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Abstract. We describe in detail a lattice gas model whose irreversible dynamics leads to a phase
transition. Attractive and repulsive forces between particles are similar to those of our previous

papers. The equilibrium properties such as the equation of state, the pressure tensor in the bulk and

on interfaces, and Laplace's law are investigated numerically. Surface tension, equilibrium
densities, pressure and shear viscosity are given for a catalogue of variants of the model. The

surface tension is shown to vary approximately linearly : «
A (r r~) where r is the range of the

attractive force. A critical liquid-gas point is expected at r~. Shear kinematic viscosity varies like

v
~r~. The equilibrium density of the gas phase decreases very rapidly with r. Equilibrium

densities and pressures are also shown to vary with the curvature of the interface. The dependence

on inverse radius of curvature is linear as in the Gibbs-Thomson relations, but coefficients are not

identical to the thermodynamic ones. These latter results on capillary effects are in agreement with

those obtained in an independent work of Pot and collaborators.

1. Introduction.

In this paper we discuss some of the hydrodynamic and thermodynamic properties of a recently
introduced II, 2] lattice gas model. This model has particles moving at discrete velocities and

interacting on a discrete lattice. The motivation for the study of this lattice gas and other related

models is twofold. On the one hand, it is an interesting new idea for the simulation of flow with

interfaces. On the other hand, because of its irreversible microscopic dynamics, it also poses

puzzling problems in statistical mechanics.

I. I NUMERICAL SIMULATIONS OF INTERFACIAL FLOW. NUmerical SimUlations Of interface

motion in fluid flow is a problem of tremendous importance in both basic and applied sciences.

Subjects range from the astrophysical, such as photon bubbles in the sun, to the countless

industrial processes that involve multiple phase flow. In some cases, such as the Kelvin

Helmholtz instability, the addition of viscosity to the inviscid problem increases its complexity

from the almost rigorously solvable to a frustrating degree of complexity.
The most difficult problem faced by the numerous numerical methods devised so far [3] are

the changes of topology that the interfaces may undergo. A picture of the type of reconnection

configuration we have in mind is shown in figure I. Even in two dimensions of space these
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Fig. I. Interface reconnection.

problems may be daunting. It seems that the potential user of numerical methods is facing a

dilemma :

(I) either to use accurate methods such as front tracking [4], but facing difficult problems
with reconnecIion, especially if mass and momentum conservation is required ;

(it) or to use front capturing methods such as Volume Of Fluid [5]. These methods attribute

an amount of volume of each fluid to cells regularly located on the lattice. They thus keep track

of mass transfers between cells, and thus make reconnection spontaneous. However they are

plagued with other difficulties such as a slow degradation of the interface in the flow [6].

An additional difficulty that we have not yet mentioned is that the fluid equations themselves

do not prescribe when reconnection should happen in 2D flow. Reconnection is in fact

obtained after a potential barrier is crossed, usually thanks to thermal motion. This situation is

nicely evidenced in experiments on 2D films [8]. Perhaps the only satisfactory treatment of the

reconnection problem is to use molecular dynamics [7], using adequate interpanicle potential
and thus reconstructing realistic potential barriers. However, such calculations are of

formidable cost if a large range of scales is required.
The possibility of simulating interfaces with lattice gases [9] allows a completely new

treatment of this type of problem. In fact, it is no longer an entirely new subject [10]. In 1988

Rothman and Keller [I I] proposed an immiscible lattice gas (JLG) model. It simulates binary
fluids, in which two species of panicles coexist on the lattice. Interactions between nearest

neighbors sites ensure spontaneous separation of the two phases. Other lattice gas models bring
into play reactive collisions [13, 14] or minimal diffusion [12].

The liquid-gas model which we introduced before [1, 2] and study in detail in this article is

distinguished from the previous ones by the presence of a single species of panicles. These

separate into a dense and a light phase. The light phase is somewhat similar to the ordinary
lattice gas, while the dense phase has large deviations from the gas equation of state and may
rather be called a «

liquid
»

lattice gas (LLG).
Models such as the ILG and LLG satisfy the requirements we set above :

(I) they conserve mass ;

(it) interfaces form spontaneously during spinodal decomposition, and are not destroyed as

simulation time advances.

They are a kind of simplified molecular dynamics ; as such they may offer an interesting
intermediate level of analysis between macroscopic and microscopic scales.

Lattice gases have other, intrinsic advantages for the simulations of some interracial flows.

The molecular noise which is a detriment in certain situations becomes an advantage in

situations where it actually contributes to interface breaking. For instance, the Brownian

motions of droplets is an important feature for the understanding of domain growth dynamics.
Spinodal decomposition is in fact much more realistically simulated by methods which involve

noise, such as the lattice gas, than by methods which avoid it, such as the Boltzmann lattice

gas [17].
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1.2 STATISTICAL MECHANICS oF IRREVERSIBLE SYSTEMS. The other motivation for the

study of interacting lattice gases comes from statistical mechanics. An important feature of

LLG and ILG models is that the interaction step is not a reversible transformation of the set of

configurations of the lattice. This makes the model inherently different from classical models

for the dynamics of phase transition such as Monte Carlo or microcanonical [18] simulations of

the Ising model. This difference is a profound one that affects the thermodynamics and

statistical mechanics of the model.

In these classical models, the state of a model, I.e. the probability distribution

F(S) of all configurations S on the lattice is given by Gibbs distributions :

F (s)
=

exp (- PES) (i)

where the energy Es is a function of the state S and p is the inverse temperature. All the

machinery of statistical physics may be obtained from the existence of the invariant measure

F(S). In particular, a free energy F(p) may exist in the thermodynamic limit, and its

minimization allows to investigate the thermodynamic equilibrium. Phase separation may then

be interpreted in terms of such a free energy. In particular, basic thermodynamic results about

interfaces between phases in equilibrium such as the equality of chemical potentials accross

phase boundaries results from the minimization of F.

