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AbstracL We report here on a systematic time resolved investigation of the transient behavior of

the sponge phase after an abrupt temperature jump. We obtain evidence for three distinct relaxation

times r~, r~ and r~ having very different magnitudes. We show that r~ is related to a conserved

intemal variable while r~ and r~ both correspond to the relaxations of unconserved thermodynamic
variables. We propose an interpretation of the transient behavior based on the idea that the

temperature jump essentially puts the membrane in L~ under transient tension. According to this

interpretation, r~ corresponds to the relaxation of concentration fluctuations, r~ to that of the

degree of symmetry of the structure and r~ to that of its density of connectivity. This picture
actually accounts at least qualitatively for the experimental observation. Moreover, the temperature

dependences of r~ and r~ close to the sponge-to-lamellar transition temperature indicate that this

transition is quite weakly first order.

Introduction.

The anomalous isotropic phase L~ in an amphiphilic system (sponge phase) provides an ideal

experimental realization of an infinite fluid membrane multiconnected along the three

directions of space with no long-range order [1-4]. Equilibrium properties such as the phase
stability and the static structure factor and some dynamical properties close to equilibrium have

been extensively studied and are in the course of being well understood. In comparison,
understanding non-equilibrium properties is in a rather primitive stage [5, 6]. The present
article aims at providing further experimental insights into this problem. More precisely, here

we use the T-jump technique in order to evidence and measure the characteristic relaxation

times that can be relevant for the dynamical properties of the L~ phase.

(*) Associd CNRS.
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The idea of a T-jump experiment is to put the given structure abruptly out of equilibrium by a

sudden increase of its temperature and to follow how it goes to its new equilibrium state at this

new temperature. In the present case, the sudden change in temperature is achieved by
discharging a capacitor through the conducting brine swollen L~ sample. And the relaxation of

the structure is observed using time resolved measurements of the intensity scattered by the

sample. This procedure is here appropriate since L~ phases are known to scatter light very

strongly specially at high dilutions.

Structures in complex fluid often exhibit several degrees of freedom at large scale, each of

them having a characteristic relaxation time. In the favorable cases, these times are sufficiently
different in magnitude and each degree of freedom will relax after the shortest ones are

completely annealed and while the longest ones are still quenched. The different contributions

can thus be resolved separately.
In section I we sum up some backgrounds : we recall the intemal variables that define the

thermodynamic state of sponge phases and the scaling behavior of their characteristic

relaxation times. The experimental facts are reported in section 2. In section 3, we propose an

interpretation of the transient oscillation of I(q) in terrns of the excess surface tension

transiently imposed to the membrane by the AT step. The relevance of this interpretation is

further discussed in section 4.

1. Background.

According to the structure commonly admitted for L~, it is convenient to consider the

schematic drawing in figure I. The basic features are the following. Most of the amphiphile
self assembles into a bilayer defining an infinite surface free of rims and seams. The surface is

isotropically multiconnected to itself in the three directions of space. And it divides space in

two and only two distinct subvolumes vi and v~. Accordingly and following the analysis of

MiIner et al. in [7], we assume that the thermodynamical state of the phase at a given time is

characterized by the average values of three intemal variables :

I) the area density of membrane a per unit volume (proportional to the volume fraction of

amphiphiles #),
it) the connectivity density n per unit volume (density of

«
handles

» or « passages »
in

Fig. I),

iii) the degree of asymmetry Y'between subvolumes v, and v~.

v,~'~vi+v~ 2'
~~

Fig. I. Schematic structure of the L~ phase.
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At equilibrium, a and R are related by a non-linear conservation relation fi a~ expressing
the scale invariance of the structure [4, 5] (the geometrical prefactor is deterrnined by the

equilibrium structure). Since the bilayer is locally symmetrical with respect to its mid surface,

in general we expect #
=

0. (Here we do not consider the very dilute cases where the so-called

inside/outside symmetry [8] is spontaneously broken, at equilibrium, at global scale.)
Out of equilibrium, the conservation relation and the symmetry can be however transiently

broken at global scale. Note that while a is indeed a conserved variable (concentration of

amphiphiles), n and Y'are not. Accordingly, we expect two relevant characteristic times. The

first one, r~, is the relaxation time of the connectivity. It is indeed related to the average life

time r~ of one given
« passage ».

