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Abstract. The equilibrium structure of a monolayer formed by long polyelectrolyte chains

adsorbed at the interface between a charged surface and a dilute polyelectrolyte solution is

analysed. The self-consistent field equations for the configurational probability of the chain are

solved numerically forltifferent parameter values of the system including the surface and polymer
charge density, the amount of adsorption and the Debye-Hiickel screening length. The effect of

intramolecular long range Coulombic forces on the segment density profile is examined. By
coupling the numerical results with simple thermodynamic arguments, we reach exact analytical
expressions for the layer thickness and define critical adsorption conditions. In general,
polyelectrolytes are adsorbed into flat layers. However, under conditions of weak electrostatic

screening and low surface and polymer charge densities, we expect large loops to be formed.

Strong electrostatic screening does not lead to expanded conformations but causes chains to

desorb.

1. Introduction.

We examine in this paper the structure of a layer formed by long polyelectrolyte chains

adsorbed at the phase boundary of a solid and a polyelectrolyte solution, the surface of the

solid and the polymer are supposed to carry charges of opposite sign. This is a problem of

fundamental and practical interest [I].

From the theoretical side, the conformations of non-charged homopolymers and copolymers

at interfaces have been extensively described. More recently, the structure of polyelectrolyte
chains grafted by one end on a surface and immersed in an electrolyte solution was analysed

[2-4]. In the same spirit was also examined the brush conformation of a diblock copolymer at

liquid/liquid interfaces with one of the blocks being charged [5]. Analytical solutions were

given for strong stretching conditions when the sum of the electrostatic and non-electrostatic

fields can be equated to an overall parabolic potential [6, 7]. The situation relative to

adsorption from a solution is rather different, because then, the number of segment/surface

contacts depends on the magnitude of the potential between the surface and the polymer in the

liquid medium and a diffuse layer is formed from the superposition of loops of different sizes.

This picture cannot be understood within the context of the previously mentioned theories. Up
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to now, a few attempts have been made to describe the situation resulting from spontaneous
adsorption of polyelectrolytes :

I) The effect of electrostatic interactions among segments of a single adsorbed chain were

treated by replacing the step length of the chain by an effective length including or disregarding
non-electrostatic excluded volume effects [8, 9]. Since segment-segment interactions should

be evaluated in the adsorbed state, it is questionable whether intramolecular Coulombic

repulsions in the adsorbed state can be accounted via a renormalized segment length derived

for the
«

free
»

chain in its solution state. This model is also not able to predict repulsions

among segments belonging to different chains when many chains are adsorbed.

ii) The lattice theory of Roe [10] was extended to include electrical terms [I1-13]. In that

model, the segment concentration profile reaches asymptotically the solution concentration ;

the surface layer is therefore not treated as a distinctive phase, and a model for the

polyelectrolyte solution is needed. The latter was schematized as a repeating array of charged
plates. Because of this, and since excluded volume effects were modelled through the Flory-
Huggins formalism, this approach is likely to be useful when addressing concentrated or semi-

diluted solutions. Its application to dilute solutions is questionable in so far as polymers behave

then as discrete units, I-e-, segments cannot be smeared out over the whole solution volume to

derive thermodynamic and electrochemical properties.
iii) In the third approach, the self-consistent mean-field formulation first developed by

de Gennes [14] and Richmond et al. [15] for the evaluation of the properties of neutral chains

at an interface is used. Self-consistency of the potential is reached by complementing the

equation for the configuration probability of the chain with a modified Poisson-Boltzmann

equation. This theory was first applied to explore the behaviour of charged chains between

plates [16] and to derive an analytical expression for the chain expansion at non-charged
interfaces in the limit of weak electrostatic potentials [17].

In the present treatment, we shall follow the third approach. We suppose strong adsorption
in the presence of a dilute solution. This complies with most of the experimental observations ;

since an adsorbed chain has a finite fraction of its segments in the region of negative potential
and because of the large number of units in the chain, the free-energy gain per chain is large
and consequently strong absorption at low solution concentration is the rule. It was indeed

observed in a large number of experiments that the adsorption saturation (the plateau value in

the isotherms) is reached at bulk polymer volume fractions as low as
10~~ (see for instance

Refs. [18-20]). In most cases this corresponds to fairly dilute solutions with no chain

overlapping. In modelling the interface as a distinct concentrated polymer phase in equilibrium
with a dilute solution, we do not need a detailed description of the polyelectrolyte

conformation in solution. It will be shown that, when the number of adsorbed polymers is

fixed, only a few parameters such as the charge density, Debye-HUckel and segment length

are needed to describe the segment density profile and to derive the layer thickness.