In irreversible lattice gas models, the invariant measure is not known a priori. The large
scale behavior of the system may however be in pan inferred from symmetries and

conservation laws, and in part from an approximation of the true invariant measure, based on

the idea of Boltzmann molecular chaos or factorization. In particular, the factorization idea

allows to predict, albeit only approximately, the existence of a phase transition and the critical

value of the parameters for which it occurs. This prediction has been performed for two color

models [19] as well as one color models [I].

To emphasize the role of irreversibility, let us consider the classical entropy of a fermionic

system such as the lattice gas. Its value for the entire lattice is maximized for homogeneous
distributions F (S ). Only if the second principle is somewhat invalidated can a phase transition

be observed in our irreversible systems. In yet other words, the irreversible dynamics selects

an attractor in phase space of smaller volume than the region accessible to ergodic, reversible

models.

The question then arises of the nature of the constraints that replace the thermodynamic ones

for our systems. The symmetries of the system go a long way towards predicting its large scale

features. For instance, most capillary effect do not, in fact, require classical thermodynamics.
They may be obtained in a purely mechanical way for a system where momentum is conserved.

Howevqr there are other «purely thermodynamic
»

constraints on interfaces, such as the

equality of chemical potentials that may not be predicted from conservation laws and

symmetries alone.

Perhaps the most interesting question is to determine what general laws are applicable to

irreversible panicle systems. What are the differences and the similarities with classical

thermodynamics and statistical mechanics ? Even an introductory discussion of this topic
would be beyond the scope of this paper, but we may suggest two typical problems. One is the

universality of the scaling properties of phase transitions. Are critical exponents for irreversible

systems in the same universality classes as those of reversible systems ? Another question

concems thermodynamics : is there an effective free energy that would replace the Gibbs free

energy for irreversible systems ?

In this article we choose to concentrate on the thermodynamic rather than the statistical

mechanical aspects per se. The issue of thermodynamics for our systems is of the greatest

importance for their applications. Moreover, our model is in some sense a minimal model for
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non trivial thermodynamics of interfaces. Indeed, a non-trivial consequence of the equality of

thermodynamic potentials are the Gibbs-Thomson relations (Eq. (12) below). These are

irrelevant in simpler models where the two phases are symmetrical such as the binary fluid

ILG.

2. Interacting lattice gas models.

In this section we introduce a number of variants of the lattice gas model. All our models are

constructed on top of the FHP models [9, 22]. Let us first recall the basic rules for these

models. We will discuss in this work models with two dimensions of space only (possible
extension to 3D was pointed out in [20]). They model fluids as systems of fictitious particles

moving on a hexagonal lattice.

Each particle has one of seven possible velocities. Six are identical to the unit vectors

c~
of the lattice

and co = 0. The is the set of points x;j = ici
+ jc~.

An exclusion
principle is imposed : no more than

one particle may have a
given

on

any
one node.

In
other the of site can

e represented by a
olean

s

6 6

p £

> 0
> =1

steps : the propagation and collision steps
that conserve momentum

and
mass ocally. These

steps are ictorially described in figure
2. During

ropagation, particle s;
hops

by one lattice

unit in the direction c,. In the collision step
particles

on a iven

momentum
according to rules which are

either
strictly or

partially stochastic. A

few xamples of
collisions are shown in

FHP III (I) with
some

minor changes.

In the present model,
an

nteraction
between particles is added to the evolution process.

the teraction

step,

we
model an attractive

orce between particles on
distinct

sites. The

exertion of a force on a site is nothing else
than

the of momentum to

between
sites may then be epresented by the xchange

of a quantity t of momentum between

the sites. The effect of this ddition
is to send particles initially flying

away from
each other

back towards each other. Let x~, x~ be the two teracting
sites,

nd g~, heir momenta before

the teraction. Then
after

the
interaction,

the new momenta are g~ + t, g~ - t. are

shown in figure 4. As we shall see below, the
addition

of the
interaction

results in

quation of state, leading to the
formation

of
nterfaces

in the lattice gas, our stated goal.

To make our idea more
precise,

we need to define how much
momentum is xchanged and

in what rder we explore the pairs. wo directions may be followed at this stage.

first one is to exchange the argest it ( without
iolating

laws.
In

particular, the

number of particles on each site is conserved. This leads to so called « maximal teraction

models, and makes the rule in some sense
optimally

efficient. It is the route
followed

in

reference [2]. However
the order in which pairs are is

then

non trivial as

Thus it may
be dvantageous

to explore another irection :
xchange

a relatively mall amount

(~) In fact the collision rules we used are slightly different from those of the FHP III model. See

Appendix A for more details.
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(a)
colllslon step

I(b) propagation step

Fig. 2. Collision and propagation on a triangular lattice. a) Particles are represented before their

collisions and after. Small circles represent particles at rest, with 0 momentum. Labels and 2 refer

respectively to two and three body collisions. Label 3 shows a collision involving a rest particle. Notice

that each collision conserves total momentum. Some sites are left unchanged as there is no possible
redistribution of particles that conserves momentum (label 4). b) Propagation of particles is shown. Each

particle advances by one step in the direction of its momentum. Boundary conditions are either periodic

or explicitly defined in the text.

"7 (~~~~ f'~~ lf~
~ ~ ~ ~ f~ ~b)

.-.---.-.->

Fig. 3. Pairs of interacting sites. Only one line of the lattice has been represented. (a)
« even » pairs,

(b)
«

odd
»

pairs.
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Fig. 4. Examples of attractive interaction rules. Only the two interacting sites are represented. The

states occupied before and after the interaction are represented respectively by solid and dotted lines.