According to [7] it has the forrn :

T~ = To exp ~§ 12)
B

where rp~ is the average frequency of membrane collisions in the passage and E~ is the

activation energy involved in one elementary change in the membrane topology. Then, it is

straightforward to show that r~ has the form :

lk~ T

r~ = r~ (3)
R(a~flan~)

where f is the free energy density of the L~ phase at equilibrium. Simple scaling arguments

discussed at length in [5] then imply that r~ scales like #~~(f~).

The second time,
r q~,

is the relaxation time of the symmetry. It is controlled by the transport

of the solvent from subvolume I to subvolume 2 through the membrane. The hydrophobic core

of the bilayer being presumably quite imperrneable to the brine solvent, we expect

r~ to be rather related to the average equilibrium density of
« pores »

in the membrane [7].

Whatever the actual transport mechanism, we can assume a perrneability parameter

ar~ per unit area of bilayer. So that :

dv,/dt
=

Ap ar~ a (4)

where Ap is the pressure difference between subvolumes I and 2. At equilibrium if
=

0)

Ap
=

0, but more generally

Ap=-fl' ~f~. (5)

We obtain :

rq~ = arj
~~~

d (6)
aY'~

Remembering that d~ # and a~flaY'~~ #~ (from the usual scaling argument [5]), we

immediately see that rq~ scales like #~~ along a dilution line (constant arj).

These relaxation times are here specially important : they define the time scales below which

fi and #
are quenched (and therefore must be considered as conserved variables) and beyond

which they are annealed (unconserved). Attempting to predict their relative magnitudes would

be rather speculative since they are presumably strongly system dependent (due to the

perrneability factor ar~).
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2. Experimental facts.

The experimental set up has been described in detail in [9]. The amplitude AT of the T step
imposed to the sample (typically a few tenths of a °C) is adjusted by monitoring the charge
tension of the capacitor. A xenon-mercury lamp is used to illuminate the sample. Incident

monochromatic wavelengths are selected using interferential filters : A
=

577 nm and 405 nm.

The scattered intensity is collected at two different angles off the incident beam. Combining
wavelengths and angles, four values of q's are available (q=0.50x10~ cm~',

q=
0.72 x

10~ cm~',
q

=

2.05 x
10~ cm~ ~, q =

2.92 x
10~ cm~ ~) so that the q dependence of the

relaxation times can be estimated.

The system investigated is the system CPCI/hexanoljbrine (0.2 M Nacl) for which we have

previously collected the most complete set of structural data [I]. We studied three samples in

the L~ monophasic domain. Their composition in CPCI and hexanol (Tab. I) are chosen so that

they roughly correspond to the same dilution line. Comparing the data obtained on these

samples, we can estimate the dependence of the relaxation times as a function of the volume

fraction # of membranes (#
=

0.026, #
=

0.053, #
=

0.072). Actually we could not

investigate more concentrated samples for which the response is too low and therefore the

signal-to-noise ratio does not allow an appropriate resolution.

Table I. Composition of the investigated samples. T~~~L~ is the temperature of the

L~ to L~ transition.

GPO (g/lOOg) n-hexanol (g/lOOg) , T~ _+ L~

1.09 .41 0.026 15°C

2.28 2.72 O.053 8°C

3,ll 3.57 O.072 1°C

In contrast with other systems [lO], the L~ phase in the present system does not show the

characteristic critical behavior related to the spontaneous Y'symmetry breaking at high
dilutions. Upon increasing dilution beyond #

=

O-O I I, the L~ phase here rather stops swelling
and simply phase separates expelling excess brine. So, at equilibrium, the L~ phase of the

present system has the structure of a symmetric sponge (Y'= O) all over its domain of

stability. On the other hand, the L~ structure of the three samples investigated has a limited

temperature range of stability : more precisely, all three samples eventually phase separate

with the L~ phase (swollen lamellar phase) upon decreasing temperature. The transition

temperatures respectively measured for each sample are given in table I. We perforrned T-

jump measurements at different temperatures, and so we could evidence interesting slowing

down of two relaxation processes when approaching the L~ to L~ transition temperature.

Usually, in a T-jump experiment, the scattered intensity varies monotonically from its initial

to its final equilibrium values, thus reflecting the monotonic evolution of the system towards
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its final state. In the present case of sponge phase samples, the behavior is very different : a

