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Rdsumd.- On propose une analyse tin£aire des instabilit£s thermoconvectives en pr£sence de

gravitd et de tension superficielle dans des fluides dont la viscositd varie avec la tempdrature. La

couche de fluide d'extension horizontale infinie, limitde par deux surfaces planes est initialement

au repos et est soumise h un gradient de temp6rature vertical. On considbre deux d6pendances
diffdrentes de la viscosit6 par rapport h la temp£rature : une loi tin£aire et une loi exponentielle. Des

r6sultats numdriques ont 6t6 obtenus pour toutes valeurs positives et n£gatives des nombres

de Marangoni et de Rayleigh. Le r&le stabilisateur ou d6stabilisateur d'une viscositd fonction de la

tempdrature est lid au signe de sa variation avec la temp6rature. Les r£sultats obtenus pour le

glyc£rol et l'huile de silicone montrent que cette ddpendance en la temp£rature exerce une

influence significative au niveau de l'initiation de l'instabilit£, tout spdcialement dans des couches

trks minces. Une analyse num£rique des r6sultats indique que le principe d'dchange de stabilit6

reste satisfait dans un large domaine de variation des paramktres.

Abstract. A linear analysis of surface-tension and gravity driven instabilities in fluids with a

temperature-dependent viscosity is proposed. The fluid layer is initially at rest, of infinite

horizontal extent, limited by two flat boundaries and subject to a vertical temperature gradient.
Two different dependences of the viscosity with respect to the temperature are considered : a linear

and an exponential law. Numerical results have been obtained for any value either positive or

negative of the Marangoni and the Rayleigh numbers. The stabilizing or destabilizing role of a

temperature-dependent viscosity depends on the sign of its variation with temperature. The results

obtained for glycerol and silicone oils show that this temperature-dependence has a significant
influence on the onset of instability, specially in very thin layers. A numerical analysis indicates

that the principle of exchange of stability holds true within a wide range of variation of the

parameters.

1. Introduction.

This paper is concerned with thermoconvective instability in a horizontal monolayer of fluid,
initially at rest and heated from below. The fluid is isotropic, extends horizontally to infinity

(*) Also at Louvain University, Dept. of Mechanics, 1348 Louvain-la-Neuve, Belgium.
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and is bounded by two flat boundaries. The lower boundary is rigid but the upper one is free

and submitted to a surface tension varying linearly with temperature.
This problem was first studied by Pearson [I] who neglected buoyancy effects and by Nield

[2] who included gravity forces in his analysis. Both authors took for granted the Boussinesq
approximation which implies, in particular, that the viscosity is temperature-independent.
However, it is well known that for a given class of fluids, as for instance silicone oils or

glycerine, viscosity may vary significantly with temperature. Palm [3] has studied the effect of

a temperature-dependent viscosity on the onset of convection in Bdnard's problem. Palm

considered the particular case of a fluid layer between two free boundary surfaces with a not

very realistic cosine law for the temperature dependence of the viscosity p. Stengel et al. [4]

compared Palm's results with these arising from the selection of an exponential viscosity law.

The same problem was solved by Busse and Frick [5] for low viscous fluids with a linear

dependence of the viscosity on the temperature.

Our objective in this article is twofold. First to use a viscosity law p (T) more realistic than

that proposed by Palm and second, to extend the analyses by Palm, Stengel et al., Busse and

Frick by including surface-tension driven instabilities. In more precise terms, we shall

determine by means of a linear analysis the effect of a temperature-dependent viscosity on the

critical instability threshold. Two different viscosity laws for p(T) have been selected a

linear and an exponential law and their range of applicability will be discussed. In contrast with

some of the aforementioned works [1-3], exchange of stability is not assumed a priori.

2. Mathematical description.

2. I EvoLuTioN EQUATIONS. Consider a thin layer of an incompressible Newtonian fluid

with thickness d and infinite horizontal extent. A Cartesian reference frame with origin 0 at the

bottom of the layer and axis e~ pointing vertically in the opposite direction of gravity is

selected. The thermohydrodynamic equations are :

