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Abstract. When prepared on a silicon wafer and annealed above the glass transition temperature

T~, symmetric, diblock copolymers of poly(styrene-b-butylmethacrylate), P(S-b-BMA), exhibit a

multilayer structure parallel to the substrate and islands (or holes) are formed on the free surface of

the films. In situ interference microscopy has been used to follow the kinetics of growth of these

islands or holes. It is shown that the kinetics of growth depends on the initial density of islands (or
holes) : at 140 °C, for intermediate annealing times, there is no time-evolution of the free surface

for dilute systems while for more concentrated ones, the size distribution function of islands or

holes verifies a scaling law versus time. For longer annealing times at 170 °C, the ultimate

behavior of the copolymer film is to eliminate islands or holes by allowing the permeation of the

copolymer molecules into the inner layers of the film.

Introduction.

The behavior of diblock copolymers AB at surfaces and interfaces has received widespread
attention in recent years [1-21]. Most studies have focused on the influence of extemal surfaces

on the ordering in thin films [4-10, 13, 16. 17, 20]. More generally, the effect of symmetry
breaking at interfaces on the microstructure and the transitions of systems that exhibit order-

order and order-disorder transitions (including liquid crystals [22-24], polymer blends [25] and

metallic alloys [26, 27]) has attracted considerable interest.

In the bulk, diblock copolymers undergo a phase transition from a disordered melt existing at

high temperatures to various ordered mesophases that appear as the temperature is lowered.

Such mesophases result from both the incompatibility between the two blocks and the

connectivity constraints that hinder this phase separation. The morphologies of the various

mesophases range from ordered spheres of one block embedded in a matrix of the other to
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altemating lamellar structures, depending on the relative length of the blocks [6, 28-33].
Lamellar microdomains are encountered in the case of symmetric diblock copolymers, I-e-

when the volume fraction of the blocks A and B is equal.
Among the variety of different possible mesophases, it is the behavior of symmetric diblock

copolymers in thin films which has been the most investigated. For such thin films, the

interactions of the blocks with the interfaces have been shown to induce a nearly perfect
orientation of the lamellar microdomains parallel to the film surface producing a multilayered
structure [4, 6, 8-10, 13, 20] as a consequence, the film thickness e~~~ in the ordered state is

quantized [8-10, 12, 13] :

e~~~ =

(n + I ) L if the same block is present at both interfaces

e~~d "

(n + 1/2) L if it is not

where n is an integer m 0 and L is the lamellar period.
In the particular case of symmetric diblock copolymer of poly(styrene-b-n-butylmethacry-

late), P(S-b-BMA), the copolymer of interest here, interference microscopy measurements

[8, 12] have shown that, for thin films prepared on a silicon wafer, their thickness in the

ordered state is given by : e~~~ =

(n + I L. Since the surface energy of PBMA is lower than

that of PS [34], PBMA is expected to be located at the air/polymer interface thus, the

thickness quantization, e~~~ =

(n + I L, imposes that PBMA lies also at the substrate/polymer
interface (Fig. I).

air

PBMA
~

PS

PS

PBMA

eord=jn+ijL

L

Si wafer

Fig. I. Schematic of the lamellar stacking in P(S-b-BMA) copolymer thin films deposited on silicon

substrate. Each lamella is a bilayer of one component either PS or PBMA.

In general, the free surface of such thin films is not flat and smooth. Recent optical
microscopic studies have reported the presence of islands or holes on their free surface

[12, 14]. Indeed, when prepared by spin coating a copolymer solution onto a substrate at
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temperatures T below the glass transition temperature T~ of the two blocks, as-cast thin films

are in a disordered state, their surface is rough (-~5i) [35] and their thickness

e~~ is determined by the amount of copolymer deposited on the substrate. The lamellar ordering

can be induced by annealing these films at temperatures T between T~ and the microphase-
separation temperature (ODT) [8-10, 12-14]. It is very unlikely that e~~ corresponds exactly to

e~~~ =

(n + I ) L and it has been shown that the morphology of the free surface of the ordered

film depends on its initial thickness e~~. If e~~ is equal to (e~~~ + 8e ) with 0
~

8e
~

L, the free

surface is covered either with islands (0
~

8e ~L/2) or holes (L/2
~

8e ~L) of height

L [12, 14]. This behavior allows the minimization of the interfacial energy at the air/polymer
interface by putting the block component which has the lowest surface energy at the free

surface, but creates a line free energy excess [8-10, 12-16]. It should be pointed out that

another scenario could have been expected : a homogeneous copolymer layer of thickness

8e lying on top of a lamellar stacking of thickness e~~~ this situation would prevent the

formation of islands or holes, but would not minimize the interfacial energy at the air/polymer
interface. Obviously, both the lamellar ordering process and the formation of islands or holes

are govemed by the minimization of the interfacial energies. Indeed, we have shown in a

previous paper [18], that the formation of islands or holes, of height L, on the free surface of

copolymer films reflects the inner lamellar ordering process.

