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Abstract. A thermodynamic formulation for moving granular material is proposed. The

fluctuations due to the constant flux and dissipation of energy are controlled in
a

"granular"
ensemble by a pressure p ("compression") which is conjugate to a contact volume ("contactopy").

The corresponding response function ("dissipativity") describes how dissipation increases with p

and should serve to identify the fluidizatiou transition and ill noise. In the granular ensemble

one can consider the granular medium as a gas of elastically colliding particles and define a

"granular" temperature and other standard thermodynamic quantities.

Granular materials, like sand or powders, subjected to an
external force will locally perform

rather statistical motion due to the random nature of the size and shape of grains and their

contacts. One example is the motion of sand on a vibrating plate, say a loudspeaker [1-6].
At sufficiently high frequency the individual grains chaotically jump up and down forming a

gas-like cloud of colliding particles. Other examples are displacements inside a shear-cell [7-11]

or flow down an inclined chute [11-15] where in addition to a
laminar flow with

a
well defined

(average) velocity profile one has Brownian-like motion of the particles perpendicular to the

flow direction.

The above observations have inspired several authors to use
thermodynamical concepts to

describe granular media. On one hand a
"granular temperature'~ Tgr has been defined [7, 16, 17]

as Tgr =
(v~) (v)~, i-e- proportional to the kinetic energy surplus with respect to the

global motion. This temperature has been determined numerically
as a

function of various

external parameters and material constants and under certain conditions consistency with

experimental measurements was confirmed [7]. The drawback of the above definition is that it

is only thermodynamically justified if an
equipartition theorem exists which is not the case for

granular particles since they dissipate energy at collisions.

Edwards and collaborators [18-20] have put forward
an

entirely different, original idea: based

on
the important observation that granular materials do not conserve energy while the entropy

S is well defined they proposed to consider the volume V to replace the internal energy in the
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usual thermodynamic formalism. In this way a
temperature-like quantity X

=
3V/35 which

they called "compactivity'~ can be defined. Although formally correct, this formalism is not

easy to justify from first principles. In particular, in many real situations like on the vibrating
table or on an inclined plane, the volume is not well limited at large heights. While Edwards~s

approach seems intuitively correct for dense packings and the definition of Tgr reasonable in

the limit of strong internal motions or
weak dissipation they fail in the corresponding opposite

limit.

Purpose of the present note is to propose a
different thermodynamic approach to granular

materials founded on similar principles as equilibrium thermodynamics and which should at

least partially incorporate the intuitive pictures of previous work.

As opposed to usual thermodynamics of molecular gases the elementary units of granular
materials

are
mesoscopic grains consisting of many atoms each (10~~ -10~~). When these

object interact (collide) the Lennard-Jones potentials of the individual atoms are unimportant
and completely different mechanisms must be considered. It is important that

on a
microscopic

scale the surface of the grains is rough. Solid friction is the immediate consequence: when two

touching grains are at rest with respect to each other
a

finite force Fs is needed to trigger
relative motion (static faction), while moving against each other a finite force Fd is needed to

maintain the motion (dynamic friction). Fd < Fs and both only depend on the normal force

and neither on
the velocity nor on the area of contact Coulomb law). No doubti this picture is

idealized and
an

entire discipline, called tribology, has evolved to study solid friction in depth
[21]. For our purpose it is, however, more convenient to remain on the simple text-book level.

The solid friction has the crucial consequence that on the level of the elementary units, namely
the grains, the system does not conserve energy as

opposed to molecular thermodynamics.
Another source of dissipation can be plastic deformation of grains due to the normal force

acting at collisions.

If energy is not constantly pumped into
a

granular system it will stop moving and fall into

one
of its static configurations. Constant motion of the grains can only be produced when

there is
a

steady state of energy flux. We are, however, not interested in this flux itself also

because it is difficult to measure experimentally. We just want to describe the motion of

the granular particles in a
similar way as one

describes the motion of molecules in a gas at

a
given temperature. The presence of the energy flux and the fact that on the level of the

grains on which we want to formulate
a

thermodynamics the energy is locally dissipated ii-e-
not conserved) will, however, force us to introduce concepts beyond that of usual equilibrium
thermodynamics.

We will assume typical conditions for local "equilibrium": most experiments have velocity
and density gradients [1-15] and in those cases only a subsystem spatially small compared to

the gradient should be considered. An eventual energy flux into the system should distribute

the energy over it homogeneously. This constraint can also reduce the size of the subsystem.
Outside this subsystem

a
generalized "heat bath" is assumed. Spatial and temporal averages

should be exchangeable ("ergodicity'~). We will in fact in the following consider temporal
averaging for practical (numerical) purposes. The averaging procedure can even be complicated

[41 6] by the existence of density waves.

It is important to notice that the dissipated energy is of course only lost on the mesoscopic
level microscopically this energy will be transformed essentially into heat and blown away

by the surrounding air. This gives us a reasonable starting point for the formulation of an

analogy to usual thermodynamics. It seems natural to consider energy conservation as the

first "thermodynamical principle" :

AI
=

AEint + AD (1)
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The internal energy Eint is like in traditional thermodynamics the kinetic and potential energy

of all the degrees of freedom of the grains as elastic bodies (translationi rotation, elasticity,
etc.). AD is the energy dissipated in a given time and AI is the energy that

was
pumped into

the system while AD
was

dissipated in order to maintain the steady state (~ ). Usually AI is

some kind of work (gravity
on the inclined plane, )Aw~ on the loudspeakeri etc. ). If one allows

for changes in the volume of the system then equation (I) will become AI
=

AEjnt +AD+AW

where AW is the work done to change the volume.

Let us
give to the excess dissipated energy AD

=
AD AI in the following the nick-name

"dissipate'~. We will deal with D in a similar way as one treats in usual thermodynamics the

heat. Like the heati the dissipate is not a
potential since it depends on the process by which

a given state is reached. It doesi howeveri not stem from the kinetic energy of the particles as

the heat in
a

molecular gas but is due to collisions, I.e. two particles coming together, touching
and separating again.

The dissipated energy is proportional to the sum of normal forces it that push the particles
together during collision I. One can therefore express changes in D as

SD
=

p6C (2)

where p is
an

internal pressure acting at collisions that we shall call "compression"(~). It can

be defined as p =
p(f( /Aj) where f( is the normal force and Ai the

area of contact of collision

I and the average b performed over all collisions. p is the density of collisions, defined as the

number of collisions per unit volume and unit time. It is easy to determine p numerically.
When the particles do not have collisions the compression is zero and no energy is dissipated.
The quantity C, which

we
will in the following call "contactopy", in analogy to the entropy,

has the dimension of a volume (contact volume). It is defined as the conjugate variable to the

compression p.
The contactopy has contributions due to plasticity and due to dynamic and static friction.

Let us in the following argue for
a

geometrical interpretation of C and consider first the two

contributions from friction. The dynamic (or better kinetic) part of the contactopy is propor-
tional to £~ Aifi where it is the distance over which two solid grains slip during collision I.

Since it is given by the collision time multiplied by the velocity of the particles this part is prc-
portional to the particle overlap volume (v that one has (for technical reasons) in molecular

dynamic simulations [41 6, 10, 15, 22]. Apart from geometrical prefactors the proportionality
constant is the dimensionless dynamic friction coefficient pd, I-e-

a
material constant of the

grains. The overlap volume iv can be defined more precisely as the sterically excluded volume

that would arise if the centers of
mass of the particles follow the real trajectories but one does

not take into account the elastc-plastic deformation. The static (or potential) contribution of

friction to the contactopy C only comes into play when the elastic (potential) energy of two

unlocking particles that
were

sticking is released. It depends on the penetration depth di at

collision I because this determines the amount of material that will be compressed (or frag-
mented), Therefore this second contribution is proportional to £; Aid;, I-e- also proportional
to (v. The proportionality factor contains the static friction coefficient ps and the Young

modulus Y of the grains. The other contribution to the potential part of the contactopy comes

from plasticity and is proportional to the size of the plastic zone, I-e- again to (v, when the

(~ ln contrast to traditionsl thermodynamics we have
an energy flux and the dissipated energy itself increases

with time. Therefore
one can

formulate ettuation (1) sltemativeiy
as

Ji
=

l~nt + l~ where Ji is the energy flux

into the system. Although in
some cases

this description gives a more
intuitive physical picture

we
will pmfer

in the following to argue only in terms of changes AD and AI during
a

fixed time interval.

(~) ln mat collisions also shear forces
can

contribute to dissipation
so

that p would then be a like
a stress

tensor. For that
reason we

explicitly did not call it pressure.
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material dependent plastic yield force Fp is reached. The complex stick-slip mechanism [10, 23]
that is triggered between two rigid grains by the interplay of static and dynamic friction makes

it difficult to determine precisely the resulting material dependent constant 7(pd,ps~fp,Y)
that following the simple arguments given above relates via

C
=

) Kv (3)
P

the contactopy to the (average) overlap volume Kv. The division by the number p' of collisions

per unit volume in equation (3) assures that C is an extensive quantity. The proportionality of

equation (3) can be checked numerically by measuring independently the input of energy and

the average internal pressure to get C and summing up the overlap volumina of the collisions

to get Kv.
The contactopy plays a central r61e here and in similarity to the approach of Edwards [18]

can be interpreted
as a

volume. But although it resembles the internal energy in having
a

kinetic and a potential contribution it is analogous in our thermodynamic formalism to the

entropy. Because of equation (3) the contactopy represents a
geometric characterization of the

system. This makes it likely to be
a

total differential dC, I-e- independent on how the system

was driven into its state, while in contrast, the dissipate depends on the work done on the

system. Numerically this could be checked by monitoring Kv but the ultimate test should be

experimental in analogy to Carnot~s experiments.
The idea to define a potential for a dissipative system actually dates back to Lord Rayleigh

[24] "dissipation function'~) and has been worked out in detail by Prigogine and collaborators

[25]. The contactopy is on one hand a concrete example for such a potential on the other hand

it does not only contain the statistical aspects of an "internal entropy production" [25] but

has for physical reasons the dimension of a volume. It would in fact be important to work

out a
statistical interpretation of C in the (space-time) phase space of the collision events in

analogy to Boltzmann's statistical definition of the entropy in the space of all configurations
of positions and velocities.

The "equilibrium" which is in fact a steady state driven by the energy flux can now be

defined as the ensemble minimizing at fixed Ej~t the contactopy (instead of maximizing the

entropy). One can postulate an analog to the second law of thermodynamics that any change
of state at constant internal energy Ei~t should decrease the contactopy

AC § 0 (4)

Physically such
a

behaviour seems
naturally be driven by the elastic repulsion between colliding

(overlapping) grains and the tendency of the system to prefer many smaller collisions to a few

strong ones. The third law of thermodynamics, namely that at zero compression there is no

overlap between grains, I-e- vanishing contactopy, is less evident. Numerical tests of the above

statements should be performed taking into account that as mentioned before they
are

valid

in (sub)systems into which the energy flow allows for homogeneous dissipation.
As in usual thermodynamics one can now work in different ensembles. One

can fix either

the compression p which
we

shall call the "granular ensemble'~
or

the contactopy (let's call it

"atomistic ensemble" ). Since in practice (experimentally and numerically), however, the later

case
is difficult to implement

we will in the following usually consider the granular ensemble.

On top of this we can build up the traditional body of thermodynamics
as

if the grains were

a gas of particles interacting elastically. We can fix or free the number N of particles, define a

"granular" temperature Tg and entropy S or impose to the system either an external volume

V or an external pressure p. A novelty for granular media is that one could also impose an

external shear T or its "conjugate~', the dilatancy Vd (26].



N°4 ON THE THERMODYNAMICS OF GRANULAR MEDIA 431

A granular potential Gr can be defined
as

Gr
"

Eint + PC (5)

which depends on p and the extensive variables Ni l~ S and Vd. An immediate consequence

of equation (4) is that at constant compression p the equilibrium is given by the minimum of

