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Abstract. We present a
model for spontaneous emulsification resulting from

a
transiently

negative interfacial tension between water and oil regions, which may be achieved under condi-

tions of strong adsorption of surfactant molecules to the interface. While our approach builds

on a
linear stability analysis, it addresses the essential non-linear coupling of surface growth to

the diffusion flux of surfactants to the interface. We consider a large drop of oil of radius R

embedded in a
dilute surfactant solution and predict that undulations develop with

a
charac-

teristic wavelength I*, which at long times t obeys I*
~w

t~/~- This suggests that the size of

the droplets created spontaneously at the interface scales as
f(/~, where to is

a
diffusion length

which is comparable to R under steady state diffusion conditions. We discuss the regimes of

applicability of our results to various experimental systems.

1 Introduction.

In recent years there has been considerable progress in understanding the phase diagram of

oil-water-surfactant systems [1,2]. It is well known that by lowering the interfacial tension

between the oil and water regions to a very low value, one can obtain a microemulsion phase
stabilized by entropy of mixing and spontaneous curvature. Since surfactant molecules adsorb

to the oil-water interface, they lower its surface tension [2,3]. But large coverages and low

values of surface tension are generally limited by the onset of micelles. As concentration is

increased above the Critical Micelle Concentration (CMC), the surfactant chemical potential
saturates resulting in

no
further increase in coverage. Very low tension can nonetheless be

obtained by either choosing a special surfactant (e.g., ACT)
or adding a cosurfactant (which

is
a

short chain molecule, normally alcohol) to the mixture, which while lowering the CMC

lowers the interfacial tension more markedly [2]. An explanation for the effect of cosurfactant

on
interfac1al tension and CMC values should be

on a molecular level, and
a

theory in this

direction has been advanced by Szleifer et al. [4].

(*) Present address: Department of Chemistry and Biochemistry, UCLA, 405 Hilgard Avenue, Los

Angeles, Ca. 90024-156905, U-S-A-
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Despite the enormous progress on equilibrium microemulsions, there is very little published
experimental and theoretical work on the dynamics of spontaneous enaulsification. By "sponta-
neous" emulsification we mean that by starting with oil and water as separate phases in contact,
with surfactant molecules dissolved in (say) the water, the interface will corrugate and small

droplets of (say) oil will break off into the water phase spontaneously, without for example,

any stirring of the system. Such processes can provide the initial step of forming
a

microemul-

sion from a
phase-separated state (far from equilibrium). There appears to be experimental

evidence that something like this happens when a solution of water /n-dodecyl pentaoxyethy-
lene monoether (C12E5) in the Li (micellar) phase is put in contact with n-tetradecane (C14)
and n-hexadecane (Cj6) [5]. A similar situation exisis in

a
number of systems [5-7j. In fact,

spontaneous emulsificaiion has been known to experimentalists for
a

long time [8,9j, but its

understanding has remained essentially on the empirical level. While closely related theoretical

studies have been described [10j, these do not include bending elasticity lvhich is of particular
importance for stabilizing the film, as described below.

In this paper we
describe

a
scenario in which, under conditions of large surfactant/cosurfac-

tant adsorption, the oil-water interfacial tension becomes transiently slightly negative. The

conditions to achieve this situation should be similar to those under which
an

equilibrium
microemulsion is formed; in particular

we
require that the bulk surfactant concentration cor-

responding to zero
interfacial tension of

a
hypothetical interface should be below the CMC.

Indeed it has been previously suggested that such
a

transient situation can be achieved
ex-

perimentally [2], and that this may cause spontaneous emulsification [9,11]. We note however

that not all systems that would form
a

microemulsion phase can be described in this way. The

initial state of some systems may in~~olve only very low positive values of interfacial tension,
and spontaneous emulsification may not occur.

It was also suggested that
a

negative surface tension can develop in a Langmuir monolayer

under sudden compression, which should lead to buckling of the monolayer, similar to the

scenario presented below. The statics of this buckling transition was studied by MiIner et al.

[12] and include gravity effects, which can be shown to be negligible in o-ttr study. Hence their

results
are not directly related to ours.

We consider
m

sect,ion 2 a drop of (say) oil, of macroscopic size, embedded in such
a water-

surfactant solution. When the surface tension becomes negative, the surface becomes unstable

so that it wants to expand its area. Since the volume of the drop has to be conserved, only
deformations are allowed. Hence the local radii of curvature are decreased in most parts of

the surface, which results in
a

bending energy penalty. However, a band of long wavelength
deformations remains unstable and any initial small deformation at such wavelengths will

grow exponentially (Sect. 3). A fastest growing wavelength<an be defined. We argue that this

wavelength determines the size of the droplets detached from the interface when the amplitude
of [he deformation reaches the size ofihe wavelength.

When the area increases the surface coverage decreases, which in turn leads to an increase of

the surface tension coefficient. Without surfactant transport to the surface the growth is bound

to stop at some point, when the tension vanishes. But with continuous transport the area can

continue to grow and the deformation amplitudes
can

become sufficiently large for breakup to

occur. In fact,
we

show that diffusion of surfactant to the interface is the rate limiting process
which finally determines the fastest growing wavelength and thereby the droplet size (Sects. 4

and 5). This is the main message ofthis work.

In section 6 we
discuss t-he complete evaporation process of a single droplet, using the results

obtained in section 4 for a
single evaporations step. Section 7 is devoted to a

discussion of the

generality of our
results and conclusions.
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2. Definition of the problem and free energy model.