In this study, in situ interference microscopy has been used to follow the kinetics of growth
of such islands and holes formed on the free surface of thin films of symmetric diblock P(S-b-

B MA) copolymer and to investigate the ultimate morphology of the free surface as well. It has

to be pointed out that islands and holes grow once the inner lamellar stacking is built up and

that, in contrast with the formation stage, the growth stage is not related with the lamellar

ordering mechanism. In the light of previous experiments on the kinetics of formation of

islands and holes [18], systems with various surface coverages of islands or holes have been

studied. Indeed, in terms of kinetics of formation, systems of islands and holes can be divided

in two classes : the concentrated one (high surface coverage) where the kinetics of formation is

fast, collective and characterized by isotropic spatial correlations and, in contrast, the dilute

one (low surface coverage) where the kinetics of formation is slow, individual and without

spatial correlations.

In this report, it is shown that dilute and concentrated systems of islands or holes do not

exhibit the same kinetics of growth and that the ultimate behavior of the copolymer film is to

eliminate as much as possible the incomplete top layer at the free surface.

Experimental.

The symmetric diblock copolymer of poly(styrene-b-butylmethacrylate) P(S-b-BMA), used in

this study, was synthesized by anionic polymerization at the Institute Charles Sadron,

Strasbourg (France). The average molecular weight M~ of the copolymer was 82, 000 with a

total number of segments, N, of 680 and a PS fraction fps of 0.59. The weight to number

average molecular weight ratio M~/M~ was 1.05. All these characteristics have been

determined at the Institut Charles Sadron from size-exclusion chromatography coupled with

light scattering measurements and viscosimetry. The glass transition temperatures of the

blocks were measured by differential scanning calorimetry (D.S.C.) :

T~ (PS )
=

102 ± 2 °C and T~ (PBMA
=

30 ± 2 °C

Films of the copolymer were prepared with thicknesses ranging from 600 h to 900 I by spin
coating a solution of the copolymer in toluene onto silicon substrates (2.5 cm in diameter,
300 ~cm in thickness), previously cleaned by oxidation of the surface impurities by U.V.

irradiation under oxygen flow [36]. Specimens were then dried under vacuum overnight to
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remove residual solvent. By varying both the concentration of the solution and the spinning
speed, the film thicknesses e~~ were chosen in order to obtain, after annealing, either islands or

holes, located in the incomplete top layer lying between 2L and 3 L, with different area

coverages : both dilute and concentrated systems as well as intermediate situations have been

investigated. The different systems of islands will be denoted in the following: CI

(concentrated islands), SCI (semi-concentrated ones), DI (dilute ones) and CH, SCH, DH will

refer to systems of holes as well.

Due to the spin coating process, the perimeter of the specimen exhibits a «
bump

»
with

thickness variations that can be large (up to 6 000 I) [8, 12]. Since this bump of material could

act as a «
reservoir

»
during the annealing procedure, it has been removed in order to avoid any

flow of the copolymer molecules from the perimeter to the central part of the film. For each

film thickness, kinetic experiments have been performed on circular films of two different

diameters ~P in order to detect any influence of the film size on the growth laws [15] :

#
=

24 mm and ~P
=

0.8 mm the latter value corresponds to the smallest film size allowing a

reliable statistical analysis of the kinetics of growth for all the different systems of holes and

islands (I.e. such that the total number of islands or holes is always greater than 100 even after

long annealing times).

