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Abstract. We investigate the thermodynamic properties of a dilute solution of living polymers
confined between two solid repulsive walls. We consider both the case of rigid and of flexible

macromolecules. When the confined system is taken to be at equilibrium with an extemal reservoir

the living polymers behave similarly to a polydisperse solution of unbreakable chains. However for

closed gaps the behaviour is quite different from a classical polymer solution because the worm-

like micelles can adapt their intrinsic polydispersity in order to release the confinement constraint.

In particular, for rigid living polymers this leads to a divergence of the average chain-length in the

limit of strong confinement, as well as to a non-monotonic behaviour of the pressure acting on the

walls.

1. Introduction.

Living polymers are linear aggregates which undergo reversible reactions. These labile

macromolecules are known to form in surfactant solutions [I], where they are sometimes

named vermicelli, but they also form in liquid sulphur[2] or liquid selenium [3]. The

reversibility of the reactions allows the aggregates to exchange material, a given monomer

sitting, at different times, on different host chains. As a consequence, mass polydispersity is

not a quenched variable, it rather results from the conditions of thermodynamic equilibrium. A

simple description of the polydispersity is provided by the minimization of the mean-field

Flory free-energy density

F =k~T j°~dLc(L)iiogc(L)+Ei (i)

o

with respect to the chain-length distribution c(L), under the constraint of monomer
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conservation

lm dL Lc (L )
=

~P (2)
o

where E is the energy cost of creating two chain caps, ~P is the monomer volume-fraction and

all lengths are multiples of some lower cutoff length usually associated with the size of one

monomer (or with the diameter of the vermicelli). The chain-length distribution that minimizes

equation (I) has the exponential form

co (L)
=

[ e-DL (3)
~

with an average length I, which is a function of the monomer volume fraction and of the end-

cap energy :

L
=

~P "2
e

~~ + ~'~ (4)

Interestingly, this result does not depend on the stiffness of the chains, it applies both to

flexible and rigid vermicelli.

Because the contour length of the molecules can be very large [I] (for surfactant vermicelli

the length can be tuned from 15 nm up to 000 nm) these systems are in practice the labile

analogs of polydisperse macromolecular systems, and can be used for instance for their

viscoelastic properties [I]. But polymers are also very important in interfacial phenomena,
where they are widely used to control the stabilization of colloidal suspensions [4], to modify

the wetting or adhesion properties of the surfaces [5], to stabilize foams and Newton black

films [6], to tune the binding-to-unbinding transition in lyotropic smectic systems [7], etc. In

any case the presence of the walls influences the polymers in two ways : it reduces the

conformational entropy of the chain and it changes its enthalpy due to the particular affinity to

the interface (repulsion or attraction) that the chain monomers might experience. The final

interfacial configuration of the chain results from the balance between these two factors.

Vermicelli posssess a third, unique mechanism of reaction to the presence of the walls : even in

a close gap they can adapt their polydispersity in order to minimize the total free energy. In this

paper we investigate systematically this effect for rigid and flexible vermicelli confined

between two flat, repulsive walls. The gap where the chains are confined is taken to be either in

equilibrium with a bulk reservoir or closed. The first geometry corresponds for instance to

quasi-static experiments in a force machine, while the second is more relevant to thin films or

transient measurements in a force machine when the migration time of the chains is much

larger than the kinetic relaxation time. In each case we study the behaviour of the chains in the

gap by monitoring the evolution of both the average chain length and of the force acting
between the two plates, as a function of the distance between plates.

2. Flexible polymers.

2.I CHAINS IN EQUILIBRIUM WITH A RESERVOIR. We first consider a dilute polydisperse
solution of flexible polymers confined between two plates, separated by a distance

D and in equilibrium with an external polymer solution which acts as a chain reservoir. Under

these conditions, the chain length distribution in the gap c~, is obtained by minimization of the

grand potential density :

fl m
fi

=
c~(L, D ) [log c~(L, D ) + E log Z~ (L ) Ho L dL + 17~~ (5)

kB ~
0
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where Ho and 17~~ are respectively the monomer chemical potential and the osmotic pressure of

the bulk solution in units of kB T. They can be calculated from equation (I) :

"°~W~-j "ex"~°W-~~j ~~~

The effect of confinement is accounted for by the factor log Z~ (L ), where Z~ (L ) is the partition

function of a Gaussian polymer chain confined between two impenetrable walls [8] :

j

ZD(L)
=

8 z ~~ 6D2

~r2 2
PoddP

(7)

where D is also taken as a multiple of the lower cutoff length associated with L.

