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Abstract. The larrellar phase of two binary systems, AOT/water and DDAB/water, is studied

by X-ray or neutron scattering techniques, along dilution lines. We observe on both systems a large

wave vector diffuse scattering with the following features : I) its shape is independent of dilution

it) its intensity scales linearly with the bilayer volume fraction iii) it is sensitive to the scattering
length density profile of the arrphiphilic bilayer. With the help of a model combining geometry of

the bilayers and layer displacement fluctuations, we quantitatively describe our data. This allows

us to ascribe the diffuse scattering to the strongly enhanced thermal diffuse scattering which

originates in the Landau-Peierls instability characteristic of the smecticA symmetry of our

systems. The model has two important consequences : I) the form factor of the arrphiphilic bilayer

may be extracted from the large wave vector diffuse scattering ; it) the Bragg peak intensities,

modulated by the bilayer form factor, also depend on the amplitude of the thermally-excited elastic

waves, I.e. on the magnitude of the elastic constants.

Introduction.

An interesting variety of structures and behaviours are encountered in the study of the

surfactant/solvent systems also known as lyotropic phases. In many cases the building unit has

locally the shape of a membrane, I.e. a planar bilayer of surfactant molecules. Examples of

such structures, with different long-range or intemal symmetries are, for instance lamellar

(L~ or cubic phases and
« sponge » (L~ ) or vesicle phases [1-5]. The membranar nature of the

building units is often established through a determination of the form factor, using radiation

(X-ray, neutron) scattering. The form factor may be directly seen in the high wave vector part
of the scattered spectrum, for disordered structures [e. g. 2, 3] or indirectly reconstructed from

the height modulation of the Bragg peaks arising in long-range-ordered lamellar [4] or cubic

[5] structures. Another method yet is routinely used for the measurement of the form factor of

the building unit in one-dimensionally-ordered structures : it takes advantage of the (usually
strong) diffuse scattering present in such systems [6], arising from displacement fluctuations

about the ideal lattice positions. These fluctuations are often described in purely geometric

terms, as a so-called
«

stacking disorder
»

[6, 7], but their thermal origin, especially in the

vicinity of phase transitions between differently ordered structures is mentioned [8]. In this

paper, we reconsider the interpretation regarding the diffuse scattering in one-dimensionally-

JOURNAL DE PHYSIOUE ii T 3, N' 4, APRIL 1993 20



488 JOURNAL DE PHYSIQUE II N° 4

ordered systems : we show that the thermally-induced layer displacement fluctuations in

lamellar (smectic A) phases, ultimately controlled by the magnitude of the elastic constants of

the smectic structure, account quantitatively for the Bragg and diffuse components of the

scattering. As a consequence, the product fi K of two elastic constants may be measured from

the spectra, in addition to the usual structural parameters.
We first present our X-ray and neutron scattering results on two lyotropic lamellar phases.

Besides the Bragg scattering, with a form factor modulation of the peak heights, our results

also display a significant diffuse scattering at large wave vectors. Then, we quantitatively
interpret the Bragg and diffuse components of the scattering with a model of the lamellar phase
that takes into account both membrane geometry and the thermodynamic origin of the layer
displacement fluctuations. This results in : I) bilayer form factor parameters, as in recent works

on the same or similar systems [9, 10] it) elastic constant estimates. The generalization of our

model to other weakly bound structures with long-range translational order could open new

perspectives for the determination of both form factors and elastic constants.

Experimental results.

We have studied the lamellar phases of two binary surfactant/solvent systems : AOT/water

(AOT is bis 2-ethylhexyl sodium sulphosuccinate) and DDAB/water (DDAB is didodecyl
dimethyl ammonium bromide). The AOT surfactant has been used as received (Sigma Corp
purity 99 fb) ; DDAB was synthesized (dimethyldodecyl amine alkylation in lauryl bromide)
and purified (two recrystallizations in ethyl acetate and one in ether) in our laboratory.