The examination of the film surface was made by in situ interference microscopy [8, 12, 14].
The copolymer films were annealed at 140 °C, under nitrogen atmosphere, for the desired

period in a Mettler hot stage fixed onto the stage of the optical microscope. The study of the

kinetics of growth of islands (or holes) on the free surface of the copolymer films consists

mainly in measuring the time-dependence of the mean radius of the islands (or holes). To

obtain an accurate expression of the growth laws, it is necessary to perform the kinetics of

growth over two decades in time at least. On the other hand, in order to avoid any degradation
of the copolymer molecules, the duration of the annealing procedure could not be longer than

two weeks (about 22,000 min.) thus, it was imperative to choose an annealing temperature
such that the stage of formation of islands (or holes) of height L would be as short as possible.
The choice of the annealing temperature has been made by investigating the time-variation of

the height of the islands at different temperatures by Atomic Force Microscopy [18]. In the

case of concentrated systems of islands (CI) or holes (CH), T
=

140 °C was found to be the

right value of the annealing temperature ; indeed, for such a temperature, the formation stage
of the islands or holes lasts less than 100 min allowing a reliable analysis of the growth stage

over a sufficiently long time.

A Reichert Polyvar-Met microscope was used under reflection conditions to obtain

interference colors from the white light source. The aperture diaphragm was closed down to

ensure a parallel beam of light. The use of interference microscopy to investigate the free

surface morphology of thin copolymer films has been previously presented [8, 12, 14]

however, it has to be pointed out that, since each interference color corresponds to a specific
film thickness, this technique is very suitable for detecting the existence of steps, islands or

holes on the free surface. Furthermore, in previous works [8, 12], it has been shown that

interference microscopy was very appropriate to measure the mean period L of a lamellar

stacking. For the copolymer under study, the 2 L and 3 L thicknesses appear respectively as

light-brown and violet interference colors and the mean lamellar period L was found to be

equal to : L
=

300 ± 10 I.

The optical microscope was equipped with a high resolution CCD camera (COHU 4710).

The image analysis has been performed by means of a Visilog 3.6 software (Noesis, France)

most operations were carried out by a Compaq Deskpro 386/20 MHz microcomputer.
Parameters such as the individual area of islands (or holes), the percentage of area occupied by

the islands (or holes), their total number and their size distribution function were extracted in

order to establish the growth laws of islands (or holes).
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Results and discussion.

From a close examination of the images obtained during the kinetics of growth of all the

different systems of islands or holes, several qualitative remarks can be made :

I) the centers of mass of islands or holes are fixed, I.e. there is no diffusive motion of either

islands or holes in the plane of the free surface (Fig. 2) ;
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Fig. 2. Digitized images of optical micrographs of a P(S-b-BMA) copolymer thin film annealed at

140 °C evolution of islands (black patches) with the annealing time : a) 12, 000 min, b) 21,000 min, c)

25,000 min. The size of the images is (150 x 100) ~m2.
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C)

Fig. 2 (continued).

it) three mechanisms are observed : growth of individual island (or hole), coalescence of

neighbouring islands (or holes) and disappearance of the smallest islands (or holes) to the

benefit of the neighbouring largest ones (Fig. 2) ;

iii) the existence of a line free energy ; in the case of dilute systems, islands or holes exhibit

a perfect round shape. Besides, after coalescence, the
« new »

island or hole tends to go back

to a circular shape as the annealing time progresses (Fig. 2). All these qualitative features were

previously identified in the specific case of concentrated systems of islands or holes [14].
Conceming the possible dependence of the kinetics of growth on the sample size, it has been

pointed out that, whatever the system of islands or holes, no influence of the specimen size has

been detectable ; as a consequence, only the data corresponding to the largest samples will be

reported in the following.
As it has been mentioned in previous studies [12, 18], the pattems observed on the free

surface are reminiscent of those observed in systems which exhibit first-order phase transition

with conserved order parameter. For such systems, in the asymptotic time-range, the growth of

clusters obey to power laws versus time [37]. Thus, our data have been intentionally analysed
in terms of power laws ; however, the choice of this kind of analysis has not to be viewed as a

way to anticipate the results.

If we focus first on the concentrated systems of islands (CI) and holes (CH), figures 3 and 4

show clearly that, from the beginning of the growth stage (t m 100 min ), the number of islands

(or holes) per unit area, D, obeys to a power law versus the annealing time : D t~ " with

a =

0.47 ± 0.02 for both islands and holes. The digitized images taken during the whole

growth stage reveal that the three above-mentioned mechanisms are active.

For all the less concentrated systems, the growth stage starts later (the beginning of the

growth stage, I-e- the end of the formation stage, has been defined as the time when the

nucleation rate of islands or holes becomes equal to zero).