typical response is represented in figure 2. First we note, that the initial and final values of the

scattered intensity are very close to each other. This is actually consistent with static light
scattering data which have shown that the intensity scattered by sponge phases at equilibrium
is quite insensitive to temperature : typically a few percent variation or so per C. But what is

especially impressive here, is the very large oscillation of I (q ) observed transiently in between

the two almost identical initial and final values. The amplitude of the oscillation reaches in the

most favorable cases (most dilute sample with AT
~

O.5 °C) about 30 fb of the equilibrium
values. The amplitude of the effect appears to be roughly linear with the amount of energy

injected by the electric discharge into the sample (I.e. linear with An as shown for an example
in figure 3. Owing to this non monotonic variation having a large enough amplitude, the

transient behavior of the sponge phase can be investigated with a reasonable accuracy.

We clearly observe three distinct time ranges in figure 2b with which we associate the

respective characteristic times r,, r~ and r~. We performed many measurements varying the

experimental conditions in order to deterrnine the variation of the transient behavior versus the

variations of the three experimental parameters : q, # and T. For all sets of experimental
parameters, the general transient pattem remains similar in shape to that of figure 2b : only the

magnitude of the amplitude and of the relaxation times rj, r~ and r~ changes from one set to

the other. We sum up below the results of this systematic investigation.
During step I, the intensity first increases quickly. For the most concentrated sample

#
=

0.072 at high q (q
=

2.05 x
lO~ cm~ and q =

2.92 x
lO~ cm~ ~) this step is too fast to be

analyzed within the time resolution of the experimental set up. The situation is better with the

other two samples. Actually, the I (q ) increase is not well fitted with a single exponential, and

a more detailed analysis is made uneasy due to the onset of the following step 2 where the

I(q) variation changes sign. In spite of this difficulty, the order of magnitude of

ri can be estimated. As shown in the example given in table II, it appears to be proportional to

0.

I
o.io

- oI ~

o.05

~ f
~

- o.oo

-o.05
io2 io~ 11o' 1os itf 10~ 10~ i0' 1°~ i°~

time In mlcrosecondes time In microseconds

a) b)

Fig. 2.-a) Evolution of the turbidity (intensity over all q's) as a function of time after the

AT step. The horizontal straight line corresponds to the initial value. Sample #
=

0.053, T
=

35 °C,
AT

=

0.5 °C. b) Evolution of the intensity scattered at q =

2.92 x
10~ cm~ as a function of time after the

AT step. Same sample and experimental conditions as in figure 2a but T 19 °C.
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Fig. 3. Amplitude of the oscillation of I(q) as a function of the AT step. Sample #
=

0.053,

T
=

19 °C, q =
2.92 x

10~ cm~~ The effect is roughly linear versus AT.

Table II. rj, r~ and r~ at different q~'s. Sample #
=

O.053, T
=

17 °C.

q2 (lO+lo cm"2) ~~ (mS) ~2 (mS) t3 (mS)

O.51 2.5 24 490

0.25 4.9 27 460

q~ ~ Moreover, when r, can be estimated with enough accuracy (dilute samples and low q's),

it happens to be quite close to the characteristic time measured by quasi-elastic light scattering
under the same conditions (proportional to #~~ and q~~). Therefore it is reasonable to

associate step I with a diffusion process having basically the same dynamics as the

spontaneous concentration fluctuations in the sample. On the other hand, ri shows no

appreciable temperature dependence with no particular slowing down when T approaches the

L~ to L~ transition temperature.
During the second step (step 2), the scattered intensity decreases down to a second

interrnediate value. For the two most dilute samples (#
=

O.026, #
=

O.053), the first two

steps have characteristic times sufficiently different in magnitude making so the analysis
reliable. At the beginning of step 2, the scattered intensity starts decaying in a non-single
exponential way and within times that are q-dependent. After a while, however, the

I (q) decay becomes single exponential and q-independent (see Tab. II for an example). This

characteristic time, which we hereafter denote r~, decreases very fast upon increasing
concentrations. In order to illustrate this steep # dependence, we have plotted in figure 4 the

evolutions of r~ versus temperature for the two most dilute samples. Actually, these evolutions