However, not specifying the chemical potential in solution has the drawback of not being able

to predict the adsorption isotherm. The surface excess r remains therefore here as a parameter.
This quantity is usually determined experimentally from the change of the concentration of the

solution at equilibrium with the adsorbate.

2. Model and formalism.

In the self-consistent field theory [2 II, the distribution function G (r', r, N ) for a flexible chain

of N units to start at point r' and to end at point r is a Green function :

l~ ~~
~ ~- Pu(r)

~ j ~ ~~, ~ /~~ ~ ~~, ~) ~ ~~q) ~j~
3N 6 ' '
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where a is the length of a segment, p
=

(k~ T)~ with k~ the Boltzmann constant and T the

temperature, and U(r) is the potential acting on a segment at location r. For pU(r)« I,
equation (I) can be linearized and G(r', r, N ) expanded in the spectral expansion :

G (r', r, N )
=

z
~o ~

(r )
~o ~

(r') exp (- E~ N ) (2)

The eigenfunctions
~D~

and eigenvalues E~ satisfy the homogeneous equation :

A pU(r)j ~o~ (r)
=

E~ ~o~ jr). (3)

For long chains (N ml ), the lowest eigenvalue E and corresponding eigenfunction
~D(r) dominates the spectral expansion.

Let the electrical charge on the chain be
a e per segment, with e the elementary charge and a

the charge parameter, 0
~ a ~

l. The amplitude
~D

(x) and the reduced electrostatic potential

$r ix), with x the coordinate in a direction normal to the surface, are defined by the following

set of equations :

~2
j i~ "(x)

=

in p (x) + u(x) Ej ~o (x) (4)

#"ix)
=

4 ««LB i~~(x) +
«~ p (x) (5)

where $r(x) is the reduced electrostatic potential (I.e., the potential multiplied by ep) and

u(x) is the potential (in units of k~ 7~ of non-electrostatic origin. We address large surfaces,

ignoring any concentration fluctuation in directions parallel to the surface. Equation (4)
couples with the linearized Poisson-Boltzmann equation (5) in which the square of the

amplitude ~D(x) is (when properly normalized) the segment density and

LB
"

~
E

e~ (7)

where L~ is the Bjerrum length, C the concentration of the electrolyte (uni-univalent
electrolyte) and

s
the dielectric constant.

Because of the condition pU « I needed to express G(r', r, N as the sum of different

amplitudes, the Poisson-Boltzmann equation is also used here in its linear form which restricts

of course our considerations to weakly charged systems.
The set of coupled self-consistent equations (4)-(5) were analysed within the framework of

elaborated field theories [16] they can also be derived more simply from the free-energy F

associated with a segment, see [17] :

~~
=

~~
U(X) i~~(X) dX +

~~
[e~ P(X) #i(X) (8 "~B)~ (d#ildX)~l dX

w ~2 w

+ [d~P/dXl~ dX + £ [Cj Ln (C,/C C~ )I dX (8)
0

~
i

o

p (x)
= ae~o ~(x) + e

z
z~ C~ (9)

The successive integrals on the fight hand side represent : the free-energy resulting from

interactions of non-electrostatic nature, the electrostatic contribution, the entropy loss of the
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chain and the entropy of mixing mobile ions. Taking
z~ =

± I and keeping the total amount r

of segments per unit area constant,

r
= j°° ~a2(x) dx (io)

the minimization of the functional F with respect to
~D

(x), $r ix) and C~ ix) restores equations
(4)-(5).

3. Numerical solution.

The density profile
~D

~(x) was derived for different values of a, «, rby numerical integration
of the set of equations (4)-(5). The boundary conditions were fixed as follows

~R10)
=

0 iii)

$r'(0)
=

4 «LB ~re~ (12)

~r is the charge per unit area of the surface. Equation (I I is the correct boundary condition to

be used in the case of an adsorbing surface [22]. The confinement of the chain near the solid is

in fact equivalent to an external potential which is infinite for x~0 and zero for

x ~
0 (see also [9] and [2 II ), therefore the concentration must be zero at the surface. This is at

variance with other choices [10-13].

~D
' lo was chosen so that equation II 0) was satisfied. A relation for $r lo can be found after

multiplication of the right and left sides of equations (4)-(5) by ~D'(x) and $r'(x) respectively
and after computing the integrals

°~ ~ i~a'(x)12 dx,
°~

i#'(x)12 dx

E was adjusted to ensure that
~D

(x) and $r(x) converge uniformly to zero for x - oJ.