Only the top interaction is performed in the minimal model.

for any given pair only if the directions in full lines are occupied before any interactions occur

and the directions in dashed lines are empty. The interesting point about this rule is that,

although the average exchanged momentum it is smaller, all pairs can be explored in parallel.
This

«
minimal interaction

» route has been followed in reference [20]. In what follows we

report on numerical simulations following the
«

maximal interaction
»

ideas. However, we still

sometimes refer to the minimal model, for which a fuller theoretical understanding is available.

Let us describe the maximal model more precisely. The distance r between interacting sites

is fixed once and for all. Thus only sites at this given distance interact, a feature of the model

for which our main excuse is the sake of simplicity : at each time step, particles hop and collide

according to the usual lattice gas rules. Then we perform the interaction on all pairs of sites at

distance r in a predefined order. At each time step, we select at random one of the 3 directions

of the lattice, I.e. one of the directions parallel to either ci, c~ or c~. Naturally, we label these

directions by the corresponding indexes I Sk w 3. Interactions are performed only in that

direction. For
«

horizontal
»

pairs (k
=

I ) we define «even »
pairs as those of the form

(x, x + rci ) with x =

2 ici + jc~. All even pairs may be explored independently for interac-

tions, in other words, the outcome of the interaction step does not depend on the order in which

the pairs are explored. After all the
« even »

pairs are explored, we investigate the «
odd

»

pairs that complement the set of horizontal pairs. The division in even and odd pairs is shown

in figure 3. Such a simple splitting of the set of pairs is possible only for odd distances r. Non-

horizontal pairs are explored similarly.
The amount of momentum exchanged between pairs may depend on the variant chosen for

the model. However, a general rule is that the addition of momentum always conserves the

number of particles in each site, p(x) and p(x + rc~), and the total momentum of the pair
g(x) + g(x + rc,). Let g' be the momentum after interactions. The exchanged momentum is

t~ =
g'(x) g(x)

=

g(x + rc~) g'(x + rc~). The interaction is attractive if t~ c~ m
0 and

repulsive if t~ c~ ~
0. Examples of such interactions are shown in figure 4.

The description we have given above is only an approximation to the actual procedure used

in choosing the pairs. In practice, the interaction directions for the three next steps are chosen

by permuting randomly the three directions cj, c~, and c~ every three time steps. Homogeneity
and isotropy impose additional subtle constraints on the way of defining pairs. These are

discussed in appendix B.
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Table I. Some possible variants of the maximal interaction model.

Model characteristics

A The interaction is performed whenever it is possible

B The interaction is attractive if
n > 2 and repulsive

otherwise,
n

is the total number of particles in the pair.

C The interaction is performed only if
n > 4

The basic rule for determining t is to exchange as much momentum as possible. However,

variants of the model with more elaborate rules have been developed. In these variants, t

depends on the number of particles in the pair. This allows some flexibility in the equation of

state and equilibrium densities. Table I gives the list of those mentioned in this paper. The

spinodal decomposition of figure 6 has been obtained with variant C, which has higher

equilibrium densities than the basic form A of the model.

t=40 t=80

Fig. 6. Spinodal decomposition obtained with variant C, r =

5. The 240 x (240 l12) lattice is

initialised with a uniform density d
=

0.2 particle per site.

The decomposition observed in our simulations indeed follows the picture given by Landau

and Lifshitz [25] for the change from a metastable to a stable phase. In a homogeneous
medium, fluctuations form small quantities of a new phase, or nuclei. As the creation of an

interface is an energetically unfavourable process, only nuclei whose size is above a certain

critical value are stable ; other nuclei disappear again. The dissolution of small droplets or

bubbles and the growth of larger ones occur indeed in our simulations (Fig. 7). We also
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t=180 t=200 t=220

t=240 t=260 t=280

Fig. 7. Dissolution of bubbles and breaking of links. We show only one part 120 x 120 of the lattice.

Model A has been used with
r =

3 and a unifornl initial density d
=

0.3.

observe some other mecanisms for the growth of domains, such as the breaking of links.

Figure 8 illustrates the symmetric process, the coalescence of droplets.
Simulations have been carried out on a SPARC 2 Sun Workstation. The frequency of

updates is then between 80 000 and 100 000 nodes per second. On a HP 730 computer, the

code reaches 130 000 nodes per second. The configuration of a site is represented by a Boolean

vector. Propagation, collision and interaction operators are coded making extensive use of

table look-up algorithms.

3. Invariants.

Our model has the usual particle number and momentum invariants

N
=

Z Z S; (x) (2)

G
=

z g(x). (3)

In addition to these invadants, the FHP model is known to have spurious invariants [21]

J~(t )
=

z (- ~ ~~~ g(x) (ck
+ i

+ ck
+ 2

)

With J k " ~ ~~k
+ I + ~k

+ 2
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t=12o t=14o

t=160 t=200

Fig. 8. Coalescence of two droplets. We show only one part of the lattice. Model A has been used with

r =
5. The uniform initial density is d

=

0.2.

k
=

1, 2, or 3. J~ is a constant of the motion for the FHP type models. This invariance may be

pictured as a consequence from the exchange of momentum between odd and even lines during
the propagation step. Our interacting model breaks these invariants. Indeed, interactions with

an odd r couple momentum of odd and even lines. This would not be the case for even values

of r and is another motivation to avoid them. However, if the invariants are no longer
conserved they may become unstable and saturate at a non-zero value. Some care is required in

situations susceptible of exciting the invariants, that is, when there are steep gradients. As a

matter of fact, an interface can be described as a steep gradient of density. We have checked

during simulations that this spurious invariant was not excited. The simulation was initialited

with a half-filled box, the interface being parallel to ci. We measured J~ (t) normalized by the

number of sites at each time step (Fig. 9).

4. Pressure and equations of state.

The pressure of a non-interacting gas with a uniform density p is easily calculated in the case of

the FHP III model [22]. One gets the equation of state of a perfect, isothermal gas

bm
P

= @ P (4)

where D is the dimension of space, bm the number of moving particles and b the total number

of particles. In general, it is useful to introduce the reduced density d
=

p/b. For our 2D

models, we have bm
=

6, b
=

7. The perfect gas equation is p =
3d.
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Mc Namora and Zanetti's r=3

o 200 400 600 BOO 1000

time

Fig. 9. McNamara and Zanetti's invariant.

Figure 10 illustrates how attractive interactions contribute to the pressure with negative

momentum transfers : we consider interactions parallel to c~. Ag is the momentum exchanged

between the two sites. The velocity of the transfer is rc~. Then the momentum transfer is

ic~. Ag.

r

-.-- ~ ~-- ...-

/hg=2

k

e-.- ~
".

~
_flg~~_

~.-
TtaosJerx<b~ciJy-..

Fig. lo. Momentum transferred during one interaction.

Let gr~(p be the average momentum transferred during one interaction step along direc-

tion c~ :

9Tk (P
=

(Ag )k )

gr~(p ) can be calculated from the assumption of a factorized distribution. We assume that such

a distribution is realized after the propagation and collision steps. Interactions brealc this

distribution as they introduce correlation between sites. This slightly complicates the

calculation as the interaction on even pairs affect the distribution seen by the interactions on

odd pairs. However, the calculation is reasonably straightforward. It is nevertheless useful to
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use an electronic computer to sum over all the possible interactions for the maximal interaction

model. Using the technique described in [ii, [2] we obtain

p=3d-r[17(d~+d~~)+136(d~+d~~)+571(d~+d~°)+
+1506(d~+d~)+2662(d~+d~)+3216d?]. (5)

One part of the resulting equation of state is plotted in figure11. Figure12 shows the full

curve.

0.06

3 0.04

ch

©

)
l~ ~'~~

o.oo

o.coo o.oos o.oio o.ois o.ozo

d

Fig. II. Theoretical equation of state for the maximal interaction model (dotted line) compared with

numerical pressure measurements. The full line gives the equation of state for the non interacting gas.

3

2

/s~$
~W

I
~
#
©
~
~

0

-1

0 5 lo 15

volume v=I/d

Fig. 12. Complete equation of state for the simplified model introduced in [2]. It is an intermediate

model between the maximal and the minimal model. The theoretical prediction (full line) is compared
with numerical pressure measurements. Squares are numerical results for r =

3 and crosses are for

r =
7. A transition is seen for r =

7 but not for r =
3.
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Measurements show a fair agreement with prediction of (5). However, in the liquid phase
there is no agreement within the error bars. This is to be contrasted with the situation for non-

maximal models such as those of reference [ii, where agreement is within statistical accuracy

of the pressure measurement.

For model C we get the following equation of state :

p =

3d r [1 506(d~
+ d~) + 2 662(d~

+ d~) + 3 216 d?+ 571 d~° + 136 d~'
+ 17 d~~] (6)

A comparison with measurements at low density is shown in figure13.

o.5

0.4

q~~
©

II
I

o-i

o-o

o.oo

d

Fig. 13. Theoretical equation of state for model C (dotted line) compared witI1 numerical pressure

measurements. The full line gives tile equation of state for the non interacting gas. The star represents the

equilibrium state of the gas phase.

5. Local momentum balance and pressure tensor.

It is interesting to investigate the amount of momentum transferred accross each link of the

system. In FHP models this is simply the number of particles crossing the link, and the

momentum transfer tensor is [22]

H~p
=

(s;) c;~ c;p (7)I
,

In interacting models, the picture is complicated by the transfer of pressure by interactions. Let

pl~~(x + c~/2, t) be the momentum transferred at time t along link (x, x + c~). 'It includes the

contributions of all interactions involving pairs (y, y + rc~) containing the link.

A local discrete balance of momentum can then be written

g(x, t + i g (x, t )
=

(
i- pik>(x + c~/2, t ) + pik>(x c~/2, t)i c~. (g)

~ m1
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Large scale averaging of (8) yields

°t9a
~

°p"«fl ~~~

ivhere

lT~p
=

~p~~~) C;a C,p (10)I

with the convention ~pl'+~~)
=

(p~'~).
Consider now the case of a homogeneous state. Then

Isotropy implies p
=

1I~
=

1I~,
=

~pl~~ + pl~~ + pl~~).

The transfers pl~~ have been measured on 240 x 240 x
l12 lattices initially filled with a

uniform density p. Averaging was performed on 500 time steps. The somewhat tricky
programming needed to obtain the fields pl~~ has been verified by a direct check of the balance

(8). Figure 14 shows the resulting isocontours of pl~~. We observe correlations on a range of

order r in each direction. We check that although the directional transfers pl~~ are not isotropic,

direction direction 2

o~

oo

O

o

o

0
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the total pressure p has 6 fold rotational symmetry, as it should. This complements another

result on the isotropy of the model : in reference [2] it has been shown that power spectra of the

pattems obtained in spinodal decomposition were isotropic within statistical accuracy of the

measurements.

6. Surface tension.

The behavior of an interface depends strongly on capillary phenomena. The existence of

surface tension is ensured by a mechanical reasoning, as done in reference [26].

The surface tension of the interface can be defined by [26]

+w

« =

~p~-p~)dz
-w

where p is the pressure normal to the interface; p~ =

H~pn~np, p~ =

H~pt~tp and

n~, t~ are the normal and tangential vectors to the interface. Laplace's law may be obtained

from this definition [26, 24].

It is of great interest to know the values of surface tension for each variant of our models.