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Fig. 8. Amplitude A~ related lo r~ as a function of T. Same sample as in figure 7 (4 0.053).

A~ vanishes close to T*.

r~ is found to scale as # ~ On the other hand, r~ is found to vary in a steeper way than

# ~
or even # ~~ From this observation, we should conclude that r~ corresponds neither to

r~(#~~)
nor to

r~(#~~). However, we must keep in mind that the scaling law for

r~ (6) is obtained assuming that the permeability of the membrane is the same in samples of

different concentrations # (identical density of pores). This condition is in principle satisfied

along an exact dilution line where the chemical composition of the membrane in surfactant and

cosurfactant is exactly constant. In the present system, the n-hexanol has an appreciable
solubility in the brine solvent and we know of no means to be sure of what proportion is

molecularly dissolved in the solvent and what is actually involved in building up the bilayer.
Hence, there is very little chance for our three samples to belong to the same exact dilution

line. Finally, the most we can say at the present time is that the steep # dependences observed

for r~ and r~ are qualitatively in favour of the idea that they correspond to r~ and

r~, respectively.

3. Interpretation.

The transient behavior of L~ after the T-jump is very unusual. Instead of the classical

monot6nic variations of I (q ), we here observe a large amplitude oscillation in between almost

identical initial and final values. In section I, we mentioned that any thermodynamical state of

L~ can be defined by the average values of the three intemal variables : a, n and Y'. The first is

a conserved variable while the other two are not. Interestingly, vi is found to vary like

q~~ while r~ and r~ are independent of the wave vector, ri thus corresponds to a diffusion

process and therefore is related to a conserved quantity. On the other hand, r~ and

r~ are typical of the relaxation of unconserved quantities. It is therefore tempting to relate

r, to a and r~ and r~ to the other two variables I,e. Y'and n (or conversely). This idea is further

supported by the observation that r~ and r~ show steep dependences versus # which seems

consistent with the scaling expectation for r~(#~~) and r~(#~~). We must keep in mind

however that I (q) essentially measures the q-component of the concentration fluctuations in

the sample. Therefore, the evolutions in time of the intemal variables are here probed through
their indirect effect on the osmotic compressibility of the sample.
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The purpose of the electric discharge through the sample is indeed to generate a quick
temperature variation in the mixture. Act~lally, the time constant of the capacitor plus the

resistance of the cell are extremely short (« I m ) so that the sample is homogeneously driven

to the new temperature T + AT much before any structural relaxation can occur. The effect of

the temperature variation on the final values of the susceptibilities related to the three intemal

variables is presumably very mild since I(q) is almost identical in the initial and final states.

However, one of them at least is subjected to strong transient variations, and this is what we try

to interpret hereafter.

We expect that the AT step has two very quick effects. First, it will slightly enhance, the

amplitude of the therrnal curvature fluctuations of the membranes of wave vectors larger than

d~ where d is the characteristic structural length (diameter of the average « passage » see

Fig. 2). Due to the high q range involved, the rise time for such enhancement of the membrane

roughness is certainly shorter than any large scale structural relaxation. The second effect is

related to the chemical components of the membrane which both (but more especially hexanol)

have finite solubilities in the brine solvent. The solubilities increase with the temperature and

AT will thus lead to a dissolution of a small portion of the total area of membrane into the

solvent. This effect takes place at the molecular level so that we expect again its characteristic

time to be very small and unobservable. Both the enhancement of the membrane roughness and

the partial dissolution have as a basic common consequence to put the membrane under

transient tension.

Besides the simple AT step, other effects of the electric discharge might plausibly occur. It is

known that, when submitted to moderate altemative electric fields, lipid bilayers oscillate

accordingly. This reveals that the pressure of the free ions onto the membrane due to the

electric field is capable of moving the bilayer. In the present experiment, where the transient

electric field is of the order of a kV/cm or so, we could imagine that the multiconnected

structure of L~ might well explode completely due the transient excess local pressure.
However, a similar transient destruction of the structure can be achieved by vigorous
sonication. In this case, the mixture recovers its characteristic streaming birefringence after a

few minutes which is much longer than the longest relaxation time observed in the T-jump
experiment. So we believe that the structure of L~ is not totally destroyed after the electric

discharge. This guess is further supported by the fact that the response is roughly proportional

to the electric energy dissipated in the sample (Fig. 3). The possibility remains however that

small pieces of bilayers are tom off the infinite membrane by the pressure strike induced by the

transient electric field. The small pieces would then immediately close up in the forrn of

vesicles decorating the remaining infinite surface. Also, the holes reminiscent of the tom

pieces would anneal within extremely short times (small holes). Then the retum back to

equilibrium requires that the small vesicles reintegrate into the infinite membrane. This implies
local fusion of membranes and therefore would take quite a long time typically of the order of

r~. So, here again, this mechanism leads to a transient reduction of the total area of bilayer
available in the infinite membrane and therefore put it under tension.

We assume hereafter that this transient excess tension is the leading out of equilibrium
therrnodynamic parameter to be relaxed along the next steps and structural changes.

At the end of this initial very quick step (basically unobservable), the large scale structure of

the infinite surface is just the same as before the AT step (same fi~~~, fi and #) but it is now

under tension. Note that, here and below, a~~~ represents the
«

effective
» area density of

surface : we mean here the area value that remains after having integrated or smoothed out the

short wavelength therrnal ripples of the surface (see Refs. [5, II ] for more details). Within this

frame, although we expect a reduction of the true area of membrane (d) just after the

discharge, the effective area (b~~~) remains unchanged as long as no large scale structural
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changes have taken place. In this sense, the tension is related to the transient misfit between the

«
effective

»
and the

« true » area densities.

Any mechanism allowing the average density of effective area a~~ to decrease towards its

new equilibrium value b~~~(T + AT) (< d~~~(T)) will release some of the excess tension. On

time scales much shorter than r~ and rq~, both fi and Y' must be considered as frozen. But in

spite of these constraints, there remains the possibility to partially release tension through

enhancement of the low q's (q « d~ ') fluctuations of Y'(r). This possibility is quite clear when

considering again the schematic drawing of figure I. Starting from the symmetric picture and

making a parallel displacement of the surface either towards the I or towards the 2 subvolume

actually yields a symmetrical reduction of the effective area of the surface. Accordingly, we

can express a~~~ in the forrn :

aeff ~

a* (1 a0
~'~) (7)

where a* represents the effective area density for a structure with the same connectivity
density but with everywhere Y'(r)

=
O, and where ao is a geometrical factor of order unity.

The absence of a terra linear in Y'simply expresses the intrinsic local symmetry of the

membrane. In (7), it is obvious that an increase of the average square amplitude of the Y'

fluctuations (around #
=

O) will reduce a~~~ and ultimately relax part of the excess tension.

More generally, our statement is that the tension renorrnalizes (enhances) the susceptibility of

Y'and owing to the quadratic coupling between Y'(r) and the local concentration discussed at

length in [8], the tension ultimately drives the variations of the scattered light intensity.
To make this picture more rigorous, it is convenient to build up a simple Landau

Hamiltonian. The scale invariance of phases of fluid membranes discussed at length in [5]

implies a very simple forrn for the free energy density of the phase :

f
=

ha +
Ba~ (8)

where we neglect the logarithmic corrections [5, 8] which here have no dramatic consequences.

A is independent of the actual large scale structure of the phase, but, on the other hand, B

depends on the intemal variables n and t We therefore expand B in the forrn :

B =Bo +B"~
~~

~~~' ~'~
)~+B'Y'~+DY'~ (9)

I(a, Y')

where I(a, Y') represents the optimum value of n at fixed a and Y'. Note that the couplings

between n, a and Y'are entirely specified by the definition of the optimum value

I(a, Y').

And therefore there is no terra of order l~ ~~~' ~'~
Y'~. According to the scale

(~,
Y')

invariance and to the symmetry in Y', i(a, Y') takes the forrn :

I(a, 9~)
=

~a3(1
+ a

9~2) (to)

where ~ is a geometrical factor characterizing the equilibrium large scale structure, and

a =

3 ao. Combining (8), (9) and (IO), we can specify the appropriate therrnodynamic
potential :

~P =f-»a (11)
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which is minimum for the equilibrium values of a, R and Y'(= O) (imposing the actual

concentration a of the sample determines p). Let ao and no= ~a( be appropriate reference

values :

a = ao (1 +
~~

and n = no
1

+
~~

(12)
ao no

Then ~P can be taken of the form :

~P
=

~Po(ao, no, o) + ha
~~

,

~~

,

v/ (13)
ao no

A~P is the appropriate Hamiltonian H. Specifying ao to be such that: (A p)ao+

Bo al is minimum, one obtains after some manipulations :

+ B' Y'~
+ (D

~ ~'~
Y'~ (14)

4 Bo

In (14), the equilibrium Hamiltonian is diagonalized and expressed in temls of three

independent variables that are linear combinations of the initial variables a, n and Y'. Far from

critical conditions, we can neglect the influence of the Y'~ term and H is Gaussian. In this limit,

it is in principle possible (although probably quite complicated due to the couplings between a,

n and lfi~ to compute (a(O) a(r)) and so to derive the I(q) pattem at equilibrium.
But our purpose is different : it is to understand the effect of the transient surface tension on

the susceptibilities in (14). Just after the AT step, the
« true » area density is forced towards a

lower value while the connectivity density is still quenched at its initial value, this transient

misfit being at the origin of the tension. Corresponding to these transient constraints on

a and fi, we introduce two Lagrange multipliers and define H,

H, =H+ y(t)a+ v(t)n (15)

where y (t) represents the transient tension and v (t) is the transient chemical potential of the

connectivity which maintains fi at its initial value in spite of the tension. Then Hi takes the

form :

+ (y (t ) ao

a 2 Bo n
a

+ B(

4 Bo

~ ~

l(
y (t ) ao + 3

v
(t ) no ) v (t no a

B( ao
=

B'ao + (17)
2 Bo al B' al
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Considering (16) and (17), we see that, as expected from the former qualitative discussion,

the transient tension here expressed by y(t) (and v (t)) essentially modifies the susceptibility

of t Besides, the susceptibilities of the other two independent variables involving also n and a

remain unaffected.
Minimizing H, versus Aala and An/n and imposing that the forced transient equilibrium

values are

~~
(T + AT) and

~~
(T + O)

= we eliminate y(t) and v(t). Then B( takes the

a n

simple following form

B( mB'(1 +
2~~

a

3
A

~~
+ a

AY'~(t)))
B a AT

with : A
~~

=

~~
(T + AT)

~~
(T + 0) (18)

a AT a a

and :
Afl'~(t)

=

fl'~(t) fl'~(o)

and with this convenient expression we are in a good position to analyse the time evolution of

the scattered intensity.
Just after the T-jump (t

=

O), the area of membrane is abruptly shifted down by an amount

represented by A
~~

(<O). Since nothing else happens at the very beginning
a AT

/(t
=

O) is still at its initial value so that Y'~(t
=

O)
=

O. According to (18), the inverse

susceptibility B( of Y'is thus shifted down by an amount that can be large provided that

B"/B' is much larger than I. Therefore the therrnal fluctuations of Y'have the tendency to

increase and correlatively (owing to the coupling) so does the scattered intensity. However, on

short time scales (« rq~) the membrane is imperrneable to the solvent. Thus increasing
(

fl~q Y'_
~

) implies transport of solvent over distances of the order of q~ ~. Correlatively, some

amount of membrane area is also transported from places where 1l'~ is higher towards places
where it is lower. Therefore the corresponding increase in I (q) essentially takes a time of the

order of the diffusion time (~q~~) that can be measured by classical quasi-elastic light
scattering at the same wavevector. This is basically what we observe during the step

r, in figure 2.

Accordingly, we expect the higher q's fluctuations of Y'to increase faster than the lowers

q's. So just after the AT-jump only the highest q's fluctuations of Y'are enhanced first.

Afterwards, as time goes on, this excitation propagates progressively along lower q's and

correlatively Y'~(t) increases monotonically and therefore relaxes more and more the excess

tension. This feed back effect actually appears in (18) where the monotonically increasing terra

A Y'~(t compensates more and more the initial effect of A
~~

on the Y'susceptibility as
~ AT

time goes on. Thus, after the time range r,, A Y'~(t ) keeps increasing due to the excitation of Y'

modes of wave vectors smaller than that of the observation and B( increases accordingly
(Eq. (18)). Then the intensity I (q) scattered at the wave vector of observation starts decreasing
at t ~ ri As long as t < rq~, Y'remains a conserved variable and the initial steps of the

I(q) decay (at t ~
r,) remain q dependent and not single exponential. However, when t

becomes larger than rq~, the perrneability of the membrane becomes efficient and Y'is no

longer a conserved variable. Then all the very low q (such that (Dq~)~
~ r q~

where D is the

diffusion coefficient) Y'modes are excited together with the same characteristic time

Tp which becomes therefore also the characteristic time of the partial tension relaxation.

Accordingly, the tail of the I (q) decay during the step r~ should be q independent and single
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exponential. Again, these qualitative expectations on the I (q) decay actually agree nicely with

what is reported in the experimental section.

So, at the end of step r~, the structure has reached an interrnediate equilibrium state where

the initial surface tension related to the misfit between a and fi is relaxed as far as possible by

the drift of Y'~. As time goes on further, fi is now allowed to relax with the characteristic time

r~. So, during the step r~, the misfit between § and fi progressively vanishes and all variables

progressively shift towards their final equilibrium values. Correlatively, I (q) should reach its

final value in a single exponential way within the time r~. Again this picture is consistent with

the experimental fact that r~ is single exponential, q independent and #~~ dependent.

4. Discussion.

The challenging experimental fact was the observation of the large amplitude oscillation of the

scattered light intensity between two almost identical initial and final values. Our interpre-
tation, based on the surface tension induced by the transient misfit between the surface area

density and connectivity density, is actually capable of explaining this fact provided that

B"/B' is very large. Moreover, it accounts at least qualitatively for the time evolution of

I(q).
So, we expect that I) rj is the diffusion time corresponding to the collective diffusion of

concentration fluctuations it) r~ (or more precisely its single exponential tail) is rq~ the

relaxation time of the symmetry and iii) r~ is r~ the relaxation time of the connectivity. If our

interpretation is correct, the T-jump technique then appears as a very powerful technique
providing detailed inforrnation on the dynamic of the sponge phase.

However, some points must be discussed at little bit further. A basic assumption of our

interpretation is that the respective susceptibilities of Y'and n have very different magnitudes
(B"/B'» I ). At the present time, we do not know how to measure these two quantities

independently. However, as discussed at length in [8], the static structure factor of

L~ phases at least bears two components having different q dependences : one arises from the

indirect contribution (via the quadratic coupling) of Y'fluctuations and the other one arising
from the direct fluctuations of # (membrane concentration). Static light scattering measure-

ments perforrned on various systems [5, 8, lO] (among which the present one) have shown that

the Y'contribution is always appreciable. Since the coupling between Y'and # is quadratic
(and therefore weak) this implies that, even far from critical conditions (moderate # range) the

susceptibility of Y'is very much larger than that of #. This observation is indeed in favour of

our assumption but we cannot conclude definitely in the absence of any estimate of the

susceptibility of n.

B" actually controls, in our picture, all characteristic features of the I (q) oscillation. The

higher is B ", the stronger the transient tension. Since the amplitude AI/I of the transient effect

is related to that of the transient tension, we expect that a lower B" will deterrnine lower

amplitudes. On the other hand, as shown in a preceding section :

r~ = r~ (a~flan~)~~

Since a2flan~
~

B", r~ is again directly controlled by the actual value of B". Although the

L~
-

L~ phase transition is actually first order, we may consider that when approaching the

transition temperature the structure hesitates more and more between a high connectivity
density (L~) and a very low connectivity density (L~). We therefore expect B" to vanish

somewhere below (but close to) the transition temperature. So, the experimental observations

of diverging r~ (Fig. 7) and vanishing A~ (Fig. 8) are again consistent with our picture. The

situation with r~ (Fig. 5) is not as straightforward. In order to interpret rigorously its evolution
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with T, one has to work out completely the time evolution of (1l'~(t)) including the feedback

effect on the transient tension y(t) (see expression (15), (16) and (18)). This is a difficult

procedure which is presently beyond our capabilities. So, although the evolution of

r~ in figure 5 seems natural in comparison with that of r~, we can stress no definite statement

on its consistency with our description at the present time.