APPLICATION TO CHARGED SURFACES. tr # 0, u =

0. In this situation, attraction of the

chains towards the surface occurs through long range electrical forces among surface charges
and segment charges of opposite signs (in Eqs. (4)-(5),

~r
is taken as negative and

a as

positive). The surface potential is then given by the following relation :

# (0)
=

1(4 artrLB
" e~ )~ 4/3 «LB iaK ~o'(0 ))~ j~~~ 113)

Any interactions of non-electrostatic origin are henceforth ignored. The correct term for the

potential would be : up ix) + u~D~(x), u being the non-electrostatic excluded volume. We

focus here only on electrostatic effects and suppose thereby
a ~D

» u~D 2. We shall come back to

this point later when discussing the order of magnitude of the respective parameters.
In figure I are shown different curves (1), (2) and (3) which represent the calculated profile

as a function of distance x for ~re~ '
=

2 x 10~ ~ Ji~ 2, « =

120 Ji,
a =

0.2, a =

4.8 Ji and different adsorption values r: 7.9 x
10~~ Ji~ ~ (curve 1) ; 2.7 x

10~~ Ji~ ~ (curve 2)

and 0.37 x
10~~ l~ ~ (curve 3). The maxima as well as the average distance L of segments

defined by equation (14) are shifted

~oL=r~~ x~D~(x)dx (14)
o

towards lower x values as rdecreases.
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Fig. I. Segment density profile determined for different amount r of polymer units adsorbed with

«e~ ' 2 x
10~~ h~ ~

K
' 120 h,

a =

4.81,
a

0.2 r
=

7.9 x
10~~ A~ ~(l ),

r 2.6 x lo- 4 h- 2(2), r o.37 x lo- 4 h- ~(3 ) ; E o.06 (1), E
=

o.22 (2 ) and

E
=

0.327(3).

Results reported in figure I correspond to a value of
K

' which is large compared to the

thickness L electrostatic interactions between segments are then weakly screened and the

polymer collapses into a rather flat conformation. In this situation, the charge density close to

the surface is dominated by the 4 ««LB
~D

~(x) term in equation (5). The space charge density

in the vicinity of the surface increases for large r values and gives rise to enhanced

intramolecular long-range Coulombic repulsions and consequently to more expanded confor-

mations. The effect is however not pronounced. In an earlier approach to interpret the

adsorption of a single chain, the 4 ««LB ~D~(x) term was neglected in equation (5) and the

potential was taken to be a simple exponential : $r(.<)
=

LB K~ ~re~ exp(- Kx ), [23]. With

this simplification equation (4) transforms into a Bessel equation with a solution of the form :

i~ ix)
=

J~ iK a~ (24 )'~~ exp(- Kx/2)j its)

0 =4gr[~r[ e~~ «LB K~~ (16)

where J~ is a Bessel function of order
v

and the eigenfunction
v

is fixed by the condition

~D(0)=0, I.e.,

Jv lK a~ (24 # )~~~ j
=

o j17)

The approximated profile calculated by equation (15) and the exact profile are displayed in

figure 2, parameters K ~, a, ~r
being the same as for curve (I ) in figure I. The omission of the

polymer charges in the Poisson-Boltzmann equation brings in a difference of about 20 fb on the
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Fig. 2. Segment density profile for «e~
=

2 x
10~~ A~ ~, K

120 h,
a

4.8 A,
a

0.2,

r
=

7.9 x
10~~ h~~ Exact profile, curve (2) profile calculated according to relation (15), curve (1).

polymer expansion. It comes out that this has a pronounced effect on the free-energy of the

system as can be seen when one compares the values of E in both cases : E
=

0.34 (curve I)
and E

=

0.06 (curve 2). The values of E for curves II), (2) and (3) in figure I are

0.06, 0.22, and 0.327, respectively. Long-range Coulombic forces between polymer
units contribute therefore a significant positive part to the free-energy. The rvalue of curve ( I

in figure I corresponds to an upper limit increasing further r by 5 fb leads to a situation for

which no bound states exist, I.e., no negative eigenvalues which make ~D(x) and

$r (x converge exponentially to zero for x - oJ, can be found. At fixed a, K
and ~r, r is limited

by an upper bound. On the experimental level, this leads to an interesting remark : suppose an

experiment in which the solution concentration is increased progressively without changing the

charge parameter or the electrolyte content, the adsorption is then not expected to reach

«
smoothly

» a plateau value but rather to stop at some critical solution concentration.

It is important to note that the adsorption of one single chain was considered in reference

[23]. When for a single chain in the presence of a large surface (large when compared to the

polymer size), the segment-segment interactions are neglected, the distribution function in a

direction parallel to the surface is Gaussian :

~
~

~

x' ex

3
~~ (3[(Y'~Y~~ ~ ~~' ~~~~~~~~ ~~~ ~ ~~ ~~~

~~~~

G(i~, ~, ~
2 grNa~ ~

In reality, because of the segment-segment interactions, $r must also be a function of

coordinates y, z : $r
m

$r (x, y, z ), and the single chain problem is therefore considerably more
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involved. If we let N
- oJ, S

- oJ with N/S
=

Const., then the equivalence r
=

N/S becomes

correct and the one-chain problem can be treated formally along the previous lines.

It is hard to set by numerical calculations a rational to define the critical adsorption
conditions precisely. To proceed further with this point we shall use simple thermodynamic

arguments which will also prove useful in the derivation of an analytical expression for the

thickness of the surface layer, and from which all qualitative deductions derived from the

numerical solutions can be set into a more precise statement.

4. Thermodynamic arguments.

POLYMER LAYER THICKNESS AND CRITICAL CONDITIONS. The free-energy of the layer is the

sum of an electrostatic, F~, and a conformational F~ contribution :

F
=

F~ + F~ (19)

PF~
=

j j~ e~ p (x) p (x) dx (20)

pF~
=

jr (a/L )2 ki i As~j (21)

p (x) is the charge density, AS; is the entropy change of small ions and (a/L)~ the confinement

energy per segment [24]. Ignoring numerical coefficients, for the moment we derive

F~ for a constant charge density po of segments in a distance L, I.e. :

pF~
= l~ p ~

e~ $r ix) dx (K ~/8 «LB ) j~ $r ~(x) dx (22)
2

o o

$r"=-4grLBp~e~~+K~$r, x~L (23)

$r"
= K

~ $r
,

x ~
L (24)

For K
'

» L, it can be shown that the contribution of the small ions to the free-energy has only

a weak dependence on L (of order (KL)~) and we obtain :

pF
=

r(a/L)~
+ «LB K~ ar[~re~ '(I KL/2) + 2 ar(1 2 KL/3 ) (25)

~
=

0 (26)

with

e~ p~ =

~
(27)

this gives for the box-like distribution :

L
=

(2 a~/grLB )~/~ (l/2 ~r ae~ (4/3 )
a

~ r )~ ~/~

,

KL « (28)

The following condition must be fulfilled in order that F
~

0 :

a tr e~
~

(grL~ )~ K
(a/L )~ + 2

a
~ l~ (29)

or

a ~r e~ '
~ K

(«LB )~ ~/~ [a(a
~r e~ '/4 (2/3 a

~ r)]~/~
+ 2 a

~ r (30)

Note that when
K

'
- oJ, the conformational entropy of the chain is small compared to the
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electrostatic free-energy and we end up with the following simple condition :

[~r[ e~~~2ar. (31)

Using correct numerical coefficients for the exact profile (numerical coefficients can be

assessed from the numerical integration for situation with L « « ~), we obtain the expression
for the average thickness L

L
=

(2 a~larL~ )~/~ (5.17 ~r ae~ 6. 33
a

~ r )"~/~
,

KL « (32)

The thickness of the layer depends only weakly to a power of 0.33 on the charge density
and the adsorption amount. The free-energy is however quadratic in r which explains the large
variation of E reported in figure I.

Values of L calculated according to equation (32) for e~ '
~r =

2 x
10~~ h~~,

K~
=

120 h and different
a

and r values are reported in table I (L~~~ in the last column) and

compared to the exact values jL~~ in the third column) obtained by numerical resolution. The

agreement is very good see also figure 3. As long as L is less than 0.4
K ~,

the difference

does not exceed 3 fb the accuracy decreases however when
K

becomes of the same order of

magnitude as L.

Table I.-Average layer thickness calculated as a function of
a

and r far

~r e~
=

2 x lo ~ Ji~ ~, K =

120 1.

«
r ji-2)

x L~~ (I)
L~~~

ii)

0.05 1.62 28.72 27.89

0.1 0.76 22.33 22.20

0.2 7.92 21.65 21.50

0.2 0.37 17.49 17.49

0.2 2.57 18.40 18.37

0.4 0.79 14.10 14. lo

0.05* 4.3 x
10-4 43.67 43.63

0.I** 1.6 x
10-~ 24.40 21.80

* Calculated for
K

'
=

70 A, ( ML
m

0.3 ).

** Calculated for K~ 500 A and «e~
=

10~~ A~~

When the amplitude
~D

ix) is calculated by equation (15), the critical adsorption energy

@~
which corresponds to the lowest eigenvalue

v
of equation (17) is defined by :

K a~ (24 @~)~/~ =

2.404 (33)

which imposes the following condition for adsorption to occur

a ~r e~ '
~

(2.404 a )~ «
~ Lj '/48

gr
(34)

This is equation (30) in which ris made zero and which was derived via a completely different

route. As already emphasized, equation (34) holds only when r or a -
0. Critical conditions

were also derived in reference [9]. For
K -

0, the structure of equation (34) is preserved