Surfactants have been mixed with Milli Q water (Waters Co.) or with heavy water (CEN-

Saclay) in amounts chosen to get lamellar samples at room temperature, according to the phase
diagrams of the AOT/water [I I] or DDAB/water [10] systems. For X-ray experiments (on the

AOT system only) samples are held in sealed thin-walled glass tubes (diameter D
=

1.5 mm,

thickness e
=

0.01 mm). Spectra have been recorded on a home-made camera (copper rotating
anode operating at 18 kW graphite monochromator set to the A

=

1.54 h line ; collimation

with slits; scintillation detector with background 0.6 s-I). Neutron spectra have been

obtained with AOT/D~O or DDAB/D~O samples held in I or 2 mm quartz cells, at

Laboratoire L60n-Brillouin (CEN-Saclay, France) on beam lines PAXE (AOT) or PAXY

(DDAB). Both X-ray and neutron scattering experiments have been performed at room

temperature. On the dilution line for the AOT system, the surfactant volume fraction

4 ranges from 4
=

0.60 to 4
=

0.14; for neutron scattering experiments with DDAB,

4 ranges from 0.08 to 0.03. Except the most concentrated AOT sample (with a transmission

0.48), all samples have transmissions in the range of 0.7, which ensures that double or multiple
diffusion does not contribute significantly to the spectra.

The AOT neutron scattering spectra are displayed in figure I. Bragg peaks are observed all

along the dilution line. When present, second order reflections are observed at twice the wave

vector of the first order ones, as expected for a smectic long-range order. The location of the

first order peak qo moves towards small wave vector values according to the simple dilution

law, qo cc 4, as the surfactant volume fraction 4 is decreased. This classical behaviour is

consistent with a simple geometric model of the lamellar phase, described as a periodic stack

with period d= 2 gr/qo of planar membranes of thickness (see Fig. 2) which yields

qo
=

2 gr4/&. This
«

geometric
»

thickness, deduced from the neutron data is
=

22 h.

More complex is the effect of dilution on the ACT X-ray spectra. First, as already noted long

ago [12], there is an intensity anomaly for surfactant compositions # in the range 32-44 fb. It is

apparent in figure 3 that the normalized height of the first order Bragg peak starts decreasing as

4 decreases to become equal to the height of the second order Bragg peak at 4
=

0.48

(Fig. 3b) and even vanishes at 4
=

0.38 (Fig. 3d). At this latter concentration the first and only
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Fig. I. Intensity profiles in the neutron scattering experiment on AOT surfactant volume fractions,
from a) to e) : 0.62, 0.43, 0.37, 0.30 and 0.18 the intensity units are arbitrary.

observable peak is therefore the second order peak. At lower concentrations (4
=

0.3 and

below) the first order peak reappears at the position expected from the simple dilution law. The

membrane thickness we get is
=

21 h (&
=

19.55 h in reference [12] ; differences in water

content of the surfactant used could explain this discrepancy). The wave vector dependence of

the normalized intensity of the first and second order X-ray Bragg peaks is plotted in figure 4.

The vanishing of the peak height is clearly visible around q
=

0.12 h~
~.

Further, all the AOT X-ray spectra display in addition to the Bragg peaks a significant
diffuse scattering, which appears as a broad hump in the intensity curves for wave vectors

between q m
0.I A~ ' and q m

0.5 h~ Such a signal is not observed on the neutron spectra
(compare for instance Fig. le with Fig. 3e). The shape of the diffuse scattering does not vary

appreciably along the dilution line. This is shown in figure 5 where the X-ray scattering data

for three different AOT volume fractions have been superimposed in normalized units

(intensities divided by the thickness, transmission and surfactant volume fraction of the

samples). It is noteworthy that the small wave vector minimum in the diffuse scattering occurs

at about q =

0.12 h~
~, i.e. at the very position where the first order Bragg peak intensity

vanishes.
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Fig. 2. Geometrical model of a lyotropic larrellar L~ phase the planar surfactant bilayer has a

thickness the bilayers are stacked along the direction z with a period d.

Similar observations on both peak intensities and diffuse scattering have been reported
recently for an X-ray study of the lamellar phase of the (quasi) temary AOT/decane/water +

Nacl system [9]. Moreover, the large wave vector, diffuse component of the scattering was

shown to be identical in absolute units for both lamellar and
« sponge »

samples built with the

same oil-swollen surfactant bilayer, irrespective of dilution. This feature was ascribed to the

form factor contribution to the scattered intensity [9]. It has been used in determining the

scattering parameters of the bilayer in a cetyl pyridinium chloride/hexanol/water + Nacl

lamellar phase [13].
In the following part, we extensively study a simplified, but still realistic model of the

scattering by a lamellar phase and show how, through the interplay between Bragg and

thermal-diffuse scattering that is introduced, it gives a complete, quantitative description of the

previous observations.