For chains with a gyration radius R=
/$ much larger than the gap thickness

D we have a strong confinement and the partition function can be approximated by

w~L

Z~
=

~
e

~ ~~ (8)
ar

In the reverse limit of weak confinement (R MD ), we have

~~ /D~' ~~~

By minimizing the grand potential 12 with respect to c~(L, D ), we obtain a simple expression
for the chain concentration inside the gap :

c~(L, D)
=

z~(L) co(L) (io)

where co(L) is the chain bulk distribution (3). The length distribution of small chains

(R MD is only slightly perturbed from the bulk value. However, very large chains

(R » D ) are almost completely excluded from the gap. Although no analytical expression is

available for the partition function Z~, all the integrated quantities like the volume fraction

~P~ of monomers

lm~P~= dLc~(L, D)L (11)
o

the average length

(Lg)
"

m

~ ('2)L~~(L,
D

o

or the pressure

17
=

~~~~
(13)

can be exactly computed by performing a Laplace transform on Z~(L) [9]. We get for the
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monomer volume fraction inside the gap :

~~ ~°
~

~~~~
~

~
X~

~~~~

2 cosh
2

where we have introduced the reduced variable X~
=

D/RG, RG being the radius of gyration of a

chain of unpe~urbed chain length L, RG
~

/~.
In figure I we plot the partition coefficient a = ~P~/~Po. For distances D much larger than

R~, the monomer volume fraction in the gap deviates only slightly from tile bulk value. For a

strong confinement (D « R~), the partition coefficient vanishes like ~Po/30 Xl. It is impo~ant
to stress tllat, due to the intrinsic polydispersity, the pa~ition coefficient of the vermicelli does

not vanish as fast as tile partition coefficient of a monodisperse solution of chains of length
L. Indeed, for the monodisperse system, the partition coefficient vanishes exponentially as

soon as the separation distance between plates is smaller than the radius of gyration [10]. The

average chain lengtll in the gap

L
~ ~

tanh
~~

+
~ ~~ ~

2 cosh~
~~

(L~)
=

~
(15)

~
tarn

~~

Xf 2

also vanishes algebraically, from the bulk value L (see Fig. 2).

a

i

b
o.o

0 6

a

0.4

0 2

0
~ ~

X

Fig, I. Dependence of the concentration partition coefficient
a = 45~/450 for a living polymer dilute

solution in an open gap : a) the case of flexible polymers (X
=

D/R~) b) the case of rigid polymers

(X
=

D/L).
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~

Fig. 2. Dependence of the average chain-length of a dilute living polymer solution confined in an open

gap : a) the flexible polymer case (X
=

D/R~). For small values of X the average chain-length behaves as

X~ ill 0 b) the case of rigid polymers (X
=

Dli). For small values of X the average chain-length behaves

as II (iog X ).

Because the chains are depleted from the surfaces, the force acting on tile plates is

attractive :

17
=

~°
l~

(16)
~ cosh~

~~

2

This effect is well known in colloidal systems where it leads to the so-called depletion induced-

flocculation [I I]. The pressure profile is plotted in figure 3. For vanishing small distances the

curve has a parabolic shape 17= ~Po/L(I X)/4).

2.2 RESTRICTED EQUILIBRIUM : THE cLosED GAP. We now consider a situation where the

living polymers are confined in a closed gap. The volume and the monomer concentration are

conserved for all separations D. This corresponds to a geometry of thin films deposited onto a

solid surface or to a small drop confined between crossed cylinders in a force-machine. It is

also relevant for experiments made with time scales much smaller than the diffusion time of the

chains (as, for instance, a fast compression cycle in a force-machine). The free energy per unit

volume now reads :

lmF
=

dL c (L, D [log c(L, D ) + E log Z~(L)] (17)
o
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Fig. 3. Dependence of the force per unit area acting on the plates for a dilute living polymer solution :

a) the flexible polymer case (X
=

D/R~) ; b) the rigid polymer case (X
=

D/L).

Note that this expression is similar to equation (5) except for the chemical potential and the

osmotic pressure terms which accounted therein for the equilibrium with the reservoir. The

chain length distribution can be obtained in a similar manner by minimization of

F with respect to c~(L, D ), under the conservation condition (2). We get

c~(L, D )
=

~°
e~~~~ Z~(L) (18)

£2

where lli~ is a Lagrange multiplier related to L by :

i~
=

L[ ~ ~
tanh

~~
+

l(19)
2 Xf 2

~ ~~~~2
~f

2

X~ is now a reduced variable associated with the Lagrange multiplier lli~ and with the plate

separation by X~
=

D/
/$.

Since the monomer volume fraction is conserved in the closed gap geometry, there are two

quantities of interest : the average length in the gap and the pressure acting on the plates. The

average chain length is given by :