For dilute systems of islands (DI) and holes (DH), the end of the formation stage was found

to occur at t 600 min and t 300 min, respectively. As shown in figure 3, for longer times,

the total number of islands per unit area is constant (there are no coalescences and no

dissolutions) while, for holes (Fig. 4), due to occasional coalescences, a very slight decrease
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of D is observed (however, this variation (a 0.02) is within the error bars). In terms of

power laws, the dilute systems correspond to an exponent a
0.

Finally, in the case of the semi-concentrated systems, the formation stage stops for

t 2,000 min (SCI) and t
-~

300 min (SCH). At longer times, in the case of holes, both the
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coalescence and dissolution mechanisms are active while, for islands, only the dissolution

mechanism is observed. The total number of holes per unit area, D, obeys a power law with

a =

0.14 ± 0.02 (Fig. 4). Only one decade in time of the growth stage of islands is accessible

through our experiment ; over this restricted time-range, D verifies a power law versus time

with a =

0.20 ± 0.04 (Fig. 3).
All these observations show clearly that, during the growth regime, the decrease of the

number of islands (or holes) per unit area is even faster that the system is concentrated. Indeed,

the drop in the density of islands (or holes) is directly related to the coalescence and dissolution

rates and the activity of these mechanisms is much higher for concentrated systems than for

dilute ones.

The kinetics of growth of clusters is generally described by the time-dependence of the

average cluster radius [37]. Since the parameter, which was directly accessible from our image
analysis software, was the individual area S~ of each island (or hole), it is the time-dependence
of the average island (or hole) area S~ which has been followed here. S~ has been defined as a

number-weighted average :

~N
" ~i ~> ~i " ~i ~i~~ (1)~ ~~ ~

where n~ is the number of islands (or holes) whose area is equal to S~ and N is the total number

of islands (or holes). The choice of the average is not particularly important because for all the

systems except the SCH one the polydispersity in size, defined asp
=

S~ (area-weighted average)/
S~, was found to be constant during the growth stage. Typically, the P value lies between

l.2 (dilute systems) and 2 (concentrated ones). Figures 5 and 6 show unambiguously that

S~(t) verifies a power law S~ tP for both concentrated systems of islands and holes with

p
=

0.46 ± 0.02 in the case of islands and p
=

0.56 ± 0.02 for holes.

When dilute, islands or holes do not grow once they are formed : over 2 decades in time,

S~ is constant (p =0) as shown in figures 5 and 6; only a slight increase of S~
(p

=

0.08 ± 0.02 ) is noticeable in the case of holes.
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Fig. 6. Time-evolution of the number-weighted average area of holes, SN, (. CH, . SCH, ~ :

DH). S~ has been calculated from the (512x512) pixels digitized images and is given in

~m~. The solid lines refer to the growth stage.

In the case of the semi-concentrated system of islands (SCI), S~ varies as
t°~°*°.°~ during

one decade of the growth stage while, for the semi-concentrated system of holes (SCH), the

time-dependence of S~ is given by t°.~~ *°.°~ for t m 300 min.

The main conclusion, which can be drawn from all these data, is that the growth rate of

islands or holes increases with the concentration of the system. However, it has to be pointed

out that, for both dilute systems of islands and holes, at the end of the formation stage, the

average size of the islands and holes is about 2 orders of magnitude greater than that in

concentrated systems after the same annealing time. The previous results bring up several other

remarks. First, for all the systems of islands, the exponents a
and p, which describe the power

law dependence of the density D of islands and their average area SN, respectively, are equal.
This behavior was expected since, as shown in figure 7, the surface coverage fbS of islands is

constant during the growth stage and by definition, D and SN verifies : D x SN
=

§bS. fbS is

related to the initial thickness e~~ of the copolymer film, I.e. to the amount of copolymer
deposited on the silicon substrate fbS

=
(e~~ 2L)/L. Thus, if e~~ and L are constant,

fbS should not vary with time. On the contrary, in the case of holes, p # a with

p
~ a. This is not very surprising ; indeed, the curves fbS

=

f(t) do not exhibit a plateau
during the growth stage (Fig. 8). The slight increase of fbS with the annealing time can be

described by a power law : fbS tY with y =

0.09 ± 0.02 (CH), 0.07 ± 0.02 (SCH) and

0.06± 0.02 (DH). Within the error bars, y verifies : y =
p a. Since the amount of

copolymer deposited on the substrate is constant, the variation of the surface coverage of holes

is not, a priori, understandable. We will go back to this particular point later on and we will

propose an explanation.
For the concentrated systems, the average size SN of islands or holes follows a power law.