du~
=

0 (1)
dx~

du, dp d du, du~
~°

dt dX~
~° ~~ ~

~~ ~°~~ ~~'~ ~

dXj

~
~~~

dXj
~

dX~

~~~

~° ~ T ~

~
dx, dx~

~~~

Einstein's summation convention on repeated indices is used, u, is the velocity, P the pressure,

T the temperature, p (T) the dynamic viscosity, c the specific heat, K is the supposed constant

thermal conductivity while

d d 3

& dt
~ "'

dx~

stands for the material time derivative. The density p (T) satisfies the state equation :

p =

poll a (T To)]

where
a

is the positive coefficient of thermal expansion and T~ an arbitrary reference

temperature, for example the temperature at the bottom of the fluid layer. By formulating (1)-
(3), Boussinesq's approximation is partially used. Indeed equations (1)-(3) satisfy the

following assumptions, which are typical of Boussinesquian fluids :
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I) density is everywhere constant except in the gravity term of equation (2) ;

it) viscous dissipation is neglected in the energy balance (3). Only the restriction of constant

viscosity is relaxed.

It was shown [6] that approximations I) and it) are justified under the conditions

ej«I e~«I

where ej and e~ are defined by

~2
ej=aAT, e~=

°

AT d~c

with ko(= K/po c) the heat diffusivity and AT(= To Tj ), the temperature difference between

the lower and upper surfaces.

2.2 LINEARIzATION. In the reference state, the layer is at rest and heat propagates by
conduction only ; the velocity, temperature and pressure fields are given respectively by

u)~~ =

0 T~~~ =
To px~ ;

~~~~~
= p ~~~ g p

=

~~

dx~ d

At the first order approximation in the infinitesimally small perturbations (u), T', P~),
equations (1)-(3) write as

~ d2v~ ~2e ~2e
~

d2v~
~

d2v~
Pr~

j =

Ra
j + j

(D v~)
j + 2 (D v~)

j +
dT dx~ dx, dx~ dx~ dx~

d3v~ d4v~
~ ~~~~~~

dX) dX3
~ ~~

dX) 3X)
~~~

~°-v3" ~ ~. (5)
T

~,

In (4), the pressure field has been eliminated by application of the curl operator on (2) and

dimensionless quantities have been introduced in (4) and (5). The following scaling has been

used for the space coordinate, time, velocity and temperature respectively

x~ ko ,d T'~~J' ~~~d~'~'~~'ko' °
Pd

operator D stands for D
=

d/dX~ while Pr and Ra are the Prandtl and Rayleigh numbers

respectively :

Pr
=

~°
~~

Po g"Pd~

ko ' ~
° ~°

(6)

with po the dynamic viscosity calculated at T
=

To.

The Rayleigh number is given a univocal definition since it is expressed in terms of the

constant reference viscosity at the temperature To. The undefined quantity v~ appearing in (4) is

given by

~a " )~~ (7)
o

with pref " H (T~ef).
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According to the normal mode technique, one seeks solutions of the form

V W(X jj
= ~

~
exp (ik X + sr (8)

° "(X3)

with

s=«+iw; k= (kj,k~); x=(xi,x~); k= ((k((

Introducing (8) into (4)-(5) yields

sPr~'(D~-k~)W=-k~Ra&+(D~v~)(D~+k~)W+
+2(Dv~)D(D~-k~)W+v~(D~-k~)~W (9)

(D~-k~-s)&=-W. (10)

2.3 BOUNDARY CONDITIONS.- The upper surface of the fluid is assumed to be free,
undeformable, but submitted to a surface tension f depending linearly on the temperature

according to

I(T)
=

I(To) +
(

(T- To)

with To an arbitrary reference temperature. If it is assumed that there is no interaction between

the fluid and the external environment, the corresponding boundary condition is :

~~
= p

~~~
at x~ =

d (I
=

1, 2). (I I)
dX, dX3

After substitution of expression (8) in (11) and linearization, one obtains in dimensionless

notation

D~ W
=

k~ Ma
~ ~~°~

& at X~
=

(12)
H (Tj

wherein Ma is the Marangoni number defined by

Ma
=

(df/dT) pd~

ko p~
(13)

with po taken at the temperature To of the lower surface of the fluid. It may be surprising to

refer the viscosity in expression (13) of the Marangoni number to the temperature of the lower

boundary as condition (12) is applicable at the upper boundary. The definition (13) has been

used because it allows for a clearer and easier physical interpretation. Condition (12) must be

coupled with

W=0 at X~=1, (14)

expressing the non-deformability condition on the free surface. The lower boundary is

supposed to be rigid so that :

W=DW=0 at X~=0. (15)
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The kinematic boundary conditions (12), (14) and (15) must be completed by the following

thermal boundary conditions.