Gr. The atialog to the specific heat might be called "dissipativity"
~

defined as

~

i
~~~ ~~~

This is
a new

quantity characterizing the granular medium which measures how much more

energy can be dissipated if the compression is increased. It could be measured directly by nu-

merically evaluating the derivative of equation (6) or through the fluctuations of the energy in a

thermally closed system, I-e- surrounded by (infinitely) heavy and stiff walls. The dissipativity

~ should be positive and go to zero for p -
0 and p - cxJ. Interesting for practical purposes

is that
~ contains through the 7 of equation (3) the material dependent properties concerning

friction, among others also the stick-slip mechanism between grains. If
a

fluctuation-dissipation
theorem for the response function

~
is valid then one might identify I/ f noise [23, 27] from its

frequency dependence over time scales proportional to the size of the grains or even over larger
time scales when collective phenomena like arching or bridge-collapsing [8, 9] come into play.

We know that there exists a "fluidization transition" in granular media between a regime of

block motion at low energy flow to a gas-like collisional regime at high energy flow [3, 4]. This

transition could be driven by changing p: for small p the potential part of C dominates (block
motion) and for large p the kinetic part of C is relevant (collisional motion). It seems likely
that the transition point is given by a singularity of the dissipativity ~. This could be checked

experimentally and numerically.
In the granular ensemble a "dissipate" bath (instead of

a
heat bath) is coupled to the system

and consequently the internal energy Eint of the granular material is a fluctuating quantity. In

order to give Boltzmann's statistical interpretation to the entropy S it is therefore conceptually
better to work in the atomistic ensemble: a "state" is given by the positions, orientations, linear

and angular velocities of the grains
as

rigid bodies. In fact the entropy is well-defined as noted

already in reference [18]. A reasonable definition for
a

"granular" temperature Tg would

then be:

Tg =

(j)
(7)

p

Note that it is similar but not identical to the granular temperature defined by previous authors

[7, 16, 17]. Tg is the variable that controls the granular canonical ensemble with the granular
free energy Fg as potential, defined as the Legendre transformation of the granular potential:
Fg

=
Gr TgS. In equilibrium Fg should have a

minimum. The usual Boltzmann distribution

determines the statistical weights of the states in this ensemble. As in the case of the usual

temperature one can measure Tg by monitoring the exchange of internal energy between
a

subsystem and its heat bath which should obey this Boltzmann distribution. Also
a

direct

measurement of Tg by changing an external pressure (see eg. (17.I) of Ref. [28]) should be

possible. A specific heat
can

be defined as a
derivation with respect to Tg.

Experimentally p and Tg are
independent control parameters of the system: since Tg in-

creases with the kinetic energy of the particles it is essentially controlled by the amount AI

of energy that is fed into the system per unit time. The compression p or
better the quantity

p/Tg also depends on the density of collisions and can therefore increase by fragmenting the

grains into smaller pieces. (Note that when
a

given grain is split into eight pieces, the cross
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section of each individual piece decreases by
a factor four, so that p will increase by two.) One

can
thereforei by changing the grain diameters and AI modify p/Tg and Tg independently and

can
therefore consider phase diagrams in the p/Tg Tg plane.

As already mentioned
one can also go to other ensembles by changing variables via further

l~egendre transformations. One can liberate the number of grains and introduce
a granular

grandcanonical potential controlled by a chemical potential. One can also fix an external

pressure and calculate the average volume. The fact that both volume and contactopy will

then be conjugate to the pressure could explain why in granular media one finds in equilibrium
macroscopic density fluctuations [29] as opposed to usual fluids

or gases. Of practical interest

is also to fix an external shear and measure the average expansion, I-e- the dilatancy [8, 9, 26].
It is useful to note that in the case when friction and plasticity vanish the system does not

dissipate energy anymore, the contactopy will be zero and Gr
=

Eint. In that case the atomistic

and granular ensembles are identical and classical thermodynamics is immediately recovered.

Our formalism is therefore a genuine generalization of equilibrium thermodynamics.
We have described within

a
thermodynamic formalism the fluctuations arising from the

constant flux and dissipation of energy that drives a granular material's kinematic behaviour.

By separating the dissipative degree's of freedom (friction and plasticity) from the conservative

ones
(translation, rotation, elasticity) we define a "granular ensemble" coupled to a "dissipate

bath'~ which is in fact the one in which experimental and numerical measurements are usually
performed. We introduce a potential that we call "contactopy" and argue that it is proportional
to the steric overlap volume of the collisions which the particles would have had per time

unit if while following the real trajectories they had
no elastc-plastic deformation. It would

be interesting to give also
a

statistical interpretation to the contactopy in order to define

it as a dissipative potential [25]. The fluctuating internal energy is replaced by a granular
potential controlled by an intensive variable that we call "compression", which is conjugate to

the contactopy. Going into
a granular canonical ensemble we define a "granular temperature"

similar to the one defined previously [16, 17]. We propose various numerical and experimental

tests for the assumptions that we have made in our theory and suggest that a frequency
dependent "dissipativity" should characterize the stick-slip behaviour of the material and the

transition to fluidization.
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