The next step in the analysis of the kinetics of growth of such systems is to check if the size

distribution function of islands or holes, n(S~, t), satisfies a scaling law versus the annealing
time [38]. The time-evolution of the size distribution of both islands and holes is given in

figures 9a and 10a. It is clear that, as time progresses, the maximum of the peak shifts towards

larger values of S~ and the value of the maximum decreases. The data do superimpose onto a
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Fig. 9. Concentrated islands (CI) al the size distribution function of islands n(S,, t) for different

annealing times during the growth stage. S, is the island area in ~m~ and n ($, t is the number of islands

whose area is equal to S, at a given annealing time t b) the renorrnalized size distribution function of

islands n (S,, t)/N. N and S~ are respectively the total number and the number-weighted average area of

islands at a given annealing time t.

where N (t) is the total number of islands or holes and S~ the area of the film surface they

occupy. S~ is given by :

S~
=

n(Si, t) dsi(t (3)
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Fig. 10. Concentrated holes (CH) : a) the size distribution function of islands n($, t) for different

annealing times during the growth stage. S, is the hole area in ~m~ and n(S,, t) is the number of holes

whose area is equal to S, at a given annealing time t b) the renormalized size distribution function of

holes n(S,, t)/N. N and S~ are respectively the total number and the number-weighted average area of

holes at a given annealing time t-

Thus, the size distribution function obeys a universal scaling law and the kinetics of growth is

dominated by a single length (the 2-dimensional Fourier transform exhibits an isotropic ring

[14]). The scaling functions can be written in a usual way [38] :
I(t~ °.~ S~) t°.~~

n (S~, t for

islands and I(t~°.~~S~) t°.~~ n(S~, t) for holes. The latter relation shows clearly that the

surface coverage of holes is not constant with time.
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The growth regime of semi-concentrated systems is also described by power laws. If the size

distribution function of islands verifies a scaling law, it is not the case for the distribution

function of holes. Indeed, as we mentioned it above, the polydispersity in size, P
=

S~/S~,
varies with the annealing time for the SCH sample. Thus, the semi-concentrated system of

holes is not characterized by a unique length (Fig. I I) : S~ t°.~° and S~
-~

t°.~? At the present

time, we do not have any explanation for this specific behavior.
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Fig, ii. Semi-concentrated holes (SCH) time-evolution of both the number-weighted average size,

S~, and the area-weighted average size, S~. Both SN and S~ and S~ (S~
=

in, S)/ iii, S,) are given in

~m~ and have been calculated from the (512 x 512) pixels digitized images.

The dependence of the growth law with the density of islands (or holes) is quite surprising.
Indeed, the kinetics of droplet (or cluster) growth in binary solids [39, 40] or in polymer
mixtures [41] have been extensively studied, particularly with respect to kinetics of unmixing
(nucleation-growth and spinodal decomposition). For such systems which are controlled by

cluster diffusion, the late stage of growth, known as Ostwald ripening [37], is dominated by a

condensation-evaporation mechanism, also called the Lifshitz-Slyosov mechanism [42], and

the theory [42-45] predicts a power law time-dependence for the mean droplet radius with an

asymptotic growth exponent p of 1/3. This value has been found for critical binary mixtures as

well as for off-critical ones and is independent of the dimensionality of the system. In

accordance with the asymptotic behavior of the mean droplet radius, the density of droplets
decays as t~ ~ P (3 dimensions) or t~ ~ P (2 dimensions) and the droplet size distribution function

satisfies dynamical scaling.
In general, an experimental value of p smaller than 1/3 is seen as the signature of an

intermediate, transient stage of growth. Binder [43] has pointed out that the coalescence (or

coagulation) mechanism, which is active for intermediate times, induces a slowing down of

the growth rate. Furthermore, in the case of binary metallic alloys, the typical size of clusters

obeys a power law but the exponent depends on the dimensionality of the system, on the

temperature difference, T T~, and on the concentration difference, c c~, where T~ and

c~ are the critical temperature and concentration, respectively.
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Our results indicate that, even after 2 decades in time, the asymptotic behavior of the growth

stage has not been reached : for concentrated systems, the mean radius of islands and holes

(defined as R~
=

(S~laT )°.~) follows a power law whose exponent is smaller than 1/3 and the

coalescence mechanism is still very active. Furthermore, the growth exponent, as mentioned

above, varies with the density D of islands (or holes). Obviously, the growth laws deduced

from our experiments do not reflect the asymptotic behavior of the time-evolution of the free

surface of the copolymer film. To reach the late stage of growth at T
=

140 °C would need to

study the kinetics of growth over I or 2 more decades in time, I.e. for annealing times

t such as 2 months
~

t ~
2 years. Due to the risk of degradation of the copolymer, it was not

possible to extend the duration of the annealing procedure. Since our aim was to investigate the

latter stages of growth, we chose to make a temperature jump of 30 °C in order to speed up the

kinetics. Another question to clear up was the increase of the surface coverage ffiS of holes

during the kinetics of growth ; this increase could express the thinning of the copolymer film

and could thus be attributed to a spreading of the copolymer over the silicon substrate at the

perimeter of the film upon annealing. Consequently, the investigation of the late stage of the

kinetics of growth has been performed on smaller copolymer films (diameter of about

0.4 mm) ; indeed, such small films are entirely visible in the field of view of the optical
microscope and the analysis of both the central part and the perimeter of the film is possible.

The annealing procedure was the following : 25,000 min at 140 °C + 20,000 min at 170 °C.

Four copolymer films corresponding to dilute and concentrated systems of both islands and

holes have been studied.

Figure 12 shows the evolution of the dilute system of islands (DI) which corresponds to the

smallest excess of copolymer in the top layer. During the annealing at 140 °C, in addition to the

islands created in the central part of the film, a ring of height L is formed at the perimeter of the

sample ; as for larger samples, the number of islands is constant and the individual areas of

both the islands and the ring do not vary with the annealing time. After the temperature jump,

30pm ~

Fig. 12. Time-evolution of the dilute system of islands (Dl). From left to right : before the jump,
T

=

140 °C, t 18 300 min T 140 °C, t
=

24 460 min after the jump, T
=

170 °C, t
=

5 760 min

T
=

170 °C, t
=

16 680 min. The black zones correspond to the 3 L top layer and the grey one to the

2 L layer.
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the evolution of the flee surface is clearly visible : the individual areas of both the islands and

the ring decrease with time and, after about 20, 000 min at 170 °C, both the islands and the ring
have disappeared. Thus, the existence and the duration of the stage of

«
no-growth

»
observed

at 140 °C depends on the annealing temperature. On the other hand, at 170 °C, the kinetics

does not exhibit any evaporation-condensation mechanism and any asymptotic behavior in

t~~~ ; but the evolution is such as to eliminate the 3 L top layer. The evolution of the dilute

system of holes (DH) is basically the same. The major difference is that, after about

20, 000 min of annealing at 170 °C, the 3 L top layer has not totally disappeared (Fig. 13).

'I
-~

.j

"jO pm
..;/ -

Fig. 13. Dilute system of holes (DH) : morphology of the free surface of the thin film after annealing

at 140 °C for 24 060 min plus annealing at 170 °C for 17 000 min. The black background corresponds to

the 3 L top layer and the grey areas to the 2 L layer.

In figure 14, the evolution of the concentrated system of islands is shown. After the

temperature jump, a continuous decrease of the area of the ring of height L is observed there

are no coalescences, the rate of dissolution of the smallest islands is very high, but the size of

the largest ones does not increase with time and is constant. This global behavior of the free

surface does not correspond to the evaporation-condensation mechanism which leads to an

asymptotic growth law in t~'~. As observed in the previous cases, the total area of the

3 L top layer decreases with time and after 20, 000 min, there are no more islands in the central

part of the film, only limited zones of the ring are still present.
For the concentrated system of holes, the jump of temperature induces a significant increase

of the rate of coalescences and the latter mechanism prevails over the dissolution one. Again,
the evolution of the free surface cannot be identified as a Lifshitz-Slyosov process and the
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SO pm -- ?
'~~"

Fig, 14. Time-evolution of the concentrated system of islands (CI). From top to bottom before the

jump, T
=

140 °C, t
=

18 300 min T
=

140 °C, t
=

24 460 min after the jump, T 170 °C,

t
=

5 760 min ; T 170 °C, t
=

16 680 min. The black color corresponds to the 3 L top layer and the

grey one to the 2 L layer.

tendency for the holes to invade the whole area of the film leads to a decrease of the surface

occupied by the top layer (Fig. 15).

The same behavior has been encountered for larger films and we can assert that at 170 °C,

the typical size of islands or holes does not vary as t~~~ during the late stage of the kinetics of

growth. For all the different systems, it is observed that the top layer disappears progressively
with time. We should notice that, at 140 °C, this tendency was only noticeable for the systems

of holes (their surface coverage increases slightly).
The question is now to find an explanation of this phenomenon. The decrease of the area

occupied by the top layer can be seen as a diminution of the film thickness. Since the amount of
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iopm

Fig. 15. Concentrated system of holes (CH) : morphology of the free surface of the thin film after

annealing at 140 °C for 24 060 min plus annealing at 170 °C for 17 000 min. The black background

corresponds to the 3 L top layer and the grey areas to the 2 L layer.

copolymer deposited on the silicon substrate is constant, the thinning could be due to the

spreading of the copolymer on the substrate at the perimeter of the film. No displacement of the

perimeter of the film has been detected by optical microscopy even at a high magnification
(x100). It does not prove, of course, that there is no spreading of the copolymer on the

substrate; indeed, if only a small amount of copolymer flows onto the wafer, the

corresponding shift of the perimeter of the film could be less than the resolving power of the

microscope. A crude calculation of this shift can be made, for example, in the case of the dilute

system of islands (DI). The surface coverage ffiS of islands decays of about 10ffi after

4,320 min of annealing at 170 °C. By assuming that the corresponding quantity of copolymer

«
disappeared

»
from the central part of the film goes entirely to the perimeter of the film, a

displacement of the perimeter of 4.5 ~m is found if both the L and 2 L layers spread ; if only the

L layer flows, the displacement is twice : 9 ~m. In any case, these values are large enough to

be detectable by optical microscopy. Thus, we can conclude there is no spreading of the

copolymer at the periphery of the film and consequently, the thickness of the film does not

decrease.

An alternative could be that the copolymer molecules, which were initially in the top layer,

move into the inner layers as the annealing time progresses. If these molecules are uniformly
distributed in both L and 2 L layers, the number of molecules becomes larger inside each inner

layer ; thus, the area par molecule decreases and the molecule adopts a stretched conformation.

As a consequence, there should be an increase of the lamellar period L and, if the variation of

L is large enough, a change in the interference colors corresponding to thicknesses
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L, 2 L and 3 L should be observable by interference microscopy [12]. A close examination of

the free surface of the copolymer films before and after the temperature jump of 30 °C reveals

without ambiguity a variation in the interference colors. At 140 °C, the observed interference

colors corresponding to thicknesses 2 L and 3 L are light-brown and indigo respectively. At

170 °C, after 7,200min of annealing, the colors change into yellowish-brown and blue

respectively ; from the Newton scale, it corresponds to an increase of L of about 5-10 ffi. It

could be argued that the observed increase of the lamellar period could be due to the thermal

expansion resulting from the temperature jump of 30 °C. Several features suggest strongly that

it cannot be the case. First, in a previous paper [14], it has been shown that a thermal expansion
of L of about 8 ffi was produced by a temperature jump as large as 165 °C (» 30 °C). Thus,

assuming a constant thermal expansion coefficient, a temperature jump of 30 °C should induce

an increase of L of only 1.5 fb. Second, another point is that, for all the experiments we did up

to now at constant temperature, the interference colors do not vary with time when the surface

coverage ffiS of islands or holes is quasi-constant. In contrast, here, after a temperature jump of

30 °C, a continuous change in the interference colors is seen at 170 °C as the area occupied by
the 3 L top layer decreases with time. Finally, the increase of L can be crudely estimated from

the variation of the surface coverage of islands or holes. Let us focus again on the dilute system
of islands. Their surface coverage decays of about 20 fb (remember it was constant at 140 °C)
when the film is annealed for 7,200 min at 170 °C. Assuming that all the molecules, which

have
«

disappeared
»

from the top layer, go equally into both the L and 2 L layers, it is easy to

show that the volume of each inner lamella will increase of about 8 ffi and thus, the lamellar

period is expected to rise of 8 ffi as well. This value is in good agreement with the measured

one.

Thus, our data indicates clearly that the ultimate behavior of the copolymer film is to remove

the incomplete top layer from the free surface, I,e, to eliminate the islands and the holes by
allowing the permeation of the copolymer molecules into the inner layers of the film. The

concept of permeation has been first introduced by Helfrich [46] to explain the high viscosity
of smectic liquid crystals ; indeed, the capillary flow of such materials could not be described

by Poiseuille's law only. More recently, this mechanism has been invoked to account for the

spreading of stratified liquid droplets [47] basically, two types of flow are predicted : shear

between layers and permeation normal to the layers. It could be argued that the permeation of

copolymer molecules should be ruled out since the strong incompatibility between the two

blocks A and B should impede the crossing of an ABBA (or BAAB -) lamella by an

AB molecule. However, it has been shown recently that, even in strongly segregated diblock

copolymer systems having microdomains of species A and B arranged in a regular way, a

polymeric block of A can cross a B domain provided that a small part of the A block is highly
stretched as it crosses the B region [48].

Looking at figures 12 and 14, it is clear that, after 25, 000 min of annealing at 170 °C, the

whole top layer has almost disappeared from the free surface of the film in the case of islands

(for both concentrated and dilute systems) while it is not true for holes (Figs, 13 and 15). It is

not very surprising since, as we mentioned it in the introduction, the formation of holes on the

free surface requires a larger excess of material in the top layer than the formation of islands.

However, the question is whether, for longer annealing times, the holes will or will not occupy

the total area of the film I,e. how much the copolymer film is able to swell and thus what is the

limit of stretching of the molecules inside the lamellae. Experiments are currently in progress

to conclude on this important point.
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Conclusion.

It has been shown that the evolution of the free surface of symmetric diblock copolymer films

results from the competition between several parameters, namely : the interfacial energies
(air/polymer and substrate/polymer), the line tension (islands and holes) and the elastic free

energy of the chains. For short annealing times, during the lamellar ordering, earlier data [18]

have shown that the interfacial energies are prevailing ; indeed, if the thickness of the as-cast

film is not exactly equal to 2 L or 3 L, islands or holes are formed on the free surface in order to

minimize the interfacial energies by putting the PBMA block at both the air/polymer and

silicon/polymer interfaces.

In this paper, it has been shown that, once the islands and holes are formed, I.e, once the

lamellar stacking is built up, their kinetics of growth depends on their intial density. At 140 °C,

for intermediate annealing times, there is no time-evolution of the free surface for dilute

systems while, for semi-concentrated and concentrated ones, the free surface evolves in order

to decrease the line tension : both a decay of the total number of islands (or holes) per unit area

D and an increase of their mean size S~ are observed. The time-dependence of D and

S~ can be described by power laws and results from the competition between 3 mechanisms :

individual growth, coalescence and dissolution. At a molecular level, these 3 mechanisms can

be interpreted in terms of the shear between lamellae [15, 49] however, it should be pointed

out that the slight increase of the surface coverage of holes (whatever their initial density
D) indicates that there is some permeation of the copolymer molecules from the top lamella

into the inner ones. In contrast, this phenomenon has not been detected during the kinetics of

growth of islands ; for islands, the permeation of molecules has been revealed at higher
annealing temperatures (T

=

170 °C ) only.
For longer annealing times at 170 °C, it is clear that the ultimate stage is govemed mainly by

the permeation mechanism ; as a consequence, the copolymer film is able to make the line

tension almost vanish while the elastic free energy per chain increases. The final morphology
of the free surface depends on the balance between the line tension and the elastic energy per
chain.

However, the question arises to know if the permeation mechanism is thermally activated ;

I.e, if, at 170 °C, the permeation mechanism is active at intermediate times of annealing and if

the ultimate stage observed at 170 °C is universal or not. Second, the kinetics of growth will be

faster at 170 °C, the late stage of the growth laws should be accessible and it should allow us to

check if the analysis in terms of a power law is right or not. Thus, kinetics experiments at

170 °C, from the formation of the islands (or holes) to their ultimate behavior, are planned in

the near future. On the other hand, the influence of the film thickness (I,e, of the silicon

substrate) on the kinetics of growth of islands and holes has not been taken up in the present
study, which has been focused on thin films with thicknesses e~~ such as : 2 L

~ e~~ ~
3 L.

Recent studies [35] on very thin films (e~~ ~
L ) has pointed out the important role played by the

silicon wafer on the formation of islands. The next experiments on the kinetics of growth of

islands and holes will deal with thinner (L
~ e~~ ~

2 L) and thicker films.
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