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Abstract. Short liquid crystalline polymers in
a

nematic environment are very unlikely to

cyclise. Hairpins, abrupt chain folds, favour cyclisation. As a result the cyclisation rate constant

exhibits a maximum as a function of chain length. The maximum corresponds to a new
object, a

"ringlet". The rate constant also depends exponentially
on temperature. This suggests excimer

fluorescence as a
probe of configurations and dynamics of main-chain liquid crystalline polymers.

1. Introduction.

Main chain nematic polymer liquid crystals (PLCS)
are long molecules with nematic mesogens

in the backbone. They are of commercial importance because of their role in the production
of strong fibres. Their scientific interest is due to the combination of the intrinsic random

nature of polymers with the Ordering inherent in liquid crystals [1, 2]. Here we will be mainly
concerned with wormlike PLCS in which the mesogens are separated by flexible spacers. These

obey Gaussian statistics in the isotropic melt regime but are deformed in the nematic phase.
They can exhibit "hairpins" which are rapid reversals in the direction of the chain (Fig. I).
The hairpins

are
joined by chain segments which,

on average are well aligned with the nematic

field. Hairpins represent a
thermally excited state of the chain, whose ground state is that of

a

rod perfectly aligned with the nematic director. In forming hairpins the chain pays an energy
penalty due to chain elasticity and the nematic field, but gains configurational entropy. Previ-

ous theoretical work has suggested hairpins might manifest themselves in dielectric response,

NMR and elasticity [3-6], yet there is
no

clear experimental evidence for their existence. In

the following we consider the effect of hairpins
on

cyclisation with special emphasis on excimer

formation in chains end-capped by two fluorescent tags. The analysis suggests that the inte-

grated intensity of the excimer emission Z, provides
a

clear test for the existence of hairpins.
In particular: (I) Z exhibits

a
sharp maximum as a

function of N, the degree of polymeri-
sation. As we

shall see this maximum is due to a new
object

a
"ringlet". (2) Z increases

with temperature with an exponential type dependence. In marked distinction Z for a flexible

chain [7-15] in
an

isotropic melt is expected to decrease monotonically with N while exhibiting
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Fig-I- (a) A sketch of
an

ideal hairpin. The nematic director is represented by &, and the length

of the bend is of the order of a
hairpin length A. In reality, because of thermal fluctuations the

arms

meander perpendicular to the nematic director and produce
a

hairpin looking more like. b) In general

the perpendicular extent is due to small chain meanders and is not caused by the lateral extent of the

hairpin bend. Despite this the arms are
in fact straight to a

good approximation.

weak temperature dependence. The cyclisation of PLCS is thus of interest both because of its

distinctive features vis-a-vis the isotropic melt case and
as a

probe of chain configurations.

The primary aim of this paper is to study the effect of hairpins on cyclisation experiments.
In such an experiment one joins the two ends of some labelled polymer chains [16], either

temporarily
or

permanently. For the two ends to join they must approach within a small

distance the capture radius. The starting point of this paper is
one

simple fact. In a chain

with
a

hairpin the two ends of
a

single chain can be very close together, whereas in rod this is not

possible. Rods
can

only react via intermolecular contact, wheras hairpinned chains
can

cyclise.
This means that if the concentration of labelled chains is small the amount of cyclisation will

be greatly increased by the presence of hairpins. Exciplex or excimer fluoresence [17] provide

an efficient probe for this effect. The basic idea is demonstrated in figure 2. One first labels

some
chains by attaching fluorescent groups A and B to their ends, Pyrene groups have been

previously used for this purpose. These are then placed in an unlabelled melt or solution,
which is illuminated by a

short pulse of light of appropriate wavelength. This light excites

say A to some new state A*. This excited state can then follow two possible paths. Either

the ends spontaneously relax to their ground state, emitting radiation with a broad spectrum.
This occurs with characteristic time rs. Alternatively, the A* and B ends meet and cyclise
the chain, forming an (AB)* complex. This then emits radiation with

a spectrum difserent

from the spontaneous emission, and one returns to an open chain state. This is called exciplex
emission if the A and B are

different, and excimer emission if A and B are the same. The

characteristic time for decay by this mode
we

call rE. The reverse reaction (AB)*
-

A* + B

is assumed to be highly improbable and we do not consider its effects here. The idea is to

measure the excimer
or

exciplex output from the reaction (AB)*
-

A + B. By integrating the

signal from the excimer radiation with respect to time one gets an idea of how many ends have

met. Ideally one would like rs to be fairly large. This would give many chain ends enough time

to meet one another and promptly emit some excimer radiation [13].