Let us assume
that we have a spherical macroscopic drop of oil of radius R suspended in

an appropriate water/surfactant/cosurfactant solution. Given a certain concentration cs of

surfactant molecules on the surface, we define the surface coverage as is
=

csa~ where a is the

close packing distance (about the diameter of the hydrophilic head of the surfactant).
While

we
prefer in this work not to rely on any specific free-energy model of adsolption, it

may be helpful to recall the simple Langmuir adsorption isotherm. (A more detailed model is

describe in Ref. [4].) In this model the surface free-energy takes the form

F
=

/
ds 7[#s(s)j

=

/ s17~
e~] + ~~) [#slog is + (I is)log (I is)] (I)

a a

Here 7d is the bare oil-water interfac1al tension and e is an adsorption energy which is taken

independent of coverage in the original Langmuir model; it may be also taken
as a mean-

field parameter that includes surfactant-surfactant interactions (which
are

also responsible for

bending elasticity,
see

below), in which case it should depend on is linearly. The last term in

(I) results from the entropy of mixing within the surface. If the surface is in thermodynamic
equilibrium with the bulk, we have 6F/his

=
~bla~ where ~b is the surfactant chemical

potential. Below the CMC one can use ~b "
kBTlog 4l~ where 4l~ is the surfactant molar

fraction in the solution. One therefore obtains the Langmuir isotherm result (for constant e)

41~ =

)((
12)

where
a =

exp[e/kBT]. In the following
we

will not use the Langmuir adsorption isotherm in

any explicit way.

We assume that the surface tension coefficient vanishes at some coverage (e.g., if ela~ > 7~
in the Langmuir adsorption) and

we
denote it as #c- For is > #c the surface tension coefficient

is negative and is denoted as -g. (It should be possible to achieve this situation in systems
where #[~ > #c.) In most systems #c is of order (but not too close to) unity. This is because

the bare oil-water interfacial tension (7~) is comparable to the adsorption energy per unit area

(ela~) [13].
The bending free energy associated with deformations of the drop can be described by the

Helfrich Hamiltonian [14,1]. Neglecting the Gaussian curvature this is

Hbend
"

/
d~ lj~ ()

+
) C°) ~

j~ (( C°) ~

(3)

where RI and R2 are local radii of curvature, C~ is the spontaneous curvature, and ~c is the

bending modulus. In equation (3) we have subtracted from Hb~~d the bending energy of
a

spherical drop of radius R. This is because this bending energy contribution to the surface

tension is already accounted for in -g (by definition). The total free energy of the surface is

therefore written as

F
=

H~~~d
/

ds g. (4)

For simplicity we
consider small deformations of the drop from the spherical shape. We

therefore assume that
we can describe the deviation from

a
spherical shape by

a
single-valued
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function u(6, #) [15-17j. But as will be shown below, the wavelengths of deformations that will

be of interest to us obey I < R. Therefore the reference surface can be considered
as

flat

and the deformations will be described by U(z, y) where
z =

6R and y =
#R [18j. For small

deformations where T7U(z,y) < I, the difference AF between the free energy of
a

spherical
(or

a
planar) sheet and

a
deformed one, to order U~, is given by

AF
=

/ d~z I-jg(T7U)~ + j~ (T7~U)
~ (5)

In the Fourier space, this difference is given by

AF
=

~l I-gq~ + t~q~l UqU-q. (61

q

The free-energy (6) implies that long wavelength fluctuations are unstable. More precisely,
small perturbations of wavenumber q < qc where

qc =

~. (7)
~

will grow rather than decay. This time dependent growth is discussed in the following sections.

We note that the dynamic instability we describe is similar to other types of instability of fluid

surfaces [19,10,20j, e-g-, the Rayleigh-Taylor instability that occurs when
a

heavy fluid lies
on

the top of
a

lighter fluid [19j.

3. Dynamics
a wrong but instructive model.

While not physical, it is instructive to consider
a

model where surfactant transport to the

surface is infinitely fast. Hence, during the process of surface growth the surface coverage does

not change so
that g and

~ are independent of time. The results of such
a

model will
serve to

emphasize the importance of surfactant transport.

To analyze the dynamics of the film, let us first discuss the evolution in time of fluctuations

by hydrodynamic modes, which
can

be obtained from textbooks [19j. In the linear regime
we

generally have

Uq " U/~~Pl"l~)~l 18)

and
we

need
an

expression for w(q). Neglecting inertia [21,22j and gravity it is given by
[19,15,17,18j

Wlq)
=

(gq ~cq~) 19)

where ~ is
an

effective viscosity which depends on the oil and water densities and viscosities

[23j. For example, if the oil and water have equal densities but different viscosities ~~ and ~w

respectively,
we can

obtain [23j from reference [19], ~ = (~~ + ~w)/2.
We see

that w(q) is positive for wavenumbers smaller than qc defined in equation (7), which

means
that long wavelength fluctuations are unstable. The most unstable wavenumber q*, as