Interpretation.

The intensity Ij~ of a radiation scattered at a wave vector q by an irradiated volume

V of a sample characterized by a scattering length density p (x) is classically given by :

12
Iid (q

~ P (X e'~'~ d~X (1)
V

where (.. ) denotes a thermal averaging of the enclosed expression (the effects of a finite

resolution are momentarily ignored).

GEOMETRICAL MODELS. Various models for the scattering length density p (x) have been

proposed, for the purpose of describing specific parts of the scattering spectrum of a lyotropic
lamellar phase. For instance, the basic occurrence of peaks at regularly spaced Bragg positions

p. qo ~p is an integer and qo the first order peak position in reciprocal space) stems from any

scattering length density that is (perhaps only in some reference state) a one-dimensionally



N° 4 LAMELLAR PHASE SPECTRA : FORM AND STRUCTURE FACTORS 491

1.5
'

1.5

~) b)
1 2

o.5 ,' o.5

0 0
0 O-1 0.2 0.3 0.4 0.5 0 O-I O-Z 0.3 0.4 0.5

1.5 1.5

c) d)
I 1

&

0.5 ~ 0.5

0 0
0 O-1 0.2 0.3 0.4 0.5 0 O-I O-Z 0.3 DA 0.5

1.5

e)
l

a

Id-U-j 0.5 ~

0

0 O-I 0.2 0.3 0A 0.5

ir~i

Fig. 3. Intensity profiles (normalized by the thickness, transmission and membrane volume fraction of

the samples) in the X-ray scattering experiment on AOT ; surfactant volume fractions from a) to e) : 0.59,
0.48, 0.43, 0.38, 0.24 note the disappearance of the rust order Bragg peak at the surfactant volume

fraction 0.38.

periodic function of period d
=

2 gr/qo, along a direction which we call z in the following.
Furthermore, the commonly observed height modulation of successive Bragg peaks is usually
ascribed to the form factor of the bilayer in the following, purely geometric way : a finite-size

crystal of a lyotropic lamellar phase is described as the regular stacking period d along

an axis z of N identical plaquettes-thickness 3 ; lateral extension L~ all oriented normally to

z (Fig. 2). The scattering length density is defined by :

N i

p (x)
=

z po(z nd)
,

(x~
~

L~

p (x)
=

0~ otherwise
~~~

where po(z), the scattering length density profile of one plaquette, has non-zero values only
when 0 « z « 3. One then easily shows from equation (I) that the height of the Bragg peak of
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order p is modulated by a factor P ~p. qo), where P (q) is the form factor of the bilayer :

8 2

l'(~)
=

j
Po(Z) £~~~

Zj
(3)
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This property is at the very basis of a method widely used for inferring structural information

about amphiphilic bilayers, which relies on the analysis of as many as possible Bragg peak
intensities [4, 5].

However, the purely geometric model obviously fails for describing those features of the

scattering spectrum that are related to thermal fluctuations. These features are the shape of the

Bragg peaks and the occurrence of an anisotropic small angle scattering, as is now classically
known, and also, as we show below, the occurrence of a diflkse scattering at large angles.

THERMODYNAMICAL MODELS.-Therrnally-induced lattice vibrations have well-known

consequences in the scattering spectra of solids the peak heights are reduced by a Debye-
Waller factor and some thermal-diffuse scattering arises at the base of Bragg peaks, which

nevertheless keep their delta-function shapes [14]. For systems with smectic A order, with

only one solid-like direction in 3D space, thermal motions have much more drastic

consequences : first, the singularities at the Bragg positions become weaker than delta-

functions [15, 16] and second, an anisotropic small angle scattering, much more intense along
the z-axis than along the perpendicular directions arises [17, 18]. The Cailld model [15], taking
into account properly the thermodynamics of a smectic A phase, describes rigorously these

two features. Cailld chooses a scattering length density of the following form

P (x) oz
£ 3 (z nd + u~(x~ )) (4)

where u~(x~ ), displacement along z
of the n-th layer at the transverse position x~, has

Gaussian fluctuations according to the harmonic elastic theory of smectic A phases [19]. The

model gives a very satisfactory account for the scattering profiles close to the Bragg
positions [20-22], and of the small angle scattering [18, 23]. Owing to its description of a

lamellar phase in terms of featureless, zero-thickness bilayers it nevertheless fails in explaining
the form factor peak height modulation and the contrast-specific large angle diffuse scattering.

COMBINING GEOMETRY WITH THERMODYNAMICS. It is unfortunately not easy to devise a

model combining the relevant features of the previous two models, I.e. taking into account

consistently both the geometry- the finite thickness of the membrane- and the ther-

modynamics- the layer displacement fluctuations. As a first step towards a complete

rigorous theory, we introduce some kind of layer displacement fluctuations into the

geometrical model in the following way : we assume that the n-th layer may fluctuate about its

equilibrium position n.d by an amount u~ independent of the transverse coordinates. This

amounts to assuming that there is only compression and no curvature strains in the smectic

phase. On the other hand, we assume that the u~ are Gaussian variables with the correlation

function ((u~ uo)~) identical to the true smectic correlation function

([u(x~
=

0, z =
n. d ) u(0, 0)]~), i.e. [15] :

(Un U0)~)
~ ~~~

~

,
~ S'll3l'

~ ~

(5)

(u~ uo)~)
=

'~

~
~ln (grn ) + y

d~
,

n »
2 gr

with y Euler's constant and
1~

defined in terms of the elastic constants of the smectic phase

B and K by [15] :

q( k~ T

'~ = /~ (6)

8 gr KB
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With this amendment to the geometrical model, the scattering length density p (x) becomes :

N i

p (x)
=

z po(z nd + u~), [x~
~

L~

p (x)
=

0~ otherwise.
~~~

Substituting equation (7) into equation (I) leads to the following form for the intensity

scattered by one isolated, finite-size crystal :

Ii~(q>
=

N P
i

(q
i

P (qz> s (qz> (8>

where P is the form factor of the bilayer, equation (3), S is the normalized structure factor of

the stack :

~2
N

~
j j

~u~ u~~2 j
S(qz)

=
+ 2 Z ' p C°S (nqz d) e (9)

and P
~

(q~ ) accounts for the finite transverse size of the bilayers. Its exact expression depends

on the shape of the plaquettes, with the following general properties : P
~

is sharply peaked at

q~ =

0, with P~ (0)
=

L( its width is of the order 2 gr/L~. It should be noted that our

expression for the structure factor, equation (9), differs from those that result from
«

stacking
disorder

»
of the first or second kind [6] (or, equivalently, for

«
perturbed regular lattices

» or

«
paracrystalline lattices

»
[7]).

ACCOUNTING FOR FINITE RESOLUTION AND POWDER AVERAGING. The above-described

model gives a satisfactory, quantitative account for both our neutron and X-ray scattering data

once powder averaging and finite instrumental resolution are considered. Finite resolution

amounts to replacing the
«

ideal
»

intensity I~~(q), equation (8), by the real one

I (q
=

(lid (q' R (q q' ) d~q' I o)

where the resolution function R(q) is chosen for convenience as a Gaussian profile of width

Aq :

R (q )
=

(2 gr Aq~ )~ ~'~ exp
~~

~
( l 1)

2 Aq

For a crystal large enough, I.e. L~ Aq » I and Nd Aq » I, the convolution, equation (10), is

easily performed. Since P~ is more sharply peaked than the resolution function, it may be

represented by a delta-function :

P~ (q~ )
m

4
gr

~L( (q~ ) (12)

therefore leading, through convolution on q~ variables, to :

~2 q(
(13)Pi (qi )

"

~
"

#
~~~

2 Aq~

Along the q~ direction, using the fact that the membrane form factor P (q~) is a slowly varying

function whereas the structure factor S (q~), sharply peaked, has much stronger variations, we

approximate the effect of a finite resolution by convoluting the structure factor alone. This
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yields the following expression for the resolution-limited structure factor :

N ' q dn
((q~)

=
+ 2 z I I

cos
~

x

i

N
+ 2 Aq~ d~ a(n)

~ ~j ~2~
~~ ~ ~ ~2 ~2 ~2

~ ~
2(i + 2 6q2 d2«(n))

~~~/l
+ 2 Aq~ d~a (n)

where
a (n) denotes the correlation function ((u~ uo)~)/2 d~.

The effects of thermal fluctuations on
(

are illustrated in figure 6, which display the

resolution-limited structure factor for
1~ =

0 (no thermal fluctuations) and for
1~

having non-

zero values. The OK structure factor has identical peaks at each Bragg position, all with the

same height of order qo/ /~ Aq, and negligible values (of order I/N) in-between peaks. In

the presence of thermal fluctuations, higher order Bragg peaks are smoothed out (the third

order peak almost disappears when
1~

is increased from 0. I to 0.2, for the example illustrated

in Fig. 6) and a significant intensity, which reaches quickly its asymptotic value I appears
benveen the peaks. Such a behaviour would be common for disordered systems as liquids. It

illustrates here the dramatic effect of the Landau-Peierls instability in (ordered) systems with

the smectic A symmetry. Note that the values we have chosen for
1~ are realistic for lamellar

systems stabilized by an electrostatic repulsion between bilayers, but that much larger values,
close to 1~ =

1.3 for large smectic spacings, are to be expected in many cases [21, 22].
For a random orientation of the crystal, it remains to powder-average the resolution-limited

8

S (Q)

6

4

2

0

O.I O-Z O,3 q

.~

[l~I] 0.5

Fig. 6. Structure factor of a d
=

60 A lamellar phase with some layer displacement fluctuations ;

dotted curve 1~ =
0 ; continuous curve 1~ =

0. I heavy line : 1~ =

0.2 the latter values of

11 are typical for larrellar phases stabilized with either weakly screened electrostatic interactions or

undulation interactions [22] the number of correlated layers in the stack is N
=

60 and a finite resolution

fig
=

5.2 x IO ~ A- has been taken into account ; note how quickly the function reaches its asymptotic
value when11 * 0.
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intensity I(q) according to :

i~~~~(q>
=

N i~ >~ (/m
q> p (qx> i(qx> dx. (15>

o

For large enough scattering wave vectors (q » Aq ), #
~

as a function of x may be described as

a properly normalized delta-function (x) [24], with therefore the resulting expression :

~q ~2
1

~~
(q )

=

2 ~r
j p (q) S (q) (16)

~°
q

Thus, the experimentally-recorded intensity scattered by an irradiated volume V containing
V/NdL( finite-size crystals randomly oriented is finally given by :

Iexp(q)
~

2
7r

j ~
~~~/~~~ (17)

q

We have checked by a numerical evaluation of ((q), equation (9), that our model, which

clearly recovers a form factor peak height modulation, also yields power-law singularities in

the vicinity of Bragg peaks. We got S (q cc q qo ~, with an exponent X numerically close

to 1-1~. This is different from the Cailld result along the z-direction, namely

Sc~~jjt(q~, q~ =
0) cc [q~ qo

~ ~ ~ [15] our result is nevertheless correct for powder

spectra, since the isotropically-averaged Caill£ structure factor (Sc~jjt) yields:

(Sc~~jjt) (q)cc [q-qo[~~~~ [21, 22]. The value for
1~

entering our model is therefore

expected to be the true one, defined in terns of the elastic constants of the smectic liquid
crystal, equation (6).

Our result incorporates a new feature, I,e. the appearance of a diflkse scattering at large

wave vectors, controlled by the bilayer form factor, when the structure factor ( (q reaches its

asymptotic value I. As exemplified in figure 6, this occurs in practice very soon. As already
noticed [9], the diffuse scattering is experimentally identical, in absolute units, for lamellar

(smectic A) and
« sponge »

(isotropic liquid) phases built with the same bilayer. Indeed, for

« sponge »
phases the intensity scattered by an irradiated volume V is given by [2, 3, 24] :

Isponge(q) ~
2 "

~/
P (q)

~
(18)

q

Since the reticular distance d of a lamellar phase is related to bilayer thickness and volume

fraction 4 by the dilution law d
=

&/4, equation (17) and equation (18) are identical, apart
from the lamellar phase structure factor.

NEUTRON AND X-RAY FORM FACTORS. In Order to compare Our prediction, equation (17),
with the X-ray and neutron scattering data we have taken simplified models for the scattering
length density profile po(z) of bilayers. For neutron scattering experiments on AOT/D20 or

DDAB/D~O lamellar phases, a reasonable model is the square profile: po(z)= Ap,

0 « z « &, where Ap is the contrast between the hydrophobic part of the bilayer (of thickness

&) and the solvent (including the hydrated part of the bilayer ; see Fig. 7a). From equation (3),

one then gets :

P~~~~(q)
=

Ap~sin~ (q
~

(19)
q

~
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~~ p~~~~j~~ ~~ ~pparent below, since the scattered intensity is not truly zero at the large wave
>

vector 2 gr/&, instead of equation (19) we use :

P~~~~(q)
=

~ §~
~

[l cos (q3 ) e~ ~~ "~~] (19bis)
q

with « arbitrarily fixed at am equation (19bis) may be viewed as the result of an averaging of

equation (19) over a Gaussian distribution for &, with width «.

For X-ray scattering experiments, the profile po(z) arises from the electron density
distribution across the bilayer. The reasonable model is now a nvo-square profile, as sketched

in figure 7b, because the electronic density of the hydrated polar heads in neither close to the

electronic density of the solvent nor to that of the hydrophobic tails. We therefore take :

po(z)
=

Ap~ for 0 « z « ~ or (&~ + 2 &~) « z « 2 (&H + &~) and po(z)
=

Ap~ for

&~ « z « (&~ + 2 &~). With these conventions the
«

scattering thickness
»

of the bilayer is

2(&~ + 3~). This form leads to :

Px_~~~(q)
=

(Ap~ [sin [q(&~ + &~)] sin (q &~)] + Ap~ sin (q &~))~ (20)
q

t
~

~T

P

a> b)

Fig. 7. Schematic scattering length density profiles po along the normal to the bilayer z a) neutron

scattering experiment ; b) X-ray scattering experiment.

At contrast with the neutron form factor, equation (19), the X-ray form factor may have a zero

for a wave vector q * much smaller [25] than the reciprocal of the bilayer thickness (this occurs

for instance at q*
=

0.12 h~ for Ap~/Ap~
=

0.16, &~
=

2.4 h and &~
=

8.2 h). In such a

case, the first order Bragg peak is removed from the observed X-ray spectrum at some point on

the dilution line, as it is indeed observed on the AOT/H20 system.

COMPARISON WITH EXPERIMENTAL DATA. For neutron spectra, we have deterrnined the

relevant parameters 1~
and by the following procedures : we get the two parameters,

for each spectrum of the AOT/D~O system, by fitting to the data either q~ times the predicted
intensity (Eq. (17)) or its logarithm. The first choice amounts to giving more weight to the high

wave vector part of the spectrum, the second to its high intensity part. The two procedures give
equivalent results for the parameter 1~, in the range 0.25, with a large uncertainty (about 40 fG)

and no significant variations along the dilution line, whereas the q~-weighted procedure is

definitely better, as might be expected, for the parameter &. The bilayer thickness is constant
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all along the dilution line (& =16 h, with about 5 fb uncertainty). Representative fits are

displayed in figures 8a and 9a, for the 4
=

0.20 swnple ; all our other results have a similar

quality. For the DDAB/D~O samples, the q~-weighted procedure is not very sensitive to

1~, nor the log-weighted one to &. We therefore get first the parameter through the

q~-weighted procedure, which yields
=

24.5 ± 0.5 A for all our samples (Fig. 8b) (to be

compared with
=

24A in Ref. [10]). Then, keeping constant the bilayer thickness, we

determine
1~

with log-weighted data (Fig. 9b) we get 1~
in the range 0.15. The values for

1~ on both systems, though not very precise, are nevertheless nicely compatible with the ones

expected for dilute lamellar phases stabilized by a weakly screened electrostatic repulsion

o.08

,
a)

IQ

o.o&

la-U-j

0.04

o.oz
'

0

O O-I O-Z 0.3 0.4

o.oos

IQ'

0.004 b)

la-U-j

0.003

o.ooz

o.ooi

0 * ~

0 O-I O-Z Q 0.3 ~ [l ~] 0.4

Fig.
8. -Selected of q~ times the neutron tensity

with
fits to equation (17)

a) system
t

# =0.20; the ilayer
is

& 16A;



N° 4 LAMELLAR PHASE SPECTRA : FORM AND STRUCTURE FACTORS 499

10~ a)

I

a
~

10~

10~

_~
~° ll~~l

to'

10~ b)

la-u-J

io~

10~

1

~~-i

lO~~ lO~~ jl ~] l

Fig. 9. Selected examples of the neutron intensity profiles, with fits to equation (17) ; a) AOT/D~O
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0.20 11 =
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0.04 ; 11 =

0.16.

between bilayers [22]. For all the fits, the other parameters entering equation (17) are either

fixed to measured values or irrelevant : the smectic period d is deduced from the peak position ;
the width Aq of the resolution function, equation (11), is Aq =1.8 x10~~ li~~

on PAXY

(DDAB experiment) or Aq
=

8 x10~~ A~~
on PAXE (AOT experiment) ; the number of

correlated layers N (Eqs. (9) or (14)) has no influence as soon as the peaks in S(q),
equation (9), have a width smaller than Aq, which occurs for N greater than about

qo/Aq.
For X-ray spectra, four parameters have to be determined. Since there is neither large

intensity nor wave vector differences between the form and structure factor contributions to the
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scattered intensity, especially at dilutions around 4
=

40 fb, we have not tried to extract all

four parameters on each spectrum, Instead, we first determine the three parameters describing
the form factor of the bilayer, equation (20), by fitting to the theoretical expression
equation (17) the large wave vector part (q

>

0,1li~ ~) of the intensity scattered by a dilute

AOT sample (4
~

0,25), assuming that in this large q range the structure factor has reached its

asymptotic value, ((q
» qo)

=
I, The fitted parameters are : &~

=

2,4 li, &~
=

8.2 h and

Ap~/Ap~
=

0.16. Then, in a second step, we have fitted for each AOT sample the whole

q range to equation (17), with the previously determined bilayer form factor parameters kept

constant and now only one relevant fitting parameter, 1~
(the width of the resolution function is

here fixed to Aq
=

5.2 x10~~h~~). As it is clear from the two examples displayed in

figure lo, the model, equation (17), describes also well the X-ray data, in particular those with

small intensity Bragg peaks. It should nevertheless be mentioned that the values we get for the

exponent 1~, about 0.15, are definitely smaller than those extracted from the neutron data on

the same system [26] they are still in a reasonable range.
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The fitted form factor, equation (20), with the I/q~ normalization arising from powder
averaging, is superimposed to the X-ray peak height data in figure 4, showing a peak height

modulation. The X-ray parameters &~ and &~ correspond to an apparent thickness for the

bilayer of 21.2 A, in good agreement with the geometrical value (21 h 19.5 A in Ref. [12])

deduced from the variation of qo with composition. The neutron result
=

16 A, correspond-
ing to the thickness of the hydrophobic core of the bilayer, is consistently smaller than the X-

ray value.

In spite of the various approximations that led to equation (17), it appears that the

quantitative description of the scattered intensity it gives, on the basis of a model that takes into

account both the geometry of the bilayers (membrane form factor) and the thermodynamics of

the smectic phase (layer displacement fluctuations) is essentially valid both near or at the peaks
and at large angles. More effort is to be exercised yet in order to get precise values for the

elastic parameter 1~. Nevertheless, the physical meaning of this parameter is clear : it would

not have been possible, for instance, to describe even semi-quantitatively the spectra by
imposing

1~ =

0 (no thermal fluctuations) from the start.

Conclusion.

X-ray and neutron scattering experiments have been performed on various lamellar phase
samples in the AOT/water and DDAB/water systems, along dilution lines. We show that the

large wave vectors features of the scattering spectra have the same origin in these smectic A

phases as it is classically known in liquid phases, namely the form factor of the building
objects. The physical origin for such a behaviour lies in the long wavelength, thermally excited

elastic fluctuations of the crystalline structure : owing to the Landau-Peierls instability, the

structure factor reaches quickly I, its asymptotic value. Some care should therefore be

exercised in inferring form factor parameters from peak height analyses only. The simple
model that we propose, combining the geometry of the bilayer with thermal layer displacement

fluctuations provides a general and quite elegant method for studying both form factors and

elastic properties of lamellar phases. Its remarkable ability in describing scattering data is an

illustration of this viewpoint.

Acknowledgments.

U. Olsson aroused our initial interest for the scattering properties of the AOT/water system.
The kind hospitality of J. Teixera at Laboratoire L£on-Brillouin is gratefully acknowledged.
We warmly thank C. R. Safinya, for very kindly introducing us to the arcana of thennal-

diffuse scattering. It is a real pleasure to thank Thomas N. Zemb, whose pertinent advice and

keen comments on many aspects of this work were of considerable value.

References

[ii EKWALL P., Advances in Liquid Crystals, G. M. Brown Ed. (Academic Press, New York, 1975).

[2] PORTE G., MARIGNAN J., BASSEREAU P. and MAY R., J. Phys. France 49 (1988) sll.

[3] GAzEAU D., BELLOCQ A.-M., RouX D. and ZEMB Th., Europhys. Leit. 9 (1989) 447.

[4] LuzzATi V., Biological Membranes, D. Chapman Ed. (Academic Press, New York, 1967).
[5] MARIANI P., LuzzATi V. and DELACROIX H., J. Mol. Biol. 204 (1988) 165.

[6] BLAUROCK A. E., Biochim. Biophys. Acta 650 (1982) 167.

[7] WELBERRY T. R., Rep. Frog. Phys. 48 (1985) 1543.

[8] RAN~ON Y. and CHARVOLIN J., J. Phys. France 48 (1987) lo67

CLERC M., LEVELUT A.-M. and SADOC J.-F., J. Phys. II France 1 (1991) 1263.



502 JOURNAL DE PHYSIQUE II N° 4

[9] SKOURI M., MARIGNAN J. and MAY R., Colloid Polym. Sci. 269 (1991) 929.

[10j DUBOIS M, and ZEMB Th.. Langmuir 7 (1991) 1352 ;

DUBOIS M., th~se (universitd Paris-XI, 1991).

jl ii ROGERS J. and WINSOR P. A., Nature 216 (1967) 477.

j12] FONTELL K., J. Colloid Interface Sci. 44 (1973) 318.

j13] Roux D., NALLET F., FREYSSINGEAS E., PORTE G., BASSEREAU P., SKOURI M. and MARIGNAN J.,

Europhys. Lett. 17 (1992) 575.

[14] E, g. : GUINIER A., Thdorie et technique de la rsdiocristallographie (Dunod, Paris, 1964)

AzAROFF L. V., Elements of X-Ray Crystallography (McGraw-Hill, New York, 1968).

[15] CAILLt A., C-R- Hebdo. Acad. Sci. Paris B 274 (1972) 891.

[16j GUNTHER L., IMRY Y. and LAJZEROWICZ J., Phys. Rev. A22 (1980)1733.
[17] PORTE G., MARIGNAN J., BASSEREAU P. and MAY R., Europhys. Left. 7 (1988) 713.

[18] NALLET F., RouX D. and MILNER S. T., J. Phys. France 51 (1990) 2333.

[19] DE GENNES P.-G., J. Phys. Colloq. France 30 (1969) C4-65.

[20j ALS-NIELSEN J., LYrSTER J. D., BIRGENAU D., KAPLAN M., SARNYA C. R., LINDGAARD-AN-

DERsEN A. and MATHIESEN S., Phys. Rev. B 22 (1980) 312.

[21] SAFINYA C. R., Roux D., SMITH G. S., SINHA S. K., DIMON P., CLARK N. A. and BELLOCQ A.-M.,

Phys. Rev. Leit. 57 (1986) 2718.

[22] RouX D. and SAFmYA C. R., J. Phys. France 49 (1988) 307

SAmNYA C. R., SIROTA E. B., Roux D. and SMITH G. S., Phys. Rev. Lett. 62 (1989) 1134.

[23] MILNER S. T., private communication.

[24] GLATTER O, and KRATKY O., Small Angle X-ray Scattering (Academic Press, New York, 1982).

[25] As in the neutron scattering case previously discussed, the X-ray scattered intensity is not exactly

zero at q* ; it is nevertheless much smaller than the surrounding intensities. There is thus no

need to smooth the test function describing the X-ray form factor.

[26] Our somewhat approximate treatment of the resolution function in neutron scattering experiments
(we have not taken into account the increase, owing to a finite AA IA, in Aq with the scattering

wave vector) could explain the differences between X-ray and neutron results for
11 on the same

system.