Fluoresence has been used in many experimental studies of diffusion controlled reaction for
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Fig.2. The general excimer reaction diagram. An excited A° end
can

either decay spontaneously

with rate constant ks emitting radiation of fequency vi (usually in a broad sepctrum). Alternatively, if

it meets a
B end the chain

can
cyclise and then emit excimer radiation and decay again to the ground

state, with rate constant kE.

polymers [16-19]. The kinetics are as follows. The time t is measured from the initial light
pulse used to excite the A to A*. We designate the density of unreacted A* ends at any time

as [A*]. This denisty decays in time because of two processes. Firstly, excirner formation can

take place via the reaction A* + B
-

(AB)*. Secondly, spontaneous decay can take place,
A*

-
A. These two processes have associated reaction constants k(t) and ks

=
I/rs,

so that

[A*] satisfies

@
=

-(k(t) + ks)lA*I. (I)

We are concerned here only with those ends which form excimers, I.e. in the conribution char-

acterised by k(t). We thus define a new density of ends n(t)
so that dn/dt is the rate at which

labelled ends
are

meeting,
even

though
some

of them have already decayed spontaneously. The

instantaneous signal is caused only by those ends which have not decayed, and is thus propor-
tional to exp(-t/Ts)(f. It turns out that the simplest quantity of interest is the integrated
intensity Z which is the Laplace transform of (f

m ~~
~ ~

o

~~ ~~~~ ~~'~
dt ~~~

By concentrating on Z we have ignored most of the time-depenent information in the problem.
We can of

course
include this later by examining the instantaneous signal. We will be mainly

interested in the dependence of Z on N and the temperature T. Because of the exponential
spontaneous decay of the excited ends only those ends that create excimers in a time of order

a few rs contribute significantly to the measured Z. The integrated intensity Z also avoids any
complications arising from the finite lifetime rE of the excimers.

We begin
our

discussion with a brief review of the statics and dynamics of hairpins. Their

long term "reptative" dynamics
are

discussed in section 3. The effect of hairpins on cyclisation
and fluoresence is considered in section 4. In section 5 a new kind of entity, a "ringlet", is

introduced. This is
a

short cyclised chain with length of
a

few hairpin lengths. It is formed by
the chain whose length has the maximum cyclisation rate at fixed temperature.
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2. A bi~ief review of hairpins.

Nematic PLCS are often conceptualised as wormlike chains. A truly wormlike chain can bend,
but cannot stretch. Usually such chains are modelled in a

smeared out continuum fashion
so

that a
length of chain

s possesses both nematic and flexible properties. The energy functional

for a given chain then consists of two terms. Firstly there is a nematic term which favours the

alignment of the chain with the director + h. This effect is usually modelled as a mean field

which is caused by the surrounding molecules. Secondly there is a bending term allowing for

the energy penalty the polymer pays for bending. The lowest energy trajectory for any chain is

then
a

straight line aligned along the director. However, at finite temperature there will always
be deviations from this in the form of small wiggles. These

are one way in which the chain
can

store both energy and entropy. There is a second, more interesting way, first suggested by de

Gennes [20], and this is for the chain to undergo rapid reversals in direction called "hairpins"

[20, 3, 21, 4, 22, 6, 23~31]. An example is shown in figure I. The hairpin trajectory is obtained

by extremising the energy functional, and is
a

mechanical equlibrium state of the chain. The

hairpin bend represents a
balance between the bending term, which favours slow bending and

the nematic term, which promotes rapid folding
so

that the chain
runs perpendicular to the

field for only
a

short distance.

The energy functional of
a

chain of length L in
a

plane with b(s) specifying the angle
a

monomer of arc position
s

makes with the director is

Ulb(s)I=( / ds(f((~) +3aSsin~b(s)j, (3)
~ ~

where
a

is the nematic coupling constant, S the order parameter, and
f

the bending constant.

The hairpin shape is specified by the Euler-Lagrange equation corresponding to (3). This yields

a
penduluin-type equation whose solution for

an
infinitely long chain is

b(S)
=

2 tan~~iexP(S/A)i S E (-°°> °°). (4)

This represents a
soliton-like disturbance (Fig. I). The characteristic length associated with a

hairpin (I.e. roughly the length of the bend), and its energy are respectively

~
i/2

~~~
=

(-) Uh
"

2(3aSf) (5)

Almost all the energy is localised around the bend, and from (20) the angle made by the chain

with the director exponentially approaches 2ero +~

exp(-s/I) where s is the distance from the

bend. Although hairpins are
mechanical equilibrium states they are in fact weakly unstable.

The unstable mode consists of shumiiig length from one arm to the other until the hairpin bend

is near
the end of the chain, where it rapidly falls off. The potential driving this instability is

very weak and the motion can be considered as free diffusion unless the temperature is very

low. One should note that although hairpins are unstable
one still expects them to exist by

thermal excitation. It is possible to put more than one hairpin
on a chain of length L, up to a

maximum number
+~

L/(xA). If two hairpins on a single chain are
separated by more then a

few they will attract each other exponetially weakly. Close encounters can result in mutual

annihilation. Hairpins have a major geometrical effect on a
chain. For a

chain with
n

hairpins
the end-tc-end displacement measured along the director varies like

+~

Ln~~/~.

A simple model for the hairpin distribution function is to treat the hairpin bends as a one-

dimensional, non-interacting ideal gas as
first proposed by de Gennes [20], and refined by Gunn
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and Warner [3, 21]. The partition function for a chain with n hairpins is z(n)
=

r" In! with r

T
"

eXP(-Uh/kBT) (6)

Here I is a length arising for the intrinsic degree of wobbling of the chain and sets the limit

to which
one can

define the position of
a

hairpin [21]. To calculate it one must go beyond the

confines of the ideal gas model, the result is [21]

We note that I is roughly the ratio of kBT to the energy in the first wiggle eignemode of the

chain [4]. The length L is analogous to the volume in an ordinary gas. One should note that

this gas is rather like a photon gas the number of hairpins is not conserved. The probability
of finding

n
hairpins

on a chain of length L is then

P(n)
=

exP(-r)( (8)

and the average number of hairpins on a chain is (n)
=

r, the standard deviation being @.
The distribution for r > I is peaked about

n m r I,e about the average. One should note

that for an average population of one hairpin per chain the probability distribution is just
P(n)

=
e~~ In!

so
that P(0)

=
P(I) and there are just as many zero-hairpin chains as one-

hairpin chains, while the number of chains with large numbers of hairpins decays very rapidly.
The ideal gas analogy applies only in the

case
where the degree of wobbling is small and

hairpins are well defined.

So far we have pictured hairpins as two rods joined by
a

short bend. In reality the rods

are not perfectly straight and parallel. Rather, they exhibit small wiggles
or

undulations. Dy-
namically, at short times, we have "nematic-elastic" (NE) modes. These are reminiscent of

the Rouse modes in flexible isotropic chains because they occur on short timescales and are

the fundamental modes of motion which the chain would have in the absence of entanglements

or
hydrodynamic interactions. The NE modes do not play

an
essential role in our analysis.

However, at short enough time scales they are important. The NE modes involve small
am-

plitude undulations of the chain about its equilibrium position. The simplest case to discuss

is undulations about a perfectly straight chain. In general the calculation of the modes is not

trivial because of the constraint of chain inextensibility. This constraint has an effect on the

mobility matrix for
a

chain and implies that a force applied to one point on the chain has
a

complicated efsect on other points on the chain, making the equations of motion non-linear.

One way to calculate the mobility matrix (or its inverse the friction matrix F) is to use

the Rayleighian approach [32, 33, 4]. This is
a

generalisation of Lagrangian mechanics to the

case of linear friction, and instead of calculating the Lagrangian one calculates the Rayleighian
l~ which is proportional to the kinetic energy of the chain. The equation of motion is then
$

=

-) where U the chain energy (3). This yields
S

fs'=L
~2@(ds'f(s, s')b(s')

= f
( 3aSsin b(s)

cos R(s). (9)
~i=o

dt

If one linearises this about b(s)
=

0 then the non-local nature of the equations disappears and

one obtains, for an arbitrary perpendicular displacement hi (with b(s)
=

~@)

~A~(s) o4Ai(s)
~

s°~Ai(S) (1°)-~ ~ " ~ fi~4 ~ dS~
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where s is the
arc

length measured from
one

end of the chain. The boundary conditions

appropriate for this problem are:

at both ends of the chain. All the modes decay exponentially in time like exp(-t/rn), with rn

the decay time for the nth mode The explicit forms for the modes
are not particularly instruc-

tive. However, it is simple to write down the dispersion equation for
a

harmonic disturbance

of wavevector q, by using A [(s)
+~

exp(-t/rq) cos(qs) and (10) to give

In the limit of long chains L/I > I the longest lived mode involves a wavelength of about the

length of the chain so q m
L~~ This gives a maximum characteristic time for NE dynamics of

~
~2

TNE = q. (13)

One can calculate the amplitude A of this longest-lived mode, by using A(s)
=

Acos(xs/L)
in the energy equation (3) and equipartition (kBT/2 per degree of freedom)

,

which gives
A m kBTLIaS. Although the amplitude grows as

L~/~ the angle made by the chain with the

director is
+~

AIL which decreases with increasing chain length. The nematic elastic modes

for a hairpinned chain will be similar to those for
a

straight chain. Some of these have been

illustrated previously [4].
One can use the long wavelength mode to calculate how long the arms of

a
hairpin must

be before theor ends
are

likely to touch by vibrations of this kind. The answer, obtained by
setting A

+~

I is L/I > U/(kBT). In this,
as

in most of the previous studies of hairpins,
a

continuum model for the chain is used where the discreteness of the monomers is not accounted

for. This
means

that
one

requires the hairpin length to be at least several monomers. If this is

not the case there are some interesting efsects asscociated with the discrete monomers. If we

assume
I is many monomers in length then in

a
melt this implies each hairpin has many chains

between its arms. Accordingly there will be physical barriers (the other chains) and probably
entanglements, which present a

dynamical barrier to the two ends meeting. We return to this

below. However, the fact that such modes are excited means that
a

hairpin looks more like that

in figure 16 rather than la. The perpendicular size of the polymer is [34, 35] roughly (r [)
+~

Ll( flfi)~~, when Uh > kBT, so that in the perpendicular direction the polymer performs
a

random walk with step size A
=

A(kBT/Uh). This can be obtained by considering only the

longest wavelength mode described follwiiig equation (13). Another important fact is that the

perpendicular extent of the polymer is due mainly to small meanderings of the chain. The

hairpins, by themselves, each of s12e
+~

21, contribute
+~

nl~
+~

LAUh/kBTexp(-Uh/kBT) to

the lateral size of the chain. The ratio of the two contributions is (Uh/kBT)~ exp(-Uh /kBT) «

I, so that the encounter probability of the ends is essentially due to the small undulations.

The modes calculated above are the iii ier~ial modes for the chain. The centre of mass is free

to diffuse with difsusion constant
+~

kBT/(~L). Of course, if there are entanglements a given
chain sees a "tube" formed by these entanglements. Once a monomer has difsused a distance of

the order of the tube diameter the NE modes are constrained. A similar situation occurs in the

theory of melts of isotropic Gaussian chains [36] where there
are

four regimes of chain motion.

At very short times the chain does not feel the tube constraints and undergoes free Rouse

dynamics. At longer times it experiences the tube constraints and the motion perpendicular

to the tube is supressed. At yet longer times the motion is reptative, until the chain leaves
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its tube and forms
a new

tube. For nematic PLCS
we

thus need to introduce another time

Te which, for long enough chains must be smaller than 7NE. For times t < Te the motion is

governed by the NE modes. For Te < t < 7NE the NE modes are constrained. For t > 7NE the

reptative dynamics discussed in the next section dominates, at least until the chain leaves its

original tube.

Because hairpins are geometrically so difserent from rod-like, slightly wiggly, or Gaussian

chains one expects them to have rather large efsects in some experiments. There have been

many theoretical studies involving hairpins and several suggestions in the past for various

experiments to detect them. These have included giant dielectric response [3], dielectric relax,

ation [4], efsects
on

the elastic constants [5] and NMR [6]. One might also expect some efsects

on
the rheology, but at present there is no rheological theory which includes hairpins. Despite

all these suggestions there is
as yet no

conclusive experimental evidence that hairpins exist.

The only evidence obtained
so

far involves
some

tantalising SANS measurements, which show

a large increase in anisotropy at low temperatures [37] (see their Fig. 6). This is possibly
due to the dissapearance of hairpins

as
the temperature is decreased. One other possible piece

of evidence occurs not in PLCS, but in ordinary polymers which
are

aligned by a shear flow

[38]. It involves
a

long-time tail in the NMR linewidth decay following cessation of shear. This

decay is much longer than the timescale expected from rheological measurements, and may be

due to the presence of shear-induced hairpins.

3. Hairpin dynamics at long times.

In order to discuss the efsect hairpins are likely to have on fluoresence and cyclisation experi-
ments we

first need to say something about hairpin dynamics at long times. There have been

three previous studies of dynamics in the non-entangled regime [4, 6, 22] and some work on

the dynamics of nematic chains without hairpins in melts [39, 40]. In this section we discuss

the reptative dynamics, which involves motion of the hairpin arms over distances comparable
to the length of the chain. Because of the nematic potential the "tube" for a nematic polymer
is well approximated by a straight line (in the absence of hairpins)

or a hairpin shape. This

implies that the displacement undergone by
a monomer

in space is difserent from the isotropic
melt case where the tube itself is a random walk. The nematic field also sets up its own tube

[4] and this forces hairpin motion to be reptative irrespective of the entanglements. For times

much longer than 7NE difsusion parallel to the nematic field will occur much faster than that

perpendicular to the field because the reptation is biased to chain configurations aligned along
the field.

There are at least three possible experimental systems of interest. One
can

have: (I) a melt

of flexible PLCS; (it)
a

solution of flexible PLCS in
a

nematic solvent; and (iii)
a

blend of

flexible PLCS and rod-like PLCS. In all cases one expects to find hairpins in the flexible chains.

However, cases (it) and (iii) may be difficult to achieve because of poor miscibility.

Case (it) is the easiest to visualise, but is perhaps the most difficult mathematically. If the

solution is dilute then there are no entanglements and
a

single hairpinned chain can move freely.
In such a case, if we ignore hydrodynamic efsects, the centre of mass motion and the internal

motion decouple. The centre of mass motion is just a
random walk with

a difsusion constant

scaling
as

L~~. On long timescales the internal motion is modelled by the "two stick" theory

[4]. In this model the
arms

of the hairpin
are

both straight and parallel, one of length si and

the other of length L si The bend length is neglected. The arms undergo free difsusion, but

with
a

diffusion coefficient that depends on the arm length. The diffusion equation satisfied
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by the probability distribution function ~b(sj) is

l~
=

~i I1()
+

~ ~~
°lll~ (14)

where t is time and ~ is
a

microscopic friction constant (per unit length). The diffusion

coefficient here is small when each of the arrns have the
same

length, and diverges as one
of

the arms gets shorter. This makes the solution of problems involving this kind of dynamics
mathematically unwieldy [6]. Yet the characteristic time for hairpin decay is mop +~

$L~
as

one would expect. The motion is reptative, but without entanglements. It is the nem~tic field

that creates the "tube". The strange form of the diffusion coefficient in (14) arises because (14)
is concerned with transfer of length between the

arms. There are other equations associated

with the random walk carried out by the centre of mass, but these do not affect the cyclisation.
The extension of this model to the multi-hairpin case has also been considered [22]. We note

here that the dynamics of similar kind of object,
so

called "kinks" which
can

be made in an

extensional flow field has been considered recently [41, 42].
The dynamics in the entangled regime, which is expected to be important in

case
(I), has not

been previously discussed. The hairpin is fixed in space by the entanglements, and the chain

can only slither out of its tube. The diffusion constant is D
+~

kBT/(~L) and the distribution

function satisfies

The
haracteristic

tiiue has the ame scaling
behaviour

as for the
nentangled regime.

Typically the reptation tiiue mop is much larger than the ongest NE time, NE, so
one

justified in treating the two
dynamical modes

eparately. The ratio of hese two is mop/rNE +~

hL)/(kBTA), but this is the same as the (bb~) where bb is the angular eviation caused

the ngest lived NE
mode. Thus, the requirement that the

hairpins
are

4. Cyclisation and fluoi~esence. Experiments. The effect of hairpins.

In this section we return to our main problem, cyclisation of nematic chains. We begin by
discussing

a
melt of rods, which bj< definition cannot cyclise. However, the ends of two different

labelled rods can meet and foriu
an

excimer and hence produce
a

detectable signal. The intensty
of this signal scales

as [A*]~ and should thus be distinguishable from any cyclisation efsects,
which scale as [A*]. We then go on to consider the effect of hairpins. These of course permit
cyclisation. life study their effects in three stages. Firstly we consider chains with at most

one hairpin and where the arms are
modelled as being perfectly straight. We then include the

effect of
arm

meandering perpendicular to the nematic field. Finally
we analyse the behaviour

of chains with many hairpins.
Intermolecular excimer formation

occurs when ends from two difserent chains meet. Below
a

certain "critical concentration" of labelled chains this efsect will be negligable. Our aim here is

to calculate this concentration, and
we

do
so by considering chains without hairpins. These

are

approximated as a
melt of rods. The system is excited at t

=
0. For a

chain which is efsectively

a rod the only way it
can

form
an

(AB)* is by meeting the correct end of another chain. Let

us suppose there are c
labelled chains per unit volume and hence the initial concentration of

type A* is also c. We assume that when an A* and a B come within llc, the capture radius, of

one
another, an excimer is formed. Then, at times larger than 7NE each A* end is performing

a one
dimensional random walk. The number of B ends per unit length originally available
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for capture is cR( and the diRusion constant is
+~

kBT/(~L). The characteristic time for the

collision of two tagged ends is

' ~ c~ i~~BT' ~~~~

By making the concentration very low one can always ensure ra > rs so that excited A* ends

will decay spontaneously before meeting
a B end. Thus the integrated excimer output is very

small. The "critical concentration", defined by ra m rs, is

~ ~

~L I

~ rsRfkBT
(17)

For c > c~ binary rod-rod collisions
are

iInportant and the integrated intensity scales
as

c~.

The details of the calculation can be found in the appendix.
We have discussed only the dynamical contribution to the integrated signal. Of course

initially there are some chain ends which are located within a reaction radius Rc of each other

and do not need to move to react. These ends produce an "instantaneous" contribution to the

signal of order c~R(. This contribution will be negligible.
We now

proceed to study intramolecular excimer formation, cyclisation, when the concen-

tration of labelled chains is lower than c~. In particular, we will calculate the rate constant k(t)
in the presence of hairpins. Of course, at any given temperature there is always a probability

distribution for hairpins. At low temperatures there will be very few. As one increases the

temperature the number of hairpins increases, but if the temperature is too high the chain

approaches an isotropic random walk and the idea of having well defined hairpins ceases to be

useful. Eventually, at high enough temperatures the nematic to isotropic transition takes place
and hairpins, which by definition require large values of the order parameter, vanish entirely.
We first study a melt of chains supporting at most one hairpin. Initially the analysis is based

on a simple "twc-stick" model for single hairpin dynamics.
The average distance between the ends on a single hairpinned chain scales as L. If the arms

of the hairpin
are

totally straight and llc is larger than the perpendicular distance between the

arrns I.e.,
a

few A, then the timescale for collisions is mop +~

~L~/(kBT). The collision dynamics
for a

single hairpin
are

different from the dynamics of rods considered in the Appendix. We

need only consider
one

coordinate
w = (Ajj (, the distance between the ends of the chain. The

probability distribution function ~b(w) for unreacted ends satisfies

and j
" ~°~° ~~)~~ (19)

with
~

dw~b(w)
= cl (20)

Here co and cl are the number densities of chains with zero and one hairpins respectively,
and D is the diRusion constant for single hairpin motion D

+~

(kBT)/(~L). The first term

on the RIIS of (18) allows for the diRusive motion of hairpins along the chain. The second

term, b(w wo)~co, results from chains with no hairpins forming a hairpin which then has

w = wo * L. This thermally activated creation of hairpins occurs with
a rate a.

Since the rate

of hairpin annihilation in thermal equilibrium is
+~

rQ(, detailed balance [4] suggests that a
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scales as
rj(. The delta function thus represents a source term. Hairpins

are
continually being

created by thermal excitation at the end of the chain. Equation (19) follows from conservation

of the number of chains. In (19) the >co term arises from zerc-hairpin chains forming
a

hairpin,
and thus being lost to the zerc-hairpin chain population. The second flux term -D( j$) is

caused by hairpins which fall off the end of the single hairpin chain and form zero
hai(pin

chains. The boundary conditions
on ~b(w) are (19) combined with ~b(0) =

0, so that when the

two arms have the same length excimer creation takes place. At t
=

0 we have

co "
c(r + 1)~ cl "

rco, (21)

and

~l(w,t
=

0)
=

cjL~~, (22)

with r defined by (6). The reaction rate
~'~

is just the flux at w =
0, so

~'~
=

D~'~ At

short times, t « mop, the zero hairpin chai)( do not have time to gain hair/ljs and ~~f~move

these hairpins into reactive (equal-armed) configurations. One can show, using the propagator
for

a
random walk, that their contribution is exponentially small in mop It. Thus, in this limit

the source term in (18) is unimportant (unless r is very small). It is possible to calculate the

reaction rate in different ways. ~fe can
estimate the flux from the fact that those hairpins near

w =
0 undergo a random walk of length

+~

/fi in time t. Half of these collide and so a hole of

size li
opens up in the distribution function. The gradient produced is j$

+~ cl
L~Jlli.

Hence the rate for short times is

~~~
~

~~ ~~L(i~
1) ~

fir
l

~ ~~~~ ~~~ ~ ~~~' ~~~~

At long times, t » mop, another process becomes important: creation of hairpins on chains

which originally had no hairpin. These chains, which originally had no possibility of cyclising,

can now
cyclise by shuffling length between their arrns. Since the equations governing the

dynamics
are

linear only the longest lived eigenmode is present for t » mop. The decay must

then be exponential with characteristic time mop so
that n(t)

+~

cexp(-t/mop). The rate is

thus I
~

-Cl exP(-t/rreP) t » rreP. (24)

Two things are clear from this simple calculation. Firstly, as one expects, for a low concen-

tration of tagged chains both the reaction rate and the integrated signal scale linearly in c.

This is because each chain is interacted with itself, rather than with other chains. Secondly,

one might naively expect that increasing the chain length and hence the number of hairpins

per chain would increase the integrated signal. This calculation suggests the opposite is true.

Increasing the chain length does increase the number of hairpins because (n) c~ L. However

increasing L also slows the chain motion because the reptation time scales
as

L~.

So far, our discussion suggests the following picture. At low enough concentrations
c < c~

one expects the following beliaviour as a function of L and c. For very small L < a
weak

signal scaling as c~, followed by
a

region L » where the signal scales as c, but decreases as

with increasing L. This picture is however incomplete. As we shall
see

the large L behaviour

is modified when one allows the presence of many hairpins. In particular, the L dependence
of the integrated signal is L~~/~ Also, our discussion, and most previous studies of nematic

chains, applies only to long chains L » A. It is neccesary to analyse chain conformations

in the region L < and we do this is the next section. In the remainder of the present
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section we elaborate the above analysis in three respects: (I) analyse the effect of perpendicular
meanderings

on the likelihood of reactive encounters between the tagged ends. (ii) In
our

earlier

discussion the chains were confined to virtual tubes due to the nematic field. This field induces

a strong alignment of the chains thus resulting in reptative dynamics even in the absence of

entanglements. Yet, the presence of entanglements may further affect the dynamics by placing
stronger barriers to lateral motion. As we shall see this leads to a difserent t dependence of k(t)

in the limit of small t. (iii) Finally we consider the cyclisation kinetics of chains with many
hairpins (n » I).

In the model presented above it was assumed that the arms were
straight and parallel. As

a
result we also had to assume that the capture radius was a few hairpin lengths

so
that there

was any chance of two ends meeting. If the arms were
parallel and the capture radius satisfied

llc < I hairpins would definitely reduce the reaction rate because they would bunch the ends

together, but not close enough to cyclise. Fortunately, as
discussed in section 2, we know from

the detailed calculations of Warner et al. [21] that the
arms are not strictly parallel. The chain

configuration in the perpendicular direction is a twc-dimensional random walk of L/A steps
each of length A with A

=
lkBT/Uh. Because A « L the arms are sufficiently straight at low

temperatures for the "rod-like" dynamics we have used to be valid. A hairpinned chain thus

should be thought of as looking something like that in figure 16 rather than in figure la. The

fact that the lateral extent scales as
VZ and is much greater than I tells us that increasing

L reduces the reaction rate. In an entangled system the random walk is essentially frozen-in

and the only way two ends
can meet is when a

random walk with the two ends very close is

generated. The fraction of walks which arrive after L/A steps within l~ of the origin may be

obtained using the propagator for a two dimensional random walk of L/A steps, G(Ar, L/A)

f~~ drrG(Ar, L/A)
= /~~ drr(~~)~)

~

exp(-3r~ /2LA)
+~

)
« 1. (25)

o o

Thus the instantaneous signal is decreased by
a

factor R(/LA.
Although the static conformations of

a
chain's trajectory in the perpendicular direction

are governed by the step size A it is not this step size which is important for the dynamics.
Dynamically,

once one is in the reptative regime it is the "primitive path" which is important,
rather than the actual path taken by the chain. This is true both for nematic and for isotropic
melts. The primitive path [36] is the shortest path which has the same topology as the actual

chain with respect to entanglements. If NE is the number of monomers between entanglements
and N the degree of poymerisation of the chain, then the primitive path consists of Np

=
NINE

"monomers" each of length P
=

/GA. We now need to include the efsect of perpendicular
meanderings of the primitive path

on the reaction rate. To do this we refer to figure 3, which

attempts to represent the distribution of end to end distances along the three
axes.

Initially,
at t

=
0 there is

a
spherical hole of radius Rc which

occurs because of the ends located within

a
reaction radius (Fig. 3a). We now run the experiment for a short time t. For ends to react in

this time they must have AZ < (D<)~/~, and Ax < P~/~(D<)~/~, Ay < P~/~(D<)JH, where the

z
axis is parellel to the director This defines an ellipsoid which is shown in figure 3c. At times

greater than the time to difsuse an entanglement length the major axis of the ellipsoid is located

along the
z

axis. At very short time < RjP~~D~~ the ellipsoid looks like 3b, but at such short

times our dynamics becomes unphysical,
so we

need only concern ourselves with figure 3c. The

volume between the ellipsoid and the sphere is just V
+~

PD< R(
m PD<. The fraction

of chain ends within this sphere is
+~

L~J(LP~JP~)~~V
+~

kBTt/(~L~)
+~

t/mop. Thus the

reaction follows
=

-(rj()n, and the rate constant at short times is a constant k(t)
+~

rQ(.
t
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Fig.3. Three pictures of the "hole" opened up in the end-to-end distribution function for single
chains. The

z
axis is the director axis. Initially (a) there is

a
hole of radius equal to the capture radius

where there are no ends. The ends then start'to diiuse. At short (unphysical for our reptative model)
times the situation is like that shown in (b). In (c)

an
ellipsoid has formed where there

are
few chain

ends. The long axis of the ellipsoid is along the director because the chain motion is most rapid in

that direction.

Expressed
as a function of the total concentration of labelled chains, c, it is k(t)

+~

rjj).
+ I

Thus the reaction is initