They lead to a lower value of r*, easily understood by the fact

that, at the same distance from the center, more layers buffer the gradient thickness. The effect

of F~ is then smaller, and may be counterbalanced by the unmodified F~ nearer the center. The

data are however to be treated in a way that is very similar to the others, as shown in the

appendix.

Table I. Peiiodicity e
fi.om SANS measw.ements of reference [17].

4 (%) e (nm) a (mm) R (mm) l~ (nm) b~

5.25 0 25.0 517 51.3 0.49

8.5 0 38.0 956 74.2 0.90

5.25 1.13 26.4 956 53.7 1.55

5.25 1.13 26.4 517 40.7 0.85

8.5 1.13 40.1 956 66.5 0.62

4 2.26 22.3 0.004 956 38.0 0.91

5.25 2.26 27.8 956 40.5 0.80

8.5 2.26 42.3 0.02 956 MA 0.68

4 2.8 22.8 956 28.5 0.85

5.25 2.8 28.5 956 28.6 0.73

5.25 2.8 28.5 517 28.4 0.78
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5. Experimental results and determination of A.

We studied the ferrosmectic phases for three ratios @~~j/~fi~~j~~ (4, 5.25 and 8.5) and three

particle concentrations (I.13 fb, 2.26 fb, 2.8 fb), and compared these to the undoped reference

systems. The results are summarized in table I, that displays the values of and

b~ for the different phases and experimental conditions.

5.I CLASSICAL UNDOPED PHASES. The Cano wedge experiment was first performed on

undoped phases. As in the experiments of reference [7] performed on comparable phases, the

dislocation pattern r (n observed presents a concave up part, and for smaller r the beginning of

a concave down elliptical part, the whole being in accordance with the theoretical curve of

section 4. We have measured A for two ratios ~fi~~j/@~~i~~ 5.25 and 8.5. For sufficiently swollen

phases, the values of A are proportional to the periodicity e, as deduced from Helfrich's

potential [9, 18] :

~
~~ iT~' ~~~~

We thus obtain an estimate of the curvature constant of the membrane in undoped cyclohexane
phases : K -

2.4 kT, which is compatible with values obtained in analogous systems [18]. As

this experiment is long and delicate, we did not measure A for
~~j/~fi ~~~~~ =

4, and extrapolated
it linearly to 41nm.

5.2 FERROSMECTICS. In the doped phases the possibility of distinguishing the defects in

thin regions, near the center of the cell, allows us to count a large number of dislocations, up to

800 for some experiments. In these phases, the concave up fit-regime is also observed,

followed by a concave down part when approaching the center (Figs. 2a, b). On the

be(r) curve, one may observe that the evolution of the Burgers vector with r
effectively

exhibits a zone where b is constant, following the 3f-regime where b decreases (Fig. 2c).
However, in most of the experiments, this plateau does not extend down to the center and gives

way to a succession of decreasing steps (Fig. 2d). This invalidates the hypothesis of a

quenched b regime over the whole range 0 ~r~r* We will nevertheless determine A

according to reference [7] in the range where it is valid, as discussed in section 2. The values

of A are displayed in figure 3, as a function of for different @~,j/@
~~~~~.

Roughly, we see that A

first remains constant at very small @, then starts decreasing with increasing @, and that this

effect is more pronounced for large values of the periodicity e. As concems b~, the values

obtained when determinating A (Tab. I) are close to 0.8. This corresponds to a core zone that is

somewhat smaller than a layer, which is a reasonable order of magnitude.
About the approximation proposed in section 4, we note that r ~

221-o in all cases ; this

confirms the validity of using il in place of fit in the data treatment.

6. Interpretation of the very small Burgers vector dislocations.

In the vicinity of the center, dislocations of very small Burgers number (b
~

5 have been

observed. In one phase, with a high concentration of particles (@
=

2.8 fb ), the dislocations

could be distinguished very close to the center (up to r =
I mm). When plotting the Burgers

vector be as a function of i~, we observe two well-defined plateaux, at be
=

37 nm and

be
=

70 nm (Fig. 4). The measurement of e =

35.0 nm by X-ray scattering shows that the first

plateau corresponds to elementary dislocations (b
=

I ), and the second one to b
=

2. The

dislocations, which are even harder to distinguish in this case than in the
«

usual
» cases, get
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=

2.8 9b and e =
35 nm : Burgers vector (here R

=

956 mm, and I*
=

2.9 mm). As the

dislocations have a very poor contrast, the positions were sometimes counted by blocks this gathers the

points into inclined stripes. For larger r, the defects are hardly perceptible and the dispersion of the points
increases.
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closer when going away from the center, and at r ~ i
5 mm become gradually impossible to

separate from each other by optical microscopy.
In the region of observation, the fit-description, for which the layers implied in the

dislocations are approximated as a continuum, is obviously inaccurate, so we will use a

discrete model to obtain A. One may assert that the radius r* that separates the

b
=

I and b
=

2 regions corresponds to equal values of the total energy per unit surface,
Elf

=

(F~ + F~
)/f, at b

=

and b
=

2. The limit between the two Burgers vectors results then

from the competition between the defect and wedge-confinement energies, just as in section 2

and r* obeys :

hRe~/12 r*~
+ (r*/Re) F~(b

=

1)
=

2 BRe~/3 t.*~
+ (2 I*/Re) F~(b

=

2). (12)

We deduce then :

A
=

j~ ~~
~

e 3)
4 r

* (s~(b
=

I )/K s~ (b
=

2 )/2 K)

In this equation, F~ (b
=

I and F~ (b
=

2 can be calculated with microscopic models, as the

sum of the discrete curvature energies of the bi- or monolayers involved in these dislocations.

We may consider that the structure of a b
=

2 dislocation involves the folding up of a bilayer
with a curvature radius e/2, as shown in figure 5a. We then have

F~(b
=

2 )
=

~Kle
=

~K. (14)

For b
=

I, two models are conceivable. In the simpler one (displayed in Fig. 5b), the

elementary dislocation is achieved via the ending of a bilayer, ending which is obtained by
folding up the constituent monolayers. As the curvature constant of the monolayer is

K~~~~ =
K/2

=

K/2 e, and the curvature radius in this situation is of the order 6/2 (6 being the

membrane thickness), we get

F~ ~(b
= =

I Ke/6 (15)

In our case, the value of F~~~~(b =

I ) is 10.7 K. With the two different cells R
=

956 and

R
=

517 mm (respectively r*
=

2.9 and r*
=

1.9 mm), we obtain through equation (13) :

A~~~ =

6.4 and 6.5 nm.

The other way to get b
=

is the connection of two bilayers, as shown in figure 5c. In this

configuration, we see that the curvature energy is the same as that of a b
=

2 defect, except that

in the connection region a portion of monolayer of curvature radius ~ ~ ~
is replaced by two

2

parts with an apiiori undetermined curvature radius r. Simple geometric considerations

impose

Fd~~~~16 =

1)
=

Fdlb
=

2 + K
mono

) ) ~~~ II 6)

with

If we
that the region has

a size omparable to the

x =

jr + (e + 3 )/2) sin (e + 3 )/2.
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e/2

a)

b)

i

xk-d

C)

Fig. 5.-a) Microscopic model for a b =2 dislocation; b) ending bilayer model for a b
=

I
dislocation c) model with two connecting bilayers for a b

=
I dislocation.
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Here, x =

5 nm imposes r =

6.6 nm, and consequently
F~~~~~(b =

1)
=

5.9 K. The two values

of A
~~~~

deduced from the two different experiments are then 9.2 and 9.4 nm, which are higher

than those determined using the terminating bilayer model.

We see that the determination of A depends on the model used (the second one being the

more plausible, as it leads to a lesser dislocation energy), but in any case the value obtained is

significantly smaller than the smectic penetration lengths of phases less swollen or with

smaller particle volume fraction. The reduction in A is then particularly strong in this extreme

region. We also note that such a small value of A explains a posterioii the fact that we could

not, in this experiment, observe the dislocations outside a very central zone, as they got closer

and faded away when getting away from the center. Effectively, a small smectic penetration
length (« hard

»
smectic) makes it easier to curve the layers in separate dislocations than to

adapt to the thickness gradient between the dislocations : the Burgers vector will then increase

more slowly with r than in
«

soft smectics
»

and the dislocations will be closer. This has two

consequences : first, the dislocations involving a few layers show poor contrast and are more

difficult to see in the thick highly light-absorbing regions of the cell. Secondly, low values of b

also reduce f and may have it drop below the spatial resolution of the microscope.

7. Discussion.

The most remarkable feature is that, at constant swelling ratio, there is no variation of the

penetration length A with the particle volume fraction when is small (@
~

l to 2 fb). If we

recall that the variations of the elastic bendin and compression constants K and

B with
~fi are correlated with A values through A

=

j~,
we may deduce from the constancy

of A at small
~fi

that K and B vary in the same way, if they vary with ~fi. These results are to be

compared to those of Small-Angle Neutron Scattering (SANS) where the spectra of the

ferrosmectics even for weak particle concentration are totally different from those of

undoped phases, the qualitative analysis indicating that the quantity KB is strongly enhanced as

soon as particles are introduced [17]. Consequently, both B and K, (that vary separately likefi
as the A measurements show that they have both a similar evolution) have to increase

rapidly with
~fi at small particle concentration. Together with SANS experiments, we have here

the first experimental clue on the variation of K, which increases strongly as soon as the phase
is doped.

It is interesting to discuss this last result from the point of view of the mechanisms that

stabilize the ferrosmectic phases. In a classical swollen system, the long-distance repulsive
interactions are due to the entropically reduced fluctuations of confined membranes (Helfrich-

type repulsion). This is the case for ~fi =

0, and the expression of the compression constant is

[9, 18] :

B
=

~ ~~~~j~~
(17)

64 Ke

Thus at constant interlayer distance, K
=

Kle and B should be inversely proportional. This is

not compatible with the simultaneous increase of K and fi that we observe. In agreement with

SANS results, the present experiment shows that there is a supplementary stabilization process
in the ferrosmectic phase that adds to the steric repulsion between fluctuating membranes, and

enhances B compared to a Helfrich-type behaviour.

Let us now consider what happens over the whole range of ~fi, when cannot be considered

as constant : A decreases for
~

l to 2 fb, indicating that fi eventually increases more rapidly
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than K. We may suggest that the evolution of A is mainly due to a slowing down of the K

increase ; this would correspond to a strong effect on the stiffness of the membrane as soon as

the particles are introduced, followed by a saturation phenomenon when the total concentration

of particles becomes large. On the contrary, B, which is related to the intermembranar

repulsion, would keep increasing when the particles are added between the layers.
We can look more quantitatively at the evolution of A, by observing the curves in figure 3 :

the decrease of A starts all the sooner and is all the more significant as the phase is more

swollen. Thus and @~~j/~fi~~i~~ act on A in a similar way. This equivalence between highly
swollen phases with few particles and less swollen phases that are more concentrated, may be

expressed in terms of characteristic distances : e for ~fi~~j/~fi~~~~~ and d~ (mean distance between

the particles into the layers) for
~fi.

For the present experiment, the nature of the evolution of A

shifts for a typical value of e/d~, of order of unity. This can be compared with the observations

of Ponsinet et al. [17] in neutron scattering, where a cross-over in the behaviour of the main

SANS features (position, intensity of the peaks) is driven by e/d~, the threshold value being
about half that seen here. The ratio e/d~ is thus a key parameter, whose role is yet to be

completely clarified.

8. Conclusion.

We have measured the smectic penetration length of doped phases through a varying thickness

cell method that is very well suited to the material studied, owing to its optical and spontaneous
orientation features. The limit of the model, initially built for undoped phases by Nallet and

Prost, has been delineated when the confining of the smectic is more intense, in the central part
of the cell. Outside this limit, in the thinner region, we have observed elementary edge

dislocations that had not been seen in this type of experiment with conventional swollen

lyotropic phases.

The measurements carried out show that the doping of the phases decreases A, which means

that a deformation imposed on the smectic requires a greater distance to attenuate. This

supports the intuitive idea that the presence of solid particles between the lyotropic membranes

hardens the smectic, and justifies the appearance of small Burgers dislocations. As the

variation of A is very weak for small
~fi

values, this study coupled with previous SANS

observations shows that B and K have a concomitant variation in this particle concentration

range. This is inconsistent with the classical interpretation where swollen smectics are

stabilized by the steric hindrance between fluctuating membranes, and strengthens the

conclusion obtained from SANS studies of the existence of supplementary interactions in these

doped systems. Ultimately, we get information on the sense of variation of K, that increases

strongly as soon as particles are inserted in the phases, and we foresee a saturation effect of the

membranes by the particles on the bending elasticity at high particle concentration.
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Appendix.

Calculation of the effect of a finite thickness at the center of the cell.

A nonzero thickness a (measurable by transmission) at the center of the cell does affect directly

only F~. If we integrate the compression of the layers (term Bid-u )~ in Eq. (2)) over a
2
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thickness a +
i~/(2R) instead of r~/(2R), following the way of reference [7], and write

conveniently all terms in f instead of b (which is possible as the geometric relation (6) shows

the proportionality, at a given r, between b and f), the calculation leads to

where :

j
r~

+
f~/4

~ ~
2 R

Expanding the Arctg in series in f/2
r leads to :

Jla ~~~~~ / ~ ~( ~~~~~
~

2 R I 2 R II u/3 I 3
~

I 5

r(I + u 2 I

~
r(I + u )~ 2 I

~
2 r

with

a
u = i~-/2 R

As we are only interested in the derivation of F~li,
we will not retain the terms of

F~ la F~ lo that are linear in I, vanishing with the derivation. The only terms that have to be

taken into consideration are then the i~
ones ; they may be written as

~~~
flu ), where

12R

~~~~
~

4ji +
u)I i'

The expression of Elf
=

(F~ + F~)/f is then hardly different from the case a =

0 : in order to

take the finite value of a into account, the only modification is to write B ( + flu instead of

B. As flu)
=

Fir) is independent off land, consequently, of b), the minimization of

(s~ + F~
)/f with respect to b treated in section 2 remains valid. The calculation shows that the

only correction to the following operations is to replace A by A + F (I))~ '~~ in equations (7)

and (8) when calculating f(I) at each point. In terms of a r(fi) representation, this still

corresponds to a convex ellipse fragment, with no incidence on the b~,~, value, followed from

r* by a concave part. However r* is decreased, as the relation that defines it is now

j~2 1/3
1'*

=
(1 + F (I'* )) fi~~~ 5.44 eb~ With F (1'*

~
0

3 ~A ~

The inflexion point at r* then gets closer to thinner zones of the cell when the two

constituting parts are not exactly brought into contact.
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