determined from au /0q
=

0, is

~~
~ ~

~~~~
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Fig. 1. Schematic picture of
a

deformed droplet. The droplets formed at the interface when the

amplitude reaches the wavelength size
are

also shown. The scales
are

exaggerated.

When the amplitude of fluctuations of the wavelength 1*
=

2x/q* becomes equal to I*, the

surface will be highly corrugated and the linearization inherent in our analysis will become

invalid. Nonetheless, it seems reasonable to expect that droplets of size I* will tend to form,

as depicted schematically in figure I. A roughly equivalent condition for identifying the onset

of non-linearity is to set ((@U)~) ci I. The latter
can

be expressed as

((T7U(t))~) =

) /
d~q q~(U(Ui~)exp[2w(q)t] (II)

where < > in (U(Uf~) means average over the initial values,
as

those may have some

statistical distribution. We can evaluate the integral in II I) using the steepest descents method,
for w(q)t » I (in the unstable region). This leads to

(I?Ult))~) ~b~
j(U).Uiq.) (~)~~~ exp l2Wlq*)tl l12)

and using equation (10) for q* we have

(iT7uit))~) m
$exp (~£(~~~tj i13)

where

~$ j~o ~o
~~~~9~~~

j~ ~)
~l/4fi q° -q° ~7/4

Therefore the typical time r
for droplet formation or other non-linear effects, obtained from

the condition ((T7U)~) =
l, obeys

r ~ ~iii~~~i°~ (~l~) its)
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We can
roughly estimate the coefficients as ~ ~w

kBT and g r-

(kBTla~)(#s #c); hence [24j

r -~
(is -#c)"~/~r~, where r~ =

~a~/(kBT) is a molecular diffusion time, and I*
-~

(#s -#c)~~a.
In this model the results

are
independent of the droplet size R. This contrasts with our results

of
a more

realistic approach considered next, which show
a strong dependence

on R for
a

wide

range of parameter values.

4. Dynamics including surfactant transport.

Because is is inversely proportional to the surface area, surfactant transport cannot be
ne-

glected. To visualize this,
assume

that (by
some

means) the interface is disconnected from the

bulk, and that
a

given amount of surfactant with is > #c is adsorbed on it. The surface area

would then increase, but only up to the point where is
=

#c at which point g vanishes. (This
is closely related to the "Gibbs-Marangoni" effect ill] that prevents the rupture of surfactant

films.) Clearly, if
we start with is #c < #c, the total increase in

area
would correspond to

(T7U)~ « l, which is not sufficient to create droplets at the interface.

Before considering in detail the surfactant transport, we note that if is (t) is time dependent,

so is the interfacial tension coefficient g(t) [25j. In this
case

equation (8) has to be changed
to describe correctly the evolution in time of Uq. We can attempt a solution where the time

dependence in l/q it) is given by

t

Uq it)
=

U(exp
/

dt'w(q, t') (16)
o

land the velocity field follows [19j). Resolving the hydrodynamic equations for this case 11 9j we

find that, in general, this leads to a
characteristic equation for w(q, t) which is not algebraic any

more but rather a
(complicated) first order differential equation in time for w(q,t). However,

neglecting again inertial terms [26] we
find that the characteristic equation reduces to the

same

algebraic equation as
before,

so
that w(q,t) is given by (9) with g(t) replacing the constant g

This leads to a great simplification of the problem.

The evolution of ((T7U)~) can
again be evaluated in the steepest descents approximation.

This involves
a

time-dependent q* it), which is determined from the requirement 0[ jj dt'w (q, t')j
/@q

=
0. This procedure yields

~* ~ jGl~))
~/~

~~~~
3~i

where

Gji)
=

/~ g(i/)di/ (18)

so
that [27]

~~~~~~~~~~ ~~
~~~~~~~~~ 3i~~~~~~/2~

~~~~

~~~~~

~~
=

i juo, uo
,

~~j~
120)31/4fi ~ ~~ lt~ ~

We now turn to discuss the surfactant transport between the surface and the bulk beside

it. Let assume
that at t

=
0 the drop is suspended in

a
well-mixed surfactant solution ~&<ith
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surfactant molar fraction 4l~ > 4l~~~~. Here 4l~~~~ is the value of 4l~ at which a surface coverage
of is

=
#c land vanishing interfacial tension) is obtained at eq~ilibrium. For simplicity

we also

require that the bulk consists of free surfactant molecules only, and
no

micelles are present.

The latter requirement limits the concentration regime we consider to 4l~"~
< 4l~ <

4ICMC

Nonetheless, some of
our

results will be valid also for 4l~ >
4ICMC

> 4l~~~~ (see Sect. 7).
In Appendix A-I we argue that for large droplets (R > a) the transport from the bulk to

the surface is well within the diffusion controlled regime. Consequently (Appendix A-I), the

interface coverage and the bulk concentration near it are related by
an

equilibrium relation le. g.,

a Langmuir isotherm),
so that a given bulk molar fraction 4l (near the surface) corresponds to

a unique surface coverage is, and vice versa.

We denote by J the diffusion flux of free surfactant molecules to the interface. This flux

can be described by
an

effective diffusion length fit) which enters as J oc
f~~ In general fit)

is time-dependent [28] since it increases from zero at t
=

0 towards a
maximum value of R

if there is a sufficient time for
a

steady state to be reached (Appendix A). The question is

then: what is the value off at the time the surface has reached
a coverage of #c land

zero

surface tension)? We denote this time
as T and the corresponding value off

as f~ + f(T). In

Appendix A.2 we obtain two main regimes for f~, depending on the value of R compared to

the parameter

~~ ~

2~~i~
~~~~

where p is the water number density. For R » Rc the diffusion profile is still far from
a steady

state profile at t
=

T and f~ ci Rc. For R « Rc the diffusion profile has already reached nearly

a steady state when t
=

T and f~ ci R. (We obtain in the appendix
an

interpolation formula

for f~ between these two extreme limits,
see

equation IA.12).) As
seen from equation (21), the

value of Rc is sensitive to the value of 4l~. For SDS
near its CMC [2,13] (under the relevant

conditions of high added pentanol) this leads to the estimate Rc ci
10~A. For other typical

microemulsion-forming solutions l~ is smaller than I mm. We note that it might be possible
to prepare different initial conditions so that a steady state profile may be reached at t

=
T

resulting with f~ ci R. For generality however we shall
use

the value of f~ below.