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Fig. 3. -Average layer thickness L~~~, calculated according to equation (32) L~~ calculated by
numerical integration of equations (4-5). «e~ '

=

2 x lo- ~ A-~
K

'
=

120 A,
a =

4.8 A,
a

and r

values are reported in table1.

provided a~ is replaced by the product aaj, aj being the equivalent segment length. In the limit

of the unscreened case aj is proportional to the chain length. On the other hand, in the strong

screening limit, different power laws on K
and chain length were found.

LAYER THICKNESS IN THE PRESENCE oF ELECTROLYTE. In the previous section we have

discussed the situation in which KL « I. No simple analytical expression can be derived when

K is close to L or less than L. Numerical calculations show that L increases sharply when the

screening of Coulombic forces becomes effective see figures 4 and 5. However, the

thickness of the layer cannot increase beyond a certain limit owing to the fact that below a

critical Kj value, no finite amplitude for
~D

in the vicinity of the surface is found. For the

parameter values used in figure 4, Kj is found by numerical calculation to be equal to 19.5 Ji.

Equation (34) gives Kj
=

14.8, a somewhat lower value owing to the fact that electrostatic

interactions among segments are neglected in that equation.
Because the layer becomes unstable at low K ~,

expanded layers cannot be reached just by
decreasing K~'

as could be sought at first sight. Instead, let K-~-oJ,
am

-0 and

[~r e~ ma r, then as can be checked by inspection of equation (32), the loop size does

increase beyond limits.

5. Conclusion.

We have discussed the structure of a dense polyelectrolyte layer at the interface between a solid

and a dilute polymer solution. Our hypothesis was that concentration fluctuations in the surface
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layer do not contribute significantly to the free-energy. Then the self-consistent field equation

can be associated with a modified Poisson-Boltzmann equation. The effect of intramolecular

Coulombic forces could be assessed quantitatively after numerical integration. By comple-
menting the numerical results with a simple scaling argument, it was possible to derive an

analytical expression for the layer expansion in a direction normal to the surface under

conditions of weak electrostatic screening. Critical parameter values were discussed. The

adsorbed phase, though expanding in the presence of electrolyte with the inverse of the Debye-
Hiickel length, cannot reach large dimensions (such as those encountered for non-charged
adsorbed polymers) without spontaneous desorption occurring. On the other hand, under

conditions of very weak screening, large loops could possibly form, provided the surface

attraction dominates the segment-segment potential in a regime of low surface and polymer
charge.

One of the limitations of this work is the neglect of non-electrostatic interactions between

segments. We supposed all along the condition v~D
~ w up to be fulfilled. Let u

=

30 l~ (good
solvent conditions) and r

=

5 x 10~ ~ l~ ~ (which complies with experimental conditions, see

f-I- Ref. [19]), then for a layer thickness of 501
we obtain on the average u~D~m

0.025. The neglect of effects of non-electrostatic origin might not be warranted keeping in

mind the condition a ~D
w I which we assumed to be satisfied. Yet, it should nevertheless be

kept in mind that for a large number of weakly charged polybases or polyacids, the aqueous

environment behaves with respect to non-charged moieties like a poor solvent (sometimes also

like a solvent below its 0 point [25]). A good candidate for the present theory would be poly-
vinylpyridine at a pH slightly below the pH of the cloud point (the polybase precipitates at a pH

of about 5 at which the charge parameter is still of the order of lo fb [26]). Weakly charged
polysulfonic acids can also be ranged in this category. On the other hand the situation could be

different if we think of partially hydrolysed polyacrylamide (this is a polyacid with a fraction of

acrylamide units in the form of carboxylic acid, see [19]). Non-hydrolysed polyacrylamide
dissolves readily in aqueous medium. The effect of dispersion forces could then play a non

negligible role.

Another note of caution : we suppose no discontinuity of the dielectric constant at the

interface. The role of image charges is discussed in reference [5]. As long as we address large
surfaces without charge heterogeneities parallel at the interface~ the question of image charges

need not trouble us.
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