~&
=

~-
he

~ ~

=

~~~~

h is the heat transfer coefficient at the interface, the so-named Biot number. The lower wall is

perfectly heat conducting, while the upper boundary allows for a heat transfer between the

fluid and the external environment.

For convenience, the six relevant boundary conditions (12), (14)-(16) will be written in

terms of the temperature field & only ; this results in

at X~=o: &=o

D~ &
=

(k~ + s) & (17)

D~ &
=

(k~ + s)D&

at X~=I: D&+h&=0

D~ &
=

(k~ + s) & (18)

D~ &
=

[(k~ + s)~ + k~ Ma &.

2.4 CONSTITUTIVE LAws FOR THE vIscosITY. Two different constitutive laws will be

considered in this work. The most current attitude is to assume that the dynamic viscosity p

obeys a linear law of the form :

p (T)
=

pail y (T To)] (19)

y is a positive constant for a liquid and negative for a gas. Another common attitude is to take p

varying exponentially with the temperature :

H (T)
= Ho e~ ~~~ ~'~ (y

~
0 ) (20)

This constitutive equation has proven well suited for highly viscous liquids. In both

expressions (19) and (20), y measures the viscosity variation with temperature and is given by

y =

~~
(21)

Ho dT r=ro

Although some more complex empirical expressions for p (T) are proposed in the literature,

our analysis is limited to the two above simple laws on account of their generality and their

analytical simplicity. The linear and exponential laws involve only two parameters,

p o
and y, and fit quite well experimental data on restricted temperature ranges (AT

~
30 K ) for

a wide class of gases and liquids (see Tab. I).
It follows from (7) that within the linear approximation, one may write the non-dimensional

viscosity v~ as

v~ =

I + LX~ (22)

for the linear dependence, while for the exponential law

v~ =

e~~~ (23)

the quantity L stands for L
= y AT.
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Table I. Values of y calculated with a least square method fi.om equation (20) for liquids
and from equation (19) for gases. Data on viscosity were taken from [4, 12-15].

Dynamic viscosity p Gamma y Temperature

at 25 °C (K-I) range
(10-3 kg-m-I-s-I) (°C)

Water H20 0.8904 0.025 4-30

Acetic acid C2H402 155 0.0153 20- 50

Silicone oil M200 168.6 0.0209 0-25

Glycerol C3H803 938.7 0. 1005 0-25

Air 18.515 0.0019 20-50

Carbon dioxide C02 15.05 0.0026 20-50

The non-dimensional factor L is a quantity proportional to y but also to the temperature jump

between the boundary surfaces ; for a constant viscosity, one has L
=

0. Consequently, L

expresses the temperature dependence of the viscosity. Furthermore, L can be related to the

ratio of the viscosities taken respectively at Tj and To ; indeed, by defining

1= )~ (24)
o

it follows from (19) and (20) that

r =
I +

L'
,

(25)

In r =

L~ (26)

where the superscripts I and e refer to the linear or the exponential law respectively. It is

evident that within a given temperature range [To, Tj the value of y calculated either from (19)

or (20) will give different results. Like Busse and Frick [5], we found it interesting to introduce

the ratio r because it is a typical quantity reflecting the importance of the viscosity variation

independently of the selected viscosity law. According to (25), L'
measures the relative

variation of pi with respect to po values of Ll smaller or equal to are not allowed as they

imply a negative or a zero viscosity p j.
The quantity L~ is an expression of the variation of p

between both boundaries and can be given positive or negative real values.

2.5 EXCHANGE oF STABILITY. Exchange of stability has been shown to be valid for the

problem of pure Marangoni convection by Vidal and Acrivos [7]. A numerical proof has been

given by Takashima [8] for the more general case of Bdnard-Marangoni driven instability.
However both demonstrations rest on the hypothesis of constant viscosity. By following
Pellew and Southwell's reasoning [9], it is easy to show analytically that the principle of

exchange of stability holds for fluid layers with a temperature-dependent viscosity under the

condition that

D2 p~~o
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and for boundary surfaces which are either both perfectly heat conducting (&
=

0 or perfectly
insulating (D&

=

0), it is moreover required that both surfaces are either rigid (DW
=

0 or

free without surface tension effects (D~W
=

0). Under more general conditions, it is

impossible to prove exchange of stability by an analytical method.

However, the Marangoni number can be expressed numerically as a function of the

parameters Ra, k, L, h, Pr,
w

and as a result contains a real and an imaginary part. The problem

amounts to determine the ~v-value for which the imaginary part of Ma vanishes. We have

investigated the following range of parameters

0.swkw8; -10~wRaw4000; l0~~wPr~oJ; -0.lwrw10;

0www10~; h=0,1,10~

and have found that w =

0 is the single value of
w

corresponding to Im flAa
=

0. It can thus be

concluded that, at least within the range of parameters examined in this work, the possibility of

overstability must be excluded. As a consequence, we shall consider the marginal state as a

steady state defined by a zero stability number (s
=

0).

Setting s =

0 in (9, lo) and in the boundary conditions (17, 18), leads to a sixth order

eigenvalue problem. For a further purpose, let us establish the differential equation governing
the behaviour of the temperature field &(X~) : it is given by

[v~ D~
+ 2(Dv~) D~

+ (D~ v~ 3 k~ v~) D~ 4 k~(Dv~) D~
+ 3 k~ v~

D~
+

+ 2 k~(D v~) D + k~ Ra v~ k~ (D~ v~) k~] &
=

0 (27)

It is observed that this relation contains variable coefficients whose explicit expression
depends on the specific dependence of the viscosity with respect to the temperature as well as

on its derivatives up to second order. The eigenvalue problem, obtained with the five

dimensionless numbers

(k, Ra, Ma, L, h ) (28)

has been solved numerically from a representation of the profile &(X~) by means of a power
series in X~. The method has preliminary been checked by solving the pure Bdnard problems
treated by Busse etal. [5] and Stengel et al. [4] for the viscosity laws (19) and (20)
respectively. Excellent agreement has been reached. Moreover, for L

=

0, one recovers the

results of Nield [2] while for Ra
=

0, one finds the same results as Lebon and Cloot [10] who

supposed a linear viscosity law.

3. Results and discussion.

Stationary solutions for the homogeneous problem defined by (17, 18) and (27) are only found

for some particular values of the parameters (28). By fixing h, L and Ra, it is possible to

represent the eigenvalues Ma as a function of the wavenumber k. In all cases, the marginal
stability curve is a unimodal function and presents a minimum, say Ma~, at which the static

layer becomes unstable with respect to infinitesimal perturbations.
First, the upper surface is assumed to be perfectly insulated (h

=

0 ). This corresponds to the

most unstable situation because the whole thermal energy communicated to the system remains

enclosed inside the fluid layer. Figure I shows neutral stability curves Ma versus k for various

values of r at Ra
=

50. The behaviour of the critical Marangoni number Ma~ indicates that

stability increases significantly with r. This conclusion holds for both viscosity laws, linear

and exponential. The value r =

I (I.e. L'
=

L~
=

0) refers to a fluid whose viscosity is constant.
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The corresponding stability curve will be taken as a reference to show the deviations of the

results by taking a variable viscosity. Obviously, when r approaches unity, the stability curves

for the linear and exponential viscosity laws tend to coincide ; this result is not surprising since

the law (19) is a first order approximation of the law (20) for small absolute values of y. It is

worth noticing that the more important is the variation of viscosity with temperature, the larger
is the divergence between both families of curves. This justifies the interest of introducing an

exponential law for highly viscous liquids.
In most thermo-convective problems, it is supposed that the Rayleigh and the Marangoni

numbers are both positive. Let us relax this assumption and allow Ra and Ma to take negative
values as well. Negative Ra's are obtained either by heating a fluid layer from above or, by
heating from below systems with a negative-coefficient of thermal expansion, like water

between 0° and 4 °C. Negative Ma numbers are representative of fluid layers heated from

above, with a negative rate of change of the surface tension with the temperature
~~

~
0 ). Negative Ma's may also be found in systems heated from below with a positive

dT

surface tension gradient ~(
~

0 ). Such behaviour is rather unusual but may be found in
d

some alloys, molten salts, long chain alcohols or liquid crystals [I I]. Here we confine our

attention to the more frequent situations for which ~( ~
0.

d

In figure 2 we report the critical values (Ra~, Ma~) whatever their sign ; the quadrants are

designated anticlockwise with Roman numbers.

Quadrant I (Ra
~

0, Ma
~

0 : it corresponds to a fluid layer with
a ~

0 and heated from

below or to a fluid adhering to a hot ceiling with a~0. In both cases one has

To ~
Tj.

, ,
c

I :1
~~

; Ii j
,

I
I

,

,',, R~

Ma "

iv

[ [ [

'

'

'

l 20

k
-IOQQQ

Fig. I. Fig. 2.

Fig. I.- Marginal stability curves Ma versus k for the exponential and linear viscosity laws

(Ra 50, h 0). The solid line refers to the exponential viscosity law and the dashed line to the linear

law. The chain dots correspond to a constant viscosity jr I ). A dotted line joins the minimum of each

curve pertaining to the same family (e exponential law I
=

linear law).

Fig. 2. Stability curves in the Ra~ Ma~ plane for
r =

0.2 0.5 1; 2 5, and Biot number

h
=

0. The drawing convention is the same as in figure 1.
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Quadrant II (Ra
~

0, Ma
~

0 : the description is similar to the previous one with the sign of

the coefficient of volume expansion reverted.

Quadrant IV (Ra
~

0, Ma
~

0 ) : it describes a fluid with a negative volume expansion
coefficient la ~0) heated from above or a liquid adhering to a cold ceiling with

a ~
0. In this quadrant, the sign of L is opposite to its sign in the quadrants I and II.

Quadrant III corresponds to Ra
~

0 and Ma
~

0 but is less interesting in the present context

because, as will be shown, it is characteristic of situations unconditionally stable.

In the case of fluids whose surface tension increases with temperature
~~

~
0

,

the above
dT

conclusions remain true at the condition to reverse the direction of heating and the direction of

the gravity force.

Figure 2 shows the locus of points (Ra~, Ma~) calculated for r =

0.2, 0.5, 1, 2, 5

respectively. Each curve is related to a given value of r and separates the plane in two areas :

the stability domain stands below the curve and the instability domain above the curve ; solid

lines refer to the exponential law for the viscosity, dashed lines to the linear law. The critical

points have the form of a beam of curved lines varying continuously with r in each quadrant
independently of the constitutive law. Observe that the coupling between buoyancy and

surface-tension effects is particularly tight in quadrants II and IV : a small variation of Ma

(respectively Ra) results in a drastic variation of Ra (respectively Ma). A detailed view of

quadrant I is supplied by figure 3. As a matter of fact, the effects of a variable viscosity are less

important in the first quadrant than in the others. The departure from the results obtained for a

constant viscosity is the largest when Ma~ or Ra~ tends to minus infinity. The behaviour of the

critical threshold for a gas (y~0) is seen to be the opposite of that of a liquid

(y
~

o ).

The above results can be interpreted as follows.

Although the value of y can be obtained from data tables, this is no longer true for L (or r)

because it depends on the critical value of AT which has to be determined in each individual

experiment. Moreover, this AT-value appears in both expressions of the Rayleigh and

Marangoni numbers. Eliminating AT between Ra and Ma yields the equation of a straight line

passing through the origin of the plane (Ra, Ma), namely

at

Ma
=

~~

~
Ra (29)

Po g"d

The slope of this line is fixed after that the depth of the layer and all the thermophysical
properties of the fluid are known. Thus, when AT grows from zero, one progresses along a path
defined by (29) following the trajectory 0, 1, 2, shown in figure 4.

If the viscosity of the fluid is constant, say po, then the determination of the critical

AT~ results from the intersection of (29) with the stability curve corresponding to

r =

I (see point marked C in Fig. 4). However, for a variable viscosity, at each increase of

AT, the value of L increases by an equal amount in absolute value, and a different stability

curve is found for each representative points 1, 2, as shown in figure 4. When

AT increases, one deviates more and more from the curve I.=I and the critical

AT~ is given by the intersection of the straight line and the moving stability curve

IF). The process sketched in figure 4 remains valid in any quadrant. The len th of the segment

OF is a measure of AT~ in the plane (Ra~, Ma~ ), recalling that

~is
proportional to

A7~. A tentative physical interpretation is the following. For the sake of brevity, we limit our

analysis to the first quadrant which corresponds to the most usual situation. Let An be the

critical temperature jump sufficient to initiate the instability in a fluid of constant viscosity
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Fig. 3. Fig,4.

Fig. 3. A detailed view of quadrant I from figure 2.

Fig. 4. A sketch of the determination of the critical temperature difference hr. For a given fluid with

a fixed depth d, this determination is direct for a constant viscosity (point C). With a variable viscosity,

the determination is iterative since I. changes its value when progressing along the straightline 0, 1, 2, F.

p (To). Take now into account the temperature dependence of the viscosity and let

p (Tj ) be the viscosity for Tj (~ To), the temperature at the upper boundary. In a liquid layer
(respectively a gas layer), the viscosity is larger (smaller) at the top than at the bottom where

the temperature is larger and maintained at the constant value To. Thus, globally, the whole

layer will offer a greater (worse) resistance to convection than in the constant viscosity case.

Therefore the critical temperature difference AT< is expected to be larger (smaller) than

An. This is confirmed by figure 3 where the length of any straight segment, drawn from the

origin up to its intersection with a stability curve characterized by r greater (less) than I, is

always larger (smaller) than the length corresponding to the curve r =

I. The same argument
holds in any other quadrant.

The above choice of p (To) as reference viscosity has been introduced to allow for a simple
physical interpretation of the effect of a temperature-dependent viscosity on the critical

instability threshold. In experiments, the relevant quantity is the critical temperature difference

A7~ rather than the Rayleigh and the Marangoni numbers which are not directly measurable.

With p (To) as reference viscosity, the value of AT~ is directly obtained by measuring the

distance OF of figure 4. Indeed the norm

~(30)

is related to A7~ through the simplest possible relationship : I-e-, a linear and homogeneous
function of A7~, independent of r. Now by selecting the reference viscosity at mid-depth of the

fluid,

To + Tj
~~~~ ~

2
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together with the linear viscosity law (19), one has

i~ref " i~

T0
+ ~)

" i~ (T0 + (31)

and the reference viscosity tums out to be a function of I. Consequently, the expression of

A7~ will be given by

A7~
=

~~~~ ~° ~
(32)

~ ~/ ~~
~

~ ~~° ~"~~~~

from which is seen that AT~ is not completely determined from the mere observation of the

distance OF in figure 4 but requires an extra computation for p~~~ in terms of r. Clearly with the

choice p~~~ at mid-depth the conclusions about stability thresholds are only valid for one

specific fluid, the one defined by the r-value appearing in (31). It is clear that the above

mentioned problem is circumvented by selecting

~L ret = ~L x~ o = ~L (To

independently of the thermophysical properties of the fluid layer, with To the temperature at the

perfectly heat conducting boundary.
In most problems dealing with Rayleigh-Bdnard convection, the reference viscosity is taken

at mid-depth of the fluid layer (Stengel et al. [4], Busse et al. [5]). Such a choice is justified
because these problems are generally characterized by a geometrical symmetry with respect to

the mid-plane : this property does however no longer hold in Bdnard-Marangoni instability
problems. Nevertheless, for the sake of completeness, we have represented the marginal
stability curves corresponding to the first quadrant when the reference viscosity in both Ra and

Ma numbers is taken at mid-depth of the layer (see Fig. 5). Clearly the situation is a little bit

more confusing than in the corresponding graphs of figure 3 where the reference viscosity is

taken at the bottom plate. Note that the shift of the stability curves as a function of r is less

sensitive than in figure 3. For example, in the case of the exponential viscosity law (20), with

h
=

0 and Ra
=

0, the relative increase

Ma~(r
=

5 Ma~(r
=

I )

Ma~(i~
=

I)

when I is varying from I to 5 is 30fb if p~~~= pj~~_,~~ versus 190fb if p~~~=

p j~~ ~.
Likewise, the relative increase of Ra~ with Ma

=

0 and h
=

0, is respectively 3.4 fb

and 131 fb. It should be mentioned that for a layer enclosed between a rigid bottom surface and

an upper free boundary (with Ma
=

0), one recovers the Ra~-values found by Stengel et al. [4]

with an exponential viscosity-law.
Let us now examine the effect of a temperature-dependent viscosity on the critical

wavenumber for situations described in quadrant I. In figure 6, we have represented the critical

wavenumber k~ as a function of the angle of the straight line (29) and the Ma
=

0 axis. A zero

slope corresponds to a fluid without surface tension effect while an angle of 90° refers to a fluid

layer in'a microgravity environment. It is shown that for r-values larger than I which is

representative of a liquid the critical wavenumber decreases, or equivalently the critical

wave-length increases, when r is increasing. The reciprocal behaviour is observed for gases

(r
~

l : k~ increases when r is decreasing. Since the upper free boundary of the liquid layer is

cooler than the lower one, the viscosity at the upper surface is larger than for a constant
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Fig. 5.- Stability curves in the Ra~-Ma~ plane for r=0.2; 0.5 1; 2; 5 and Biot number

h
=

0. Ra~ and Ma~ are defined with p,~~ taken at mid-depth.

Fig. 6. Critical wavenumbers k~ versus arctg(Ma/Ra), the angle (in degrees) of the slope of the

straight line (25) with the Ma
=

0 axis.

viscosity. Therefore, it offers a greater cohesion and when convection is initiate$ a larger
number of fluid particles are involved by the convective motion. This results in a larger size of

the convective cells and hence, a smaller critical wave number. For a gas layer, the converse

conclusion will hold.

Figure 7 represents the effect of the Biot number on the marginal ~tability curves