We assume that #s(t) #c remains small compared to #c during the process of surface

corrugation (which will be shown to be self-consistent with
our

results). Hence, the bulk

concentration fiear the surface remains almost constant during this process, and we can
take

it
as 4l~~~~ For example, if

we adopt the Langmuir isotherm result
we

have

4l~~~~
=

exp[-e/kBT]#c/(I #c)

where
e

is the (positive) adsorption energy. We shall also assume that the typical diffusion

length fit) remains constant during the process of surface corrugation, even when R » Rc.
This latter assumption is made mainly for clarity and simplicity and we

shall discuss later on

the conditions under which it is likely to break down. From these assumptions it follows that

the surfactant flux to the interface takes the form

J
=

() 4~o ~~~~~l 122)

In order to proceed further,
we

need a conservation equation for the surfactant molecules

on
the interface. Our approximate treatment disregards any inhomogeneity in concentration

within the film, which corresponds to assuming fast diffusion along the interface. We therefore
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omit
a term corresponding to the latter process, and replace (T7U)~ by its average. One

can

then write the conservation equation
as

~ ~#s~
=

a~J
e v. (23)

dt

Integrating equation (23) we obtain

~~~~~

i

~)flit))~)
~~~~

where we have defined, for convenience, #s(0)
=

#c. (Since
we assume (T7U(0))~ « 1, this

term was
neglected in equation (24)).

Equations (19) and (24) are
coupled

ma
the dependence of g on is. In accord with the

proximity of is to #c we take the lowest order of this dependence

§ Cf
((is

WC) 125)

where E is a
(positive) energy parameter.

In Appendix B we present analytical arguments for the solution of these coupled equations
in different regimes. Here we summarize our main results. First we note that these equations
depend on two distinct molecular times, a

hydrodynamic time Th =
3vi~a~~~/~/E~/~ and

a

diffusion time 7~g =
(Dpa) ~. However, these

are
expected to have the same order of magnitude

[29j (for not too large surfactants and for roughly similar viscosities of the oil and water),
so

when making rough estimates below we shall use Th = r~ = T~, with r~ i
~a~/(kBT)

a

molecular diffusion ("Zimm") time.

In the regime ~(T7U)~) < vi we can use, as a first approximation, #s(t) #c ci vi.

According to equation (19) this leads to an early "super-exponential" growth ~(T7U)~) oc

v~/~t~/~exp[(t/tc)~/~] where

tc
= u~~/~r(/~ (26)

[Very roughly we can estimate tc as tc
+~ (@~ 4l~~~~)~~/~((ala)~/~ro). However, this expc-

nential behaviour proceeds only at very early times up to the crossover time tc. At these

times ~(T7U)~) crosses over to a
linear growth which is limited by the surfactant flux to the

interface, ~(T7U)~) r-
vi. At the

crossover therefore ((T7U)~) t utc or
(roughly) ~(T7U)~) r-

(4l~ lb~~~t)~/~(a/f~)~/~ < l. At the
same time is #c shows

a
maximum and then decreases

at later times. For t » tc we find a decay law

-2/3

4s-Act (27)
7h~

(ignoring logarithmic corrections which
are

discussed in Appendix B).
To illustrate these results we have solved numerically equations (19), (24) and (25). For

simplicity
we choose the two molecular times defined above to be equal, namely Th = rn = r~

with r~ a
molecular diffusion time. The dimensionless diffusion rate P

= uro becomes P
=
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Fig. 2. Plots of #s -#c and ((VU)~) against the reduced time I
=

t/
To for a

dimensionless diffusion

rate fi
= vTo =

10~~ Other parameters used are
j~

=
3 and #c

=
0.7.
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u
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t

Fig. 3. is #c against the reduced time I for different values of P.

(4l~ lb~~~~)(a/f~), so that physical values correspond to P < I. Another (rather unimportant)
dimensionless parameter is 1

=
A*(Ela~)~H/Tll~ which parameterizes the initial value of

~(T7U)~), and
we

have used 1
=

3. In figures 2-4
we

plot our results for is #c and ~(VU)~)

as a function of the dimensionless time t
=

t/T~ for various values of P. The numerical results

indeed show that is -#c achieves its maximum value much before the time when ~(T7U)~) r-
l.