~~~
~2

~~

i~ 1 ~
tanh

~~

~f 2
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a function plotted in figure4. This length hardly varies from its unpe~urbed value

L at infinite plate separation to a value (ar/ Q§)L for vanishing small distances D. This

surprising result can be understood as follows : for a strong confinement, the confinement

energy is propo~ional to the number of chain segments L, log Z~=L/D2. Thus this

contribution to the free energy only changes the chemical potential per monomer, a quantity
which adapts itself to satisfy the constraint of fixed volume fraction of monomers. On the other

hand the equilibrium value of c~ (L, D is only weakly perturbed by this contribution. Note that

this result holds independently of the statistical nature of the chains, as long as strong
confinement induces a penalty of k~ T per monomer. For chains with excluded volume, for

instance, one has log Z~
=

L/D~'~ [12], only details of the curve shape in figure 4 would then

be different. For instance the crossover distance is D ~L~'~ instead of D ~Ll'2 and the

multiplicative constant at the wall can be different as well. For a closed gap the pressure acting

on the plates is positive

~ ~ ~~ ~f ~~~~
~

~
~~~2

~f ~~

~

The profile of the force (see Fig. 5) is similar to the profile arising from a monodisperse

solution of chains of length L ;

~ ~~~~ ~~~

(22)

1I= "
~

j D
-

0.
3 £ D

1/<L>

b
i

a

0.6

0.4

0 2

~
6 10

~

Fig. 4. Dependence of the average number of living polymers in the closed gap geometry a) flexible

polymers IX D
,ill /)

b) rigid polymers IX
=

Dli~).
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Fig. 5. Dependence of the pressure acting on the plates for a dilute solution of flexible polymers

confined in a closed gap IX
=

D
II /).

The asymptotic behaviour of the pressure can be simply obtained from the monodisperse
results (8, 6) by remarking that the total pressure is simply the average of the pressure

contribution from each given length (ar)
= ar (L) c(L) dL.

3. Rigid polymers.

3.I RIGID VERMICELLI IN AN OPEN GAP. The limit of flexible polymers holds when the

average contour length is much larger than the persistence length of the cylindrical aggregates.

For a small monomer concentration or a low salt concentration, the persistence length can be

large compared to the contour length of the polymers which behave then effectively as rigid

objects. Rigid vermicelli have been recently studied, both experimentally [13] and theoretical-

ly [14, 15]. Because of the intrinsic anisotropy of rod-like particles, one of the questions which

often arises is the possibility of alignment of the molecules by an extemal field. It has been

theoretically shown for instance [14], that, due to the positive feedback between alignment and

growth, rod-like micelles in a flow undergo a «
gelation

»
transition at a finite flow rate. In this

section, we will study the effect of confining a dilute solution of rod-like vermicelli between

two hard walls. When the solution is confined in an open gap, the grand-potential can be

calculated from equation (5), with the pa~ition function Z~ given by [16]

Z~
=

~
if D

~
L

~

~ ~ (23)

Z~
=

if D
~

L
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For dilute solutions, the bulk chemical potential and the osmotic pressure do not depend on the

rigidity of the chains, they are still given by equation (6). The concentration profile is obtained

as before by minimization of the free energy with respect to the length distribution

cg(L, D )

c~(L, D
= co (L) [1

~
if D

~
L

~ ~ (24)

c~(L, D )
= co (L)

/j
if D

~
L

The monomer volume fraction and average length in the gap, as well as the pressure acting on

the plates can then be straightforwardly calculated as in section 2.I. We get the following
expression for the monomer volume fraction inside the gap :

~P~ =
~Po ii +

(e~~ i )j (25)
Xr

where we have introduced the reduced variable X~
=

D/L (see Fig. I).

The distance below which the volume fraction departs significantly from its bulk value

Wo is the average rod length L (Fig. 2). Note also that, in contrast to the flexible polymer case,

the volume fraction vanishes now linearly with the gap thickness D. The average rod length

inside the gap is given by :

+
(e~~ I

(L~)
=

L
~

~
(26)

1 ~
+ (e~ ~ l

~
Ei (- X~)

~ ~
r

~

where Ei is the exponential integral function. It also vanishes for small separation distances,
but with a logaritllmic singularity (L~)

~

l/log X~.
The depletion pressure acting on the plates is

17
=

~ ~@
=

~° [e~~
+ X~ Ei(- X~) (27)

~ L

For a small gap thickness the force acting on the plates varies almost linearly with the distance

17= -17~~-X~ log X~. It is wo~h noting that the distance at which the force depa~s
significantly from the bulk (say where 17

=

(17~ 17~~)/2) is smaller than in the flexible case

(see Fig. 3). Qualitatively however, the behaviour of the confined rod solution is similar to the