normalized coordinates (Ra~/Ra*, Ma~/Ma*) are used with Ra* the critical Rayleigh number

Ma/Ma

I
h=10000.

R~/Ri

iv

III w
L

~
o 118 f
f

-ii -+ -z o ~

Fig. 7. Critical stability curves in normalized co-ordinates Ra~/Ra * Ma~/lvla * for both viscosity laws

and h
=

0, h lo 000.
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when Ma
=

0 and Ma * the critical Marangoni number when Ra
=

0. In the first quadrant, it is

observed that by increasing h from 0 to 104, one modifies only slightly the general shape of the

stability curve. Nevertheless, the thermal property of the interface is seen to play a non-

negligible influence on the onset of convection. The system becomes more and more stable as

h is increased (Ma * grows linearly with h when h tends to infinity, see Nield [2]). This result is

expected as more energy must be transferred to the fluid to set in motion when more and more

heat is dissipated from the upper surface. Therefore the correction on the critical temperature

drop owing to the viscosity variation increases with h.

4. Final comments.

It was shown that in the Bdnard-Marangoni problem, the variation of the viscosity with

temperature has a deep influence on the determination of the instability threshold. To

summarize the previous results, we have represented in figures 8 and 9 the critical temperature

difference AT~ in a glycerol and a silicone oil M200 layer respectively, taking into account a

variable viscosity, for different depths of the layer. The relative difference on
AT~ computed

with a variable viscosity compared to the case of a constant viscosity is plotted on the same

graphs. Thermophysical data for glycerol are taken from Stengel et al. [4] and Cardin et al.

[12]. Data for the silicone oil are those given by BUhler et al. [14] and Dupont et al. [15].

To is kept at 25 °C in both cases. It is seen that the difference is particularly important at small

depths. For glycerol, the relative difference may reach 70 fb for a thickness of 8 mm while for

the silicone oil the difference is only 0.4 fb for d
=

I mm, the Biot number h
=

0 in both cases.

However the relative difference becomes significant as the heat conductivity of the silicone

free surface increases. Clearly, a temperature-dependent viscosity plays a stabilizing role at

least for highly viscous liquids.
Exponential and linear laws exhibit qualitatively the same effect on the instability threshold.

Nield's results were recovered in the limiting case r =

I which corresponds to a constant

1+
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Fig. 8. Critical temperature difference A7~ (in K) for various depths d (in cm) of a
glycerol layer,

under conditions of quadrant I, with h
=

0; 1; 104 (curves1, 2, 3 respectively). The solid lines

correspond to an exponential viscosity law. The dashed lines give the relative difference in % between

our results and those obtained from Nield's theory [2].



II 98 JOURNAL DE PHYSIQUE II N° 8

'

$
~ ~'~

U '
~~ ~ 3

~ ' ~
+ '

~
-

- '~
U

~ ' ~
~3

U '

,~ ~ los

~
"

m '

- '

~ "
~ '

~
~

~
~

'>
"~ @05

1

d(cm.)

Fig. 9. Critical temperature difference A7~ (in K) for various depths (in cm) of a silicone oil M200

layer, under conditions of quadrant I, with h 0 ; 102 104 (curves 1, 2, 3 respectively). The drawing
convention is the same as in figure 8.

viscosity. Furthermore, Nield's approximate straight line ~~ +~~
=

l remains a good
R

~

M~
approximation in quadrant I whatever the constitutive expression of the viscosity law or the

value of h.

The present work complements earlier contributions by Palm [3], Stengel et al. [4], Busse

et al. [5] who limited their analyses to the pure Bdnard buoyancy driven-instability problem.
This paper also generalizes the contribution of Lebon and Cloot [10] who used a linear law for

p (T) and neglected gravity effects.
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