At the same time ~(T7U)~) shows a crossover
from

an
"exponential" to a linear behaviour. By

the time ~(T7U)~) ci I, is #~ is already far below its overshoot and is indeed decaying in

time as
t~~/~ The main result to note is that when ~(T7U)~) is still very small its growth is
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We now return to the calculation of q*(t). For t » tc we find in Appendix B (still ignoring
the logarithmic corrections)

Gil)
=

/ g(t')dt'
= (34~~~/~)

~~~ t~/~ (30)

and an area
growth described by

(1T7u)~) t

"~
131)

c

The maximally growing wavenumber can be computed from equation (17) as

q*it)
=

(]) ~~~
132)

which shows an
interesting time dependence I*

r-

t~/~ From equations (31) and (32) we find

the mean square amplitude, which is dominated by the amplitude at wavelengths
near I*, to

follow

(u2)
~

2" ~C)~~~~5/3 j~~)
4c ~

It should be possible to check equations (32) and (33) directly by light scattering experiments.
Let us now examine the assumption of constant f~. The trivial case is when R « Rc so that

f~ t R and this assumption is clearly valid. The regime R > Rc is characterized by f(t)
r-

vi,

which might change the linear behaviour of ~(T7U)~) at long times to
r-

vi. The effect of this

property of f(t)
on our

results can be discussed in terms of the parameter

z = (4l~ 4l~~~~) /4l~ (34)

which describes the distance f om th critical concentration 4l~°~ Recall that the tim t
= T 's

defined
as

the time for which
(T7U)~)

=
l. If

x r-
I, the crossover to vi behaviour of

(T7U)~)

occurs when t ci T, so
that this behaviour is

never
dominant in the regime ~(T7U)~) < l. In

other words, the ratio of f(T) to f~ is of order unity (about two) resulting in marginal effect

on ~(T7U)~) and no
effect on is #c. For other regimes of x we obtain the following results:

(I) if max[4l~~/~, l~/R] « x « I we find
a

negligible change to the result for ((VU)~) up

to the time tci Cf
R( ID. Since in this regime tci > tc, the initial and the crossover behaviours

depicted in figures 2-5 remain unchanged. For t » tci we find ~(VU)~) r-

vi (rather than the

linear behaviour in Eq. (31)) which proceeds through the time t ci T.
Nevertheless, equation

(27) for is #c remains ~nchanged since any changes occur in the logarithmic corrections

(Appendix B). This implies that equation (32) for q*(t) remains unchanged, while U~
r-

t~/~

in this regime instead of equation (33).
(ii) if lb~~/~ < x « llc /R there is another crossover time tci < tcz < T

in addition to the

crossover time tci This time is tc2 t
R~ ID. At t

r-
tc2 the diffusion profile reaches

a steady

state (while the surface continues to corrugate)
so at later times ~(T7U)~) ci v(R)t with R

replacing f~ in equation (22). Again, no changes are found to equations (27) and (32).
The regime x < lb~~/~ which is (say for SDS) x « 10~~

can
hardly be obtained in experiment

and is therefore disregarded. We note that these additional crossovers are
entirely due to the
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the time-dependence of the diffusion flux ma
fit). Our conclusion that at times t » tc the

area growth is diffusion controlled remains valid.

In this section,
we

analyzed the dynamics of surface corrugation in conjunction with the

coupling to the diffusion flux. The implications of these results
on

the formation of droplets

at the interface are
discussed next. For simplicity we

shall continue to use
mainly the results

(31)-(32), keeping in mind however that they may break down for
~ « l as

described above.

5. Formation of droplets.

We now return to our
assumption that when the amplitude of the maximum growing wavelength

becomes equal to the wavelength itself (I.e., ~(T7U)~) ci
I), the interface will break up leading

to a spontaneous creation of small droplets,
as

depicted schematically in figure I. We assume

that the rate limiting step is the formation of the crumpled interface rather than any local

activation barrier associated with topological change. (In the presence of such
a

barrier,
a

dendritic structure could form which lies beyond our present scope.)
We can obtain from equation (31) the time

T
for droplet formation

as

~ ~y j~ Iv (35)

(~p ~pcrit)-i
lo

(~~)
~~

T '~
o

To

in
a

rough estimate [29]. This implies T +~

R in the regime R < Rc. Emulsification will take

more time in
a

larger droplet Using the result (35) for
T

in equation (32) we
find that the

characteristic wavelength lm
=

I*(T), which suggests the characteristic droplet size, obeys

lm
m

I
(37)

~"

~~~

which
means

lm
r-

(j/~. Note that there is no
dependence at all

on
the parameter E of

equation (25) at this level of the calculation. Very roughly [29j lm
can

be estimated as

j 1/3

lm
r-

(lb~ lb~~~~)~~/~ d
a. (38)

a

For the SDS /pentanol system [2,13j (mentioned earlier)
near

its CMC where lb~ lb~~~~
+~

10~~,

and for droplet size of R > Rc
+~

10~A, these estimates yield (taking T~ r-

10~~s) T r-

i lo s

and lm
r-

10~ 10~A. (For more accurate estimates one
should

use
Eqs. (35) and (37)). We

note that the assumption lm « R (made in the expansion (5)) limits the minimum size of

the initial droplet to R » (lb~ lb~~~t)~~/~a, and for the above (SDS) example this implies

R » 10~A. (For
a

smaller droplet one
needs

a
calculation [18j that uses a

spherical harmonics

expansion [15-17j.)
As discussed at the end of section 4, these results should change if R > Rc ((o Rc) and

the parameter z =
(lbo lb~~~~)/lbo is much smaller the unity. Instead of equations (36) and

(38) we
find the following results: (I) for Rc/R < z < I we

have
T -~

(lbo 4l~~~t)~~T~ and

lm (lb~ lb~~~~)~~/~a. (ii) For ~ « Rc/R
we

should replace (~ by R in these equations
so

that
T +~

(lbo lb~~~t)~~(Rla)To and lm
+~

(lbo lb~~~t)~~/~(Rla)~/~a.
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Finally, let us include the logarithmic corrections from Appendix B. Assuming that (U/Ui~)
is independent of q (so that A* in equation (20) is independent oft)

we
obtain

~~ '~

i~~c ~~~ ~°~ 35/4A* ~~~~5/12v4/3
~~~

~~~~

In terms of the dependence
on

f~, this means the scaling form

~~ ~'~°~~~
~~ ~~

II
~~~

~~~~

where f* is
a

function of the previous coefficients land obeys the scaling f*
r-

4l~ 4l~~~~).
Interestingly, it is possible to obtain the correct scaling of qm by disregarding the dependence

of is and thus q* on time (I.e., a steady state assumption) and equating w(q*) with v. Since

w(q*)
r-

g~/~ we have g r-

v~/~ and from q*
r-

g~/~ we obtain q*
r-

v~/~ (which is also qm in

this approach). As shown above, this is rather
a naive approach, though it seems to have the

right ingredients.

6. Evaporation of a droplet.

The above discussion describes
a

single "evaporation" step, where
a

small shell of thickness lm
is removed from

a macroscopic droplet of radius R. It is interesting to see how the complete
evaporation of a droplet of initial radius Ro proceeds in time. After the first "shell" has been

removed
a

"corona" of small droplets surrounds the macroscopic one
(Fig. I),

so
that the

diffusion field and therefore the expression for J might change. But this would probably lead

to only
a modest reduction of J, resulting from the partial obstruction by the small droplets of

the free surfactant coming to the interface. For simplicity
we neglect this effect. Then, since

lm « R we can write
a simple differential equation for the time-dependence of R(t) of the

form (ignoring logarithmic corrections)

where C is a combination of the previous coefficients.

If R < Rc, or for the combination of R > Rc and z « Rc/R,
we

should use in (41) (~ ci R

and the solution is immediately obtained as

R(t)
=

R(/~
~Ct) (42)
3

~ ~

where Ro the initial radius. equation (42) shows
a very interesting time behaviour demonstrat-

ing how the evaporation becomes faster as the droplet size decreases. From this equation we

also obtain (very roughly) tevap
'-

(lb~ lb~"~)~2/~(R~la)5/~T~. Taking T~ r-

10~~s and (for
the SDS system [2,13] mentioned earlier) lb~ -4l~~~~

r-

10~~
we obtain, for Ro

r-
Rc

r-

10~A, an

evaporation time of the order of10 -10~ seconds. Interestingly,
our results show

an anomalous

slowing down of the evaporation depending
on the proximity of the surfactant bulk concen-

tration 4io to 4i~~~~ Every evaporation step is slowed down according to T ~-
(4io 4i~~~~)~~
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Since lm
r-

(4l~ 4l~°~)~~/~
we

have C
r-

(4l~ 4l~°t)~/~
so that the overall evaporation

time is slowed down as tevap
'-

(4l~ 4l~~~~)~~/~. Note that in obtaining equation (42) we

have assumed that the diffusion length follows the droplet size
as

the droplet shrinks. In-

deed, comparing tevap to the diffusion time
over a distance R~, Td =

R(/D,
we see that

tevap/Td
r-

(lb~ lb~~~~)"~/~Rj~/~; because R~ < Rc
r-

lb~~~ this ratio is always much larger
than unity. (For the above example it is

+~
100).

If R > Rc and ~ +~
l then (~ t Rc and the initial evaporation (R(t) > Rc) follows simply

R(t)
=

llo ~~ t. (43)
Rc

When R(t) becomes of the order of Rc we should have
a crossover to equation (42) (with Rc

replacing Ro and the time measured from the moment of crossover). To obtain a more precise
description in this crossover regime equation (41) can be solved with the expression (A.12) for

(~(R). When Rc/R « ~ « l equation (43) does not describe correctly the slowing down and

C/R(/~ should be replaced by
+~

(lbo lb~~~~)~/~T)~
The slowing down in these equations

can
also be time-dependent. To get equations (42)

and (43)
we

have assumed that lbo is independent of time. That is true if there are enough
surfactant molecules in the bulk. Otherwise, lbo is time-dependent (although roughly constant

during each evaporation step). As the emulsification proceeds we can
have

a slowing down due

to the disappearance of surfactant molecules from the bulk. At this level of approximation,

when spontaneous emulsification stops all interfaces have
zero surface tension and lbo

=
lb~~~~

This scenario includes the possibility for (spontaneous) emulsification failure, where only
a

limited number of "shells" are being removed due to insufficient amount of surfactant in the

bulk. The estimates for SDS provided above indeed use very low surfactant concentrations (in
order to be able to use equation (22) for the diffusion flux), and emulsification failure is likely

to occur for oil and water volumes of comparable order of magnitude. (If the volume of the

initial drop is sufficiently small, the evaporation can always be completed.) This is consistent

with realistic equilibrium microemulsion systems ii], in which the surfactant volume fraction

required for full emulsification is of order ~
or more.

Emulsification failure in equilibrium

means that a
phase of (say) oil coexists with

a
microemulsion phase, which is similar to the

above picture.
In general, however, since the mechanism we have described is kinetically controlled, the

droplets formed by spontaneous emulsification
are not in thermodynamic equilibrium with

one

another. So
a

second stage of emulsification is needed; this will involve some rearrangement,
where droplets will break up and coalesce to form new

droplets of different sizes. In addition,

a
convection process that will move the small daughter droplets far away from their mother

drop may be needed. We do not address these issues here.

7. Discussion.

A few remarks on the generality of
our

results should be made at this stage. The diffusion

length to which controls the approach of surfactants to the interface might be significantly
smaller than the macroscopic radius R, as described in section 4. This

can
be true even in

a
steady state diffusion profile, for example if the system is subject to a continuous stirring.

Another example is when lbo > IbCMC,
so

that the initial increase of surface coverage (before
#c is reached) involves also "evaporation" of micelles resulting in a

slower increase of ((t).
(This latter situation is particularly important for avoiding emulsification failure, as explained
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at the end of the previous section.) Our results should still apply if the appropriate f~ is used

land possibly, in the case of micelles,
an

effective diffusion coefficient) and provided that (~ is

large enough to keep our assumptions valid [18,30,31].
Though our suggestion that lm is essentially the droplets size formed at the interface is very

appealing, we
know in fact very little of how the mechanism of droplet formation proceeds.

It is quite possible that long "fingers" (corresponding to ~(T7U)~) » l) will develop [20]

before breakup of the surface
occurs. However, this will depend on the details of local energy

barriers (for example involving the Gaussian rigidity it) and so this question should be deferred

primarily to experiment. We have also not resolved whether droplets (or fingers) of oil into

water are preferred or vice versa; this might be answered by a treatment sufficiently more

non-linear [32] to give the spontaneous curvature a quantitative role in the process.

Finally,
we want to mention the possible applicability of our results to various diblock

copolymer / homopolymer mixtures. In some systems a small interfacial tension between the

homopolymer regions (and thus a microemulsion phase)
can

be achieved by using
a

copolymer
with a strong amphiphilic character [33]. This suggests that spontaneous emulsification driven

by negative interfacial tension might occur in these systems, in which there is
a strong depen-

dence of the diffusion coefficient of the copolymer on its molecular weight. Since our results

are
sensitive to this diffusion coefficient (see, e-g-, Eqs. (22), (23),(35) and (37) ), these systems

could provide an important check
on our

approach. We hope that studies on these and similar

systems will be forthcoming in the near future.
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Appendix A.

A-I. FROM REACTION-CONTROLLED TO DIFFUSION-CONTROLLED ADSORPTION KINETICS.

Here we argue that the surfactant transport to the surface is diffusion controlled. For

simplicity
we

employ a steady-state argument, though our conclusions are valid at all times

except at very early times of the order of T~.

It is convenient to construct the surface grand-canonical free-energy

Q=F-~)/ds#s (A.I)
a s

where F is the Helmholtz free-energy (of the surface) and ~b is the surfactant chemical potential
in the bulk, which can be taken as ~b "

kBTlog16. Then, if we are in the linear (Onsager)
regime, we can write the flux from the bulk to the surface (negative when its going the opposite
way)

as

j=_
A 6Q[#s>16]

kBT 6#s
(A.2)

Here A is
an

Onsager coefficient which has dimensions of I/time. When J
=

0 we recover the

equation for equilibrium coverage.
Coupling the surface-bulk transport to the transport in the bulk, equation (A.2)

can serve

as a
boundary condition, and 16 in this equation would correspond to its value near the surface.



844 JOURNAL DE PHYSIQUE II N°6

In the bulk we should have simple diffusion

~
=

DT7~lb (A.3)

with the boundary condition (taking the positive axis direction in the water region)

~P?*lsurface
"

J. (A.4)

The final equation is the conservation law

is
=

a~
j J(t')dt' (A.5)

which implies that the boundary conditions (A.2) and (A.4)
are

actually time-dependent.
Solving the diffusion equation (A.3) with the boundary conditions (A.2) and (AA) is

a

formidable task even for the Langmuir isotherm model. But we can
gain

some
intuition by

using
a

quasi steady-state assumption, where
we

ignore the time-dependence of #s. Let us

consider
a

spherical droplet of radius R. Given
a

(yet unknown) boundary value16(R),
we can

solve the steady state diffusion equation (01b lot
=

0)

) r~ ~)
=

0 (A.6)
r r

to obtain the relation

where lb~ is the molar

where ( is
a

dimensionless parameter given by

(= (~~ (A9)

If ( » I we are
in the "reaction controlled" regime, and

we can neglect transport in the bulk. If

( < I this is the "diffusion controlled" regime, and bulk transport is the rate limiting process.

Let us
roughly estimate (. Since the surface-bulk exchange is also dijf~siue in nature, we

may relate D to A by
A t

Da~~exp(-E~/kBT) (A.10)

where the activation energy E~
-~

kBT accounts for the fact that the surfactant tail has to

"push" some oil molecules in the adsorption process. Taking p +~

a~~ (ignoring the small

difference bet~veen the water and surfactant sizes)
we

have

(
+~

iexp(E~/kBT). (A.11)

For macroscopic droplets this means ( « which is the diffusion controlled regime. It is

unlikely that the process will be in the reaction controlled regime because R is very large while
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the activation energy Ea is small. We should bear in mind however that if (say) Ea
+~

5kBT

than for R
+~

100a we have (
+~

I.

Consider the diffusion controlled limit (
-

0. Since the LHS in equation (A.8) cannot

become infinite, 6Q/6#s
on

the RHS have to be
+~

(. Therefore the bulk concentration
near

the surface is in equilibrium with the surface, namely 4l(R)
-

4l~q(#s) + O((). In a steady-
state diffusion profile

we
therefore obtain equation (22) with (~

=
R. The result for f~ in a

non-steady state situation is discussed in the second part of this Appendix.

A.2. ESTIMATE OF to IN EQUATION (22). Here we
estimate the value of to e f(T). Our

result is

° ~
~

(l +

(~)
~~~

l

~~ ~~~

where
Tic

IA.13)~~
2a2p4l~

This result was obtained
as

follows. The time T to reach
a coverage of is

=
#c is obtained

from equation (A.5). In the expression for J(t) in this calculation we can neglect 4l(R,t) and

keep our estimate correct to an order of magnitude (unless lb~ is extremely close to 4l~~~~). We

therefore
use

J(t)
=

Dplb~ lilt) where [28]

)
"

( ~
+

ji)
l~.~~~

Note that fit) behaves
as

( ci
/% for R~ « Dt and ( ci R for R~ » Dt. Integrating J in

(A.5) and solving for T we
obtain

T=
~j ~l+ ))~~~ j~

(A.15)
'

where Rc is given by IA.13). Using IA.15) in (A.14) we finally obtain equation (A.12).

Appendix B.

ANALYTICAL TREATMENT OF EQUATIONS (19), (24) AND (25). For brevity
we

denote

y = ~(T7U)~). Let us rewrite equation (24) for the regime y « I. To first order in y we obtain

is
WC =

vi #cY/2. (B.I)

If y « vi (which is a stronger condition)
we can use, as a first approximation, is it) #~ ci vi.

This leads to an
early "super-exponential" growth

y ci
A*(Evla~)~/~t~/~exp (at~/~) (B.2)

where a ci
(Ev)~/~/(qa~~~/~). However, we can see from equation (B.I) that when y r-

vi

there should be a crossover to another behaviour.
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We
can

find this crossover by obtaining a rigorous upper bound for y. From equations (19),
(24) and (25) it is clear that #s #~ cannot become negative. This is because of the negative

feedback in these equations. Any decrease of this quantity due to the increase of y will lead to

a decrease in the growth of y, which subsequently will slow down the decrease of is #c. From

equation (24) (corrected for non-vanishing y(0))
we can obtain the bounds for the growth of y

using the condition #~ #c > 0. We easily get

Y<11+~/)~i
(B.3)

Hence, instead of growing e~ponentially with time, y cannot grow faster than
a po~oer la~o.

At sufficiently long times y should therefore crossover from the early exponential increase and

saturate at its upper bound
~ ~

y ci

~"~
+

" (B.4)
4c 4c

This in turn implies a
decay of is #c

as
obtained below.

Let us
find this crossover time tc. Close to the crossover

(but for t > tc) we can use vi « I

so that equation (B.4) is approximated
as

~ i ~~'~~

The crossover time is obtained by equating equation (B.5) with (B.2), which is actually the

same condition obtained by looking at equation (B.I). Neglecting logarithmic corrections
we

then have tc
r-

a~~/~
-~

v~~/~ At the crossover time y ci vt~
-~

u~/~ and is therefore still much

smaller than unity.
More relevant to our purpose is the behaviour of G(t)

=

jj g(t')dt' for t » t~, which is

needed in the calculation of q°(t). To obtain the asymptotic behaviour let
us

rewrite equation
(24) in a different form. We have

-

"~ ~'~ <l~~~°
+ ii

~

i (B.61

hence, from equation (19),

~
~ ij

~

i

~~~~~~~ ~~~~~~°~
~~

f(t)
~~'~~

'~~~~~

A
=

3vi~~~/~ ~~'~~

and

f(t)
"

A*t~~~~G(t)~~~ iB.9)

Now we may argue that for t > t~, (#s #~) is far beyond its maximum and is therefore

decaying. Hence we can use
in the logarithm (#s #c)/t < vi for these times. Solving

for Gil)
we then obtain

~2~2 ~~~
2/3

~~~~ ~~~~~~~~ ~°~ f(t)41
~

(t)4c~~
~~'~°~
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It is now worthwhile checking that g(t)
r-

#s(t) #c is indeed decaying in this regime. Differ-

entiating both sides of equation (B.10) we obtain

~~~~ ~~~~~ ~~~ l~ ~°~ ~~~?
~ f'~ic

~~~

~

'°~
l~illlj +

l~l~)1~~~ l
~llll~ +

i +

l~/~vt~l
(B.ii)

(Note that self-consistently f(t) has
a power law behaviour f(t)

r-

tP
so

that16 flat Ii f(t)] is

independent oft-) The dominant part of the dependence is of course
g(t)

r-

t~~/~ (which leads

to equation (27)) and is self-consistent with the assumption that g(t) is, at these long times,
far beyond its maximum and is therefore decaying. This result allows us to calculate the small

corrections to equation (B.4) (valid for t » tc). We obtain

~ #c + const.(t /Th)~~/~
~~'~~~

which shows that the upper bound (B.4) is saturated only as t
-~ cc, though it is approximately

reached for t » tc.

We
can now find the logarithmic corrections to qm in equation (39). When y =

I (t
=

T) we

obtain from equations (BA) and (B.10)

~4/3 ~/~

G(T) ci
A~/~T~/~

log ~~~5/6 )j (B.14)

Using the expression (35) for
T

and equation (B.14) in equation (17) for q* we
arrive at equation

(39).
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