However our approximation techniques leave us unable to predict the surface tension even in

the simplest case, the minimal model [20]. We thus perform numerical measurements as

described below. We have initiated simulations with a half filled box (Fig. 15). Walls limit the

box at top and bottom. Boundary conditions on the right and on the left are periodic. The

bottom wall attracts particles so that the dense phase stays attached to the bottom. Equilibrium
is reached relatively rapidly we have checked that for a good choice of initial densities, the

transient time is negligible compared to the averaging time. Then momentum transfers along
each link are counted and time averaged. Notice that here p~~~, p~~~, and p~~~ depend on the

coordinate z normal to the interface.

If the interface is perpendicular to c~ : the tangential pressure is the pressure that would be

exerted on a plane parallel to c~ (Fig. 16). For instance, for k
=

I,

pi(x)
=

nyy
=

~p12>(x) + p13>(x))

z

Fig. 15. Fig. 16.

Fig. 15. initialization for the measurement of surface tension. The high density, low density and solid

areas are represented in black, white, and grey respectively.

Fig. 16. Links involved in normal pressure measurement. The full line is the interface and the dotted

line is a fictitious plane normal to the interface. The bold1kks are those involved in the tangential

pressure measurement at site x. (x is the site where the two bold links meet.)
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The normal pressure exerted on a plane parallel to the interface is, for sites of type I

(Fig. 17),

Pn(X)
=

p~(X)

and for sites of type 2

Pn(X)
=

p~(X) + ~J>~~~(X) + p~~~(X)1

where p~~~(x)
=

p~~~(x + c~).

An average along the direction parallel to the interface gives the profiles p~(z) and

Pi (z) (Fig, 18).

Fig. 17. Links involved in tangential pressure measurement. The full line is the interface and the

dotted line is a fictitious plane parallel to the interface. The bold links are those involved in the nornlal

pressure measurement at sites of type or 2.

Model 00000

f jI )
* j
f j~

i I
~

I
a

i~ I
3
I

°
~ i

j i

11 ©

-0.6

5

eight

Fig.

The full gives the density profile.
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Some other simulations have been realized with an interface parallel to ci. The expressions
of p~ and p~ are modified accordingly. The resulting values of « obtained for different values of

r or variants of the model (defined in Tab. I) are gathered in table II. Each surface tension value

is the average of results given by 5 different simulations. During each simulation, pressure

profiles have been averaged from time steps 40.000 to 10.000. The error represents two

standard deviations in the final average of 5 points.

Table II. Surface tension values ; fl is the angle between the interface and direction

ci. For the model B* the su~fiace tension has been maximized without modi~ying the

equilibrium densities, as described in the present paper, using no =

4.

SURFACE TENSION

Model range fl
a

A 3 30° 0.20 + 0.015

A 3 0° 0.25 + 0.03

A 5 30° 1.00 + 0.08

A 5 0° 1.53 + 0.03

A 7 30° 1.92 + 0.05

A 9 30° 2.?0 + 0.10

B 3 30° 0.32 + 0.03

B* 3 30° 0.42 + 0.01

C 3 30° 0.02 + 0.03

C 3 0° 0.035 + 0.023

It is also possible to change surface tension to some extent without modifying the equation of

state : for a certain number of configurations, there are several equivalent output states for one

interaction. All of them give the same momentum transfer during the interaction step. But they
do not give the same contribution to ~p~ p~)~~~~ during the next propagation step.

We evaluate roughly the position of the interface with respect to the interacting pair
P~(x ) :

if n (x) n (x + c~)
~ no where no is a reference value depending on the considered variant

of the model, we assume that there is an interface between the 2 interacting sites which is more

or less perpendicular to the interacting pair. Then

~Pn Pi )prop ~
2'~1(X) (Cl Ck)~ (Cl C) )~ j

the interface.
the

latter
case, one gets

~Pn Pi )prop ~

EN, (X) i(C, Cl )~ (C, C, )~j

We always choose the output configuration that will maximize or minimize ~p~ p~)~~~~
depending on whether we want to increase or decrease the surface tension.

According to the results in table II, surface tension varies linearly with r (Fig. 19). The

surface tension anisotropy (the ratio of fluctuations over the average) is 22fb for

r =

3 and 41 fb for r =

5. If we assume that Laplace's formula is valid in each point of the

interface and take a sinusoidal variation for «

«(o)=«o+«ices (60)
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Fig. 19. Surface tension against the interaction range, for the maximal model the angle fl between the

interface and direction cj is 30°. The straight line is a least mean square fit.

then the interface I(0) of a droplet in polar coordinates is

«1
~~ ~° ~°

35 «o
~°~ ~~ ~

We have used the expression of curvature in polar coordinates

I i~
+ 2 i'~ it

"

R (f2 + f'2)3'2

where I'=
~~

The resulting radius anisotropy 2 «1/(35 «~) is only 0.6 fb for r =

3 and
do

1.2 fb for r =

5.

7. Gibbs-Thomson relations.

In classical thermodynamics, when two phases can exchange particles, the equilibrium

pressures and densities derive from the equality of chemical potentials

~i(P, T)
=

~~(P, T). (ii)

For the lattice-gas model, as no non-trivial energy conservation has been explicitly introduced,

it is not clear a priori whether effective chemical potentials exist. However our numerical

experiments show that equilibrium densities are unique for a given r.

Equilibrium densities have been measured during the simulations described in section 5.

Results are reported in table III. It shows that the equilibrium densities can be increased or

decreased very easily. However at this point we still have no way of predicting the equilibrium
densities. We have checked that pressures are equal in the liquid and in the gas phases within

statistical accuracy of the measurements.

In what follows we shall discuss the validity of Gibbs-Thomson relations which are usually
derived from equality (I1) [24]. These relations give the equilibrium pressures against the

curvature I/R of the interface and are of great importance for evaporation, condensation at a
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Table III. Equilibrium densities and pressures for a flat interface
;

the error is 2 standard

deviations.

EQUILIBRIUM DENSITIES AND PRESSURES

Model r fl pga, x 10~ gas density x10~ liquid density x10~

A 3 30° 407 +2 165 +9A 5750 +5

A 3 0° 408 +3 165 +1.6 5750 +3

A 5 30° 59 +2 21 +0.8 6932 +2

A 5 0° 68 +2 24.2 +0.61 6926 +3.2

A 7 30° 15 +1 5.1 +0.2 7549 +1

A 9 30° S-1 +0A 1.7 +0.15 7724 +4

B 3 30° 1021 +2 6115 +2

B 3 0° 1025 +1.5 6117 +2

C 3 30° 2400 +2 7620 +1

curved interface or growth, collapse of a bubble or droplet. They determine the critical size of a

nucleating droplet in a first-order phase transition. For small values of the pressure difference

AP across the interface the Gibbs-Thomson relations read

PI PO + ~P
(P

i

[P~)
~i~~

~~ ~~ ~ ~~
(PI P2)

where po is the equilibrium pressure for a flat interface and Ap
= pi p~. We note with

subscripts I and 2 quantities associated with each phase. Subscript I refers to the inner fluid.

When the curvature I/R is small and the velocity of the interface is negligible, an explicit
form may be obtained by using Laplace's law pi p~ =

«/R :

~~ ~~ ~
« Pi

~ ~~' ~~~
(13)

~
a P2

~~ ~~ ~(Pl~P2)

We attempted to measure pressures inside and outside droplets of the dense phase. The

liquid and gas pressures and the density profile have been averaged on at least 24 000 time

steps. The density d is measured as a function of the distance to the center of the droplet. Care

is taken to account for the Brownian motion of the droplet : the center of the droplet is

recomputed at each time step. The radius R of the bubble is defined by d(R)
=

(di d~)/2.
Measurements for r =

3 yield poor results, mainly due to large fluctuations in the droplet
shape. This is not unexpected, as the r =

3 model is close to the critical point (see Tab. II). The

r =
5 model yields a linear relation between the liquid pressure and I/R. Results for the gas

pressure are poor, due to the very low gas density for this model. Thus while Laplace's law

may be checked, it is not possible to obtain a satisfactory test of the full Gibbs-Thomson

relations (13). Figure 20 shows the gas and liquid pressures versus I/R. The linearity is well

verified for R
~

33. At the same time, we check the validity of Laplace's formula. For small

radii, we observe the expected divergence from Laplace's formula. For large radii we expect

convergence of R Ap to «. This convergence is much slower than in the two-color ILG [11]
(1/R~m 0.06). However, as shown in figure 21, the measured values of RAp may be
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Fig. 21. Values of the surface tension deduced from Laplace's formula plotted against I/R. The full

line results from a least mean square fit.

extrapolated using a least square fit to « =

1.14 ± 0.16. There is a good agreement, within

statistical error bars, with the value obtained in section 5.

Better fits to the p; vs. I/R relations may be obtained if the fluctuating interface at

r =

3 is pinned to a wall. In reference [15] an experiment in a capillary tube was performed.
The geometry of the experiment is shown in figure 22. Solid walls are added in a standard

fashion, letting particles bounce back into the direction they come from on solid sites. The

interactions between solid sites and non-solid sites follow simple rules : the maximum possible

momentum t, pointing towards the solid site, is added to the fluid site. This rule results in the

merging of the interface with a finite contact angle 0. We refer the interested reader to
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Fig. 22. An experimental setup for capillary pressure measurement in a capillary tube. The equilibrium

pressures of liquid and gas are measured above and below the meniscus. From reference [15].

reference [15] for a discussion of the contact angle measurement. In reference [15] a linear

dependence of the pressures with the contact angle was found. However, this dependence is

not as given by equations (13). To account for the discrepancy, it is necessary to introduce a

new coefficient a. The modified Gibbs-Thomson relations become

~~ ~~ ~ ~ P2~~Pl l~~ ~~~

l'2 "
l'0 "

~

~~~
~Pl ~l'2) (14)

2

«cos 0
1'1~1'2"

~,

where R'=R/cos 0 is the capillary half-width. The measured pressures are shown in

figure 23. The best fit is obtained for a =

1.34 ± 0.01 and « cos 0
=

0.21± 0.02. Direct

measurements of 0 were also performed by fitting the meniscus shape. They yield

0
=

22 ± 8 in degrees. The last three measurements are again compatible with the values of «

obtained in section 5.

8. Hydrodynamical behavior.

Because the basic rules of our model are much more complex than those of the non-interacting
lattice gas, a full derivation of the hydrodynamic equations of our model seems a daunting
task. However, basic symmetries and conservation laws of our model suggest that we recover.

on the large scale, a set of equations that mimics those of an incompressible fluid with a free

liquid-vapor interface. In the bulk of each phase the symmetries of fourth order tensors [22]
impose a Navier-Stokes like equation. Such an equation has indeed been derived for the

minimal model of reference [20] :

atpU~ + ap (g(p U~ Up #

a~p(p, U~ r) + off jP (p j r) appUa

+ aa ~jj ~
" (p r) + <(p j r)) appUpj (15)

The coefficient g (p ) is characteristic of the lack of Galilean invariance of the model. We have
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Fig. 23. Results of experiment in capillary tube. Liquid and gas equilibrium pressures as a function of

half capillary width are shown. Diamonds represent gas pressure and circles liquid pressure. The straight
lines indicate a fit to equation (14). From reference [15].

not calculated it for our model, but it is obtained for the minimal model. We also have a mass

conservation equation

a~p + div pu =

0 (16)

As usual in compressible gas dynamics we expect to recover the incompressible hydrodynamic
limit for small Mach numbers M

=

u/c, as in the non-interacting gas :

~~
+ (u. V) u =

Vp +
vv~u (17)

at

and

divu= 0. (18)

In what follows, we investigate shear wave modes predicted by this equation numerically.
However, before tuming to these numerical simulations, let us consider conditions on

interfaces between liquid and gas densities. Conditions on an interface with a possible phase
change are as follows. We will denote by subscripts I and 2 quantities associated with each

phase, and for any quantity X, [Xl
=

X~ Xi will be the jump of X across the interface. The

normal n to the interface will be oriented from I to 2, and the interface velocity
Uj will be positive if the interface moves from I to 2. In the real world, we have continuity of

tangential velocities :

iu ti
=

o (19)
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where t is a tangent vector to the interface. We have not set up numerical experiments to

investigate such tangential jump conditions. Because of the lack of Galilean invariance of our

model, we may have instead

ui tj
=

K(r) ui ti (20)

Mass conservation imposes the following necessary conditions both in the real world and in

our model :

~pu.ni= ~piuj. (21)

Momentum conservation similarly imposes a jump condition on the normal component of

momentum flux, which reads

[S~p np]
= n~

[
+ ~, (22)

where

S~p
=

p3~p + vp (apu~ + a~up) (23)

and where R', R" are the radii of curvature of the interface. Since changes of phase are

possible, one also needs to impose equality of chemical potentials ~c(T, p) across the

interface, as expressed in equation (I I). When p p~~ is small and u =

0, equations (I I) lead

to equations (12) above. We have not yet performed numerical experiments to determine

directly the validity of these relations in the presence of fluid flow near the interface.

An interesting question is whether it is possible to rescale our model in such a way that one

would recover the full real world equations, with g(p~)
=

g(p~)
=

K
= a =

I. A quick
counting of the possible transformations of space, time, and mass shows that it is impossible.
On the other hand, for special problems, such as a vanishing gas density or a vanishing
velocity in one of the phases, a mapping on the realistic equations is possible.

Numerical experiments on shear waves were performed with two purposes in mind : to

verify the validity of equation (15) and to obtain a measurement of the viscosity for various

variants of the model. We initialize the fluid with a sine-wave velocity field:

ui(x, t)
=

Ao sin (2 grx~/A ), u~ =
0. We then observe the decay of the amplitude A(t) of the

shear wave. The amplitude of the sine wave is actually obtained after averaging 256

amplitudes until a maximal time T, and a fit to exponential decay is made (see Fig. 25 for an

example). This fit yields an estimate of the viscosity. The experiments are then repeated a

number of times between 2 and 5 and the error is estimated.

At short wavelengths A we observe a small elastic effect : the amplitude changes sign before

decaying to 0 (Fig. 24). At longer wavelengths this effect is not seen (Fig. 25). A good

agreement is seen with an exponential decay. The measurements of viscosity converge well

with increasing A (Fig. 26). We performed systematic measurements with varying
r

which

show an approximate r~ dependence at large r (Fig. 27). The resulting measurements of

viscosity are shown in table IV.

9. An example of application : soap froth.

To illustrate another possible application we attempted to simulate the formation of 2D soap
froth on surfaces, such as in Langmuir film experiments [27]. We perform a spinodal
decomposition on a 240 x 240 l12 lattice as often described in this and other [1, 2] papers.
However during the simulation we removed particles at a constant rate. About 300 particles are
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Fig. 24. Decay of sine wave amplitude for short wavelengths.

Fig. 25. Decay of sine wave amplitude for long wavelengths.

4 20

~5a&xa&26emp
)

lo

i ~ i
( #

~

O 2
u u
w w

C x

z

o.5

x

I 0.2

lo 20 50 loo 200 0.5 1 2 5 lo

wavelength
~

Fig. 26. Fig. 27.

Fig. 26. Variation of viscosity with wavelength A.

Fig. 27. Variation of viscosity with interaction range r.

removed at each time step. This corresponds to the dissolving of molecules into the bulk water

phase in Langmuir films. The resulting pattems are shown in figure 28 which illustrates the

ability of the model to simulate liquid films. The state reached at time t
=

440 is unstable and

the system evolves towards a cellular structure similar to those obtained in experiments on soap
froths.
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Table IV. Measured values of the viscosity for some of the variants.

model r
I/r ML vG

A 3 16 I.25+0.I

A 5 16 3.08+0.I

A 7 16 5.15+0.I

A 9 16 9.8+0.05

A 3 32 1.30+0.2 1.192+0.I

B 3 16 1-1? +0.04

C 3 16 1.69 +0.2 0.67+0.04

10. Conclusion.

Although the model is microscopically irreversible we did find most features expected for the

large scale dynamics and thermodynamics of interfaces. Laplace's law is observed as expected
from simple mechanical arguments. The Gibbs-Thomson relations are not verified, which is

apparently a signature of microscopic irreversible behavior~ However, the linear dependence
of the equilibrium pressures with the capillary pressure drop ensures agreement with classical