confined solution of flexible polymers : at a given plate separation D, only the chains of size

smaller than D remain in the gap.

3.2 THE cLosED GAP. The case where the rod molecules are confined in a closed gap can be

treated as the confined flexible polymers, with the appropriate pa~ition function Z~ given by
(23). Minimization of the free-energy with respect to c~(L, D) leads to :

c (L D
=

~°
e~ ~'~~ Z~ (L (28)

~ ~ i~

JOLRN~L DE PHYS<0uE II -T ~ N's JUNE 1993
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where lli~ is a D-dependent Lagrange multiplier related to I and D :

i~
=

I( 1
+

(e~~'-
I )j (29)

~r

where X~=D/L~.L~ diverges as
2L~/D for small values of the separation distance

D. Interestingly the average length (L)

£2
(L)

=

~

(30)

L~
~

+ (e~ ~'
l

~
Ei (- X~)

~ ~ ~r ~

diverges for small distances as (L)
=

L~/[D log (D/L)] (see Fig. 4).

Note that for the situation considered here where the total volume V is conserved, the lateral

dimensions of the film diverge only as I/D~ "~. It is thus in principle possible to «
gel

»
the

film, I-e- to obtain rod molecules of sizes comparable to the sample size, when

D ~i~/V. This situation contrasts strongly with the case of flexible molecules where the

average size of the chains remains roughly constant during compression. The difference in this

behaviour is due to the different penalties payed by flexible molecules or rod-like molecules

under confinement. As explained above it costs about k~ T per monomer to strongly confine a

flexible molecule. The rigid molecule, on the other hand, only pays kB T per chain. Because

the total chain number is not conserved there is no chemical potential associated with that

quantity, which can then vary in order to minimize the constraint imposed by the confinement.

Moreover, the surprising behaviour of I, which decreases for D ~i and increases for

D
~

i is due to the competition between orientation entropy and chemical equilibrium. For

large gaps, the long chains cannot rotate freely and disappear into small chains, but for small

gaps all the chains are nearly similarly hampered by the walls, chemical equilibrium then takes

over favoring a small concentration of end-caps, which induces the growth of the average size

of the chains.

As for the flexible case the pressure acting on the plates

17=-D~~=~~~ (l-e~~)-f-~~Ei(-X~)
(31)

~~ i I

~~r ~

~

is repulsive. It has however a non-monotonic behaviour, as plotted in figure 6. Note that this

does not correspond to a thermodynamic instability since the curvature of the total free-energy
is always positive.

4. Conclusion.

We have described the thermodynamic prope~ies of confined dilute solutions of flexible or

rod-like living polymers. The labile nature of the macromolecules allows for an adaptation of

their polydispersity in order to release the constraint imposed by confinement. When the chains

are confined in an open gap, the usual equilibration mechanism with the reservoir implies that

the living polymers behave like an equivalent polydisperse solution of polymers of frozen

polydispersity. In such a configuration the labile nature of the molecule does not show up as far

as the static prope~ies (chain length distribution, partition coefficient between the gap and the

reservoir, pressure acting on the plates) are concemed.
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Fig. 6. Dependence of the pressure acting on the plates for a dilute solution of rigid polymers in a

closed gap (X
=

D/L~).

In the opposite situation where the vermicelli are confined in a closed gap, the relaxation of

the confining constraint by adaptation of the chain length distribution plays a crucial role.

However, for flexible chains, the induced modification of the polydispersity is not very large
because the intemal chemical potential associated with the conservation of the number of

monomers can vary to almost compensate the effect of confinement. For rigid vermicelli this is

not the case and a strong confinement induces a large growth in the average chain length which

diverges as I/[D log (D/L)] for small distances. The chains could thus in principle reach

dimensions comparable to the lateral dimensions of the thin film, leading to «
gelation

».

The confinement of semi-dilute living polymer solutions is also of great impo~ance. We

expect the thermodynamic equilibrium properties to be, in an open gap, identical to those of a

polydisperse semi-dilute solution of classical polymers. In practice however the labile

molecules present the advantage of releasing the entanglement constraints at a rate faster than

the usual reptation rate in normal polymer solutions [I], and thus to equilibrate faster in a

confining experiment. This allows for instance [17] the detection of depletion polymer forces

in semi-dilute living polymer solutions, an otherwise very difficult task.
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