There is a point however where our interpretation fails to provide a very clear explanation.
This point is the level of the scattered intensity in the interrnediate transient equilibrium state at

the end of step r~. In figure 2, this level is clearly below the initial and final levels, and this

observation pertains whatever the values of #, q and T. In our interpretation, 1l'~ in the

interrnediate state is larger than both Y'(o~ and Y'(~~ so we expect that, consistently with this

enhancement of Y'fluctuations, I(q) should be above rather than below the initial and final

values. Indeed, one might object that this expectation is implicitly based on the assumption of a

monotonic connection between the average square amplitude of Y'fluctuation and the

measured intensity. Actually, the scattered intensity measures
(a~a_q). It is nevertheless

indirectly sensitive to changes in the Y'fluctuations through the terrns in H (or H,) that couples
Y'~, n and a. Since these couplings are quite complicated, the postulated monotonic connexion

should be questioned in more detail. Nevertheless, it seems unlikely that a more complex
connexion would explain the systematic puzzling observation. Another possibility is that the

AT steps that are sufficient to produce an appreciable AI(q) response, actually induce a

transient excess tension large enough to trigger the symmetriclasymmetric transition. In this

picture, the initial increase (r, ) of I (q) would correspond to a spinodal decomposition related

to the transiently negative value of B(. The lower level of I(q) after r~ (or r~) could be

explained by the well known fact [8] that the asymmetric L~ scatters light less than the

symmetric one. However, this scenario, involving the symmetry breaking at large scale,

implies that some well defined threshold exists for the AT step beyond which the transition is

triggered. The experimental observation (Fig. 3) rather indicates a quite linear variation the

I(q) oscillation. In order to investigate this point in more detail, we perforrned some

measurements under very low AT steps (less than O.I °C). It seems that a threshold actually
exists but the signal to noise ratio of the response under such a low excitation is not good
enough for any definite statement. Clearly, more experimental work is to be done in order to

clarify the puzzling point reported in this last paragraph. We are presently in the course of

improving the design of the experimental set up and we hope that we shall soon be able to

investigate the very low AT range.

References

[Ii PORTE G., MARIGNAN J., BASSEREAU P., MAY R., J. Phys. France 49 (1988) 511.

[2] GAzEAU D., BELLOCQ A., ROUX D., Europhys. Lett. 9 (1989) 447.

[3] STREY R., SCHOMACKER R., ROUX D., NALLET F., OLSSON U., J. Chem. Sac. Faraday Trans. 86

(1990) 2253.

[4] PORTE G., APPELL J., BASSEREAU P., MARIGNAN J., J. Phys. France 50 (1989) 447.

[5] PORTE G., DELSANTI M., BILLARD I., SKOURI M., APPELLJ., MARIGNANJ., DEBEAUVAISF., J.

Phys. ii France 1 (1991) 1101.

[6] SNABRE P., PORTE G., Europhys. Lett. 13 (1990) 641.

[7] MILNER S. T., CATES M. E., Roux D., J. Phys. France 51(1990) 2629.

[8] ROUX D., CATES M. E., OLSSON U., BALL R. C., NALLET F., BELLOCQ A. M., Europhys. Lett. II

(1990) 229.

[9] CANDAU S., MERIKKI F., WATON G., LEMAR#CHAL P., J. Phys. France 51 (1990) 977.

[10] COULON C., ROUX D., BELLOCQ A. M., Phys. Rev. Lett. 66 (1991) 1709.

[I ii DAVID F., LEIBLER S., J. Phys. II France 1 (1991) 959.