thermodynamics. In particular the positivity of the correcting factor a is of importance for the

obtention of correct phase transition dynamics. Viscous effects are properly represented at the

large scale~

In spite of its potential for applications, this study remains incomplete in several respects. It

may be useful to have a short list of these shortcomings :

(I) We do not have a full hydrodynamical picture of the model, neither theoretical nor

numerical. An important missing item is the behavior of a sheared interface as described by
equations (20).

(ii) We do not know what the non-Galilean coefficients g(p ) are for the maximal model. It

is likely that things improve with the minimal model where simple calculations yield

g(p ) easily. But no model with g(p
=

I has been found yet.
(iii) We do not have a picture of the fluctuating hydrodynamics of our model. It would be

interesting to put these hydrodynamics in a Langevin equation form, and to investigate the

difference with classical formalism.

(iv) We have not investigated the neighborhood of the liquid-gas critical point. There we

expect that the analysis and the numerics would reveal interesting features such as critical

exponents that would violate universality.

(v) We have some evidence of a 2nd phase transition near r =

9. This transition appears as

spatial, steady state density fluctuations of period close to, but not commensurate with, r.

We expect to be able to address these questions using the minimal interaction model of

reference [20]. We hope that the model or rather one of its variants will then be a useful tool for

simulations of the kind of phenomena already mentioned : coalescence, flow in porous media,

soap froths, etc. It has already been used for the study of interfaces in porous media [15, 16].

For these applications, the choice of the appropriate model is a tricky issue :

(I) At r
=

3 the model is relatively close to the liquid gas critical point and suffers from a

low surface tension. This makes interface fluctuations very large.
(ii) At larger values of r viscosity increases rapidly and we eventually reach the 2nd

transition mentioned above. Moreover, as r increases the gas density decreases considerably.

The lattice gas then becomes inefficient for simulations of flow in the gas phase.
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t=20 t=80

t=180 t=320

t=440 t=600

Fig. 28. Spinodal decomposition with particle removal. The lattice is initialised with a uniform density
d

=
0.3. We have used model A with r =

5. Boundary conditions are periodic. The same picture has been

represented four times to make the visualisation easier.
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In our experience, the optimal choice for r seems to lie between 3 and 5. In some cases a

desirable feature of the simulation is a low capillary number Ca
= Y~

U/«, where U is a typical
velocity. This velocity cannot be made much smaller than I without a great loss of efficiency.

Thus the scalings found in sections 5 and 7 («
~

r and
Y~

r~) yield Ca r. This indicates

again that small values of r may be optimal.
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Appendix A :

Collisions rules.

We refer the reader to the paper of d'Humi~res and Lallemand [23] to get the full list of

collision rules for the FHP III model. We shall use their notation in what follows. We just list

below the rules we have actually used in our simulations when they are different from the

FHP III ones :

A5~oQ ~k)
=

0.

A3~o(1~k)=0, k=20r3.

A3~oQ
~

l )
=

0, k
=

2 or 3

A4~o(1~k)
=

0, k=20r3.

A4~oQ
~

l )
=

0, k
=

2 or 3

Appendix B :

Further information on the choice of pairs.

The definition of
« even »

pairs given in the main text assumes that xw is a reference point for

rotations of the lattice. In fact, as boundary conditions are periodic, there is no reason to

choose this point rather than another one. Indeed in our simulations the reference point was

randomly chosen at each time step. We show below that there are only four independent
choices.

pairs in direction ci have been defined as indicated in figure 29. As the resulting pattem is

periodic with a period 2 in the x and y directions, translations of it generate only four different

sets of pairs.

Fig. 29. Definition of pans in direction c,.
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Pairs in directions ca and c3 are obtained from the above pattem by I and ~fl rotations
3

respectively. A more thorough study shows that the whole set of pairs (the superposition of

pairs in the three directions) can form only four different pattems that cannot be reduced to one

another by a translation. Two of them have been represented in figure 30. Two others are

obtained from the former one] rotations of
gr.

Each pattem has a 4 x 4 x 3/2 basic mesh in lattice units, so it can be mapped on the

lattice in sixteen different ways. All of them must be explored during a simulation. Therefore,

when interactions are performed in one direction, one set of pairs is randomly chosen among

the four possible ones. Indeed, if the position of pairs were always the same, we would not

only create inhomogeneities ; but the definition of pairs would give only one of the four full

pattems of figure 30. The model would be subdivided into four variants, each of them

corresponding to one of the four pattems.

Fig. 30. Resulting pattems obtained by the superposition of pairs in the three directions.

Appendix C :

Viscosity Calculation
«

h la Maxwell ».

We consider a steady laminar, pure shear flow : U
=

U~~y e,. The viscous shear stress can be

written, on the one hand, as

aU~
«~ =

Pp
°Y
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and, on the other hand, as

"1Y "
~1Y~y

where M~ is the instantaneous x-momentum transfer along the y direction per unit time and

area and v~ the velocity of this transfer. Here, the overbar represents an average taken over a

large number of molecules.

Let us evaluate the part of the viscosity due to the interaction. We will consider only the first

interaction given in figure 4. The probability p, (I
=

2 or 3) of having an interaction between

the particles of site x and those of site x'
= x + rc, is

p~ =

N,(x') ii N, ~~(x')i ii N,(x)i N, ~~(x).

Here, N~ is the probability of having the state I occupied :

fit_ =fileq ~jq(1)
~_

i i i

where Nl'l is the Fermi-Dirac equilibrium distribution (d
=

p/7 is the reduced density) :

Nj'l=d(I+~u.c~+.

and N)~~ is the correction at first order in velocity gradients. According to reference [22], we

take

~~~

aU~ aU~
~. ~' + ~ ~~~i«fl j ~' + ~ ~'~cix C;Y t

(as we consider distributions after the collision step, the expression has been multiplied by
(I + A) where is the eigenvalue of the linearised collision matrix associated with the

eigenvector Q;«p. We assume the density to be constant at the considered order). A short

calculation gives

~ ~ ~
aU~

~
aU~

p,
=

d (I d) + (I + ) #d (I d)(1- 2d)-C;~C,~ + d (I d)ar-C,~.
°Y °Y

Then M~
=

~j 2 p, C;~ and the velocity of the transfer is rC~~. It obtains

. =2,3

v =

Ad(I d) r~
+ Bd(I d)(1 2d)(1+ A ~r.

At the dominant order, v is proportional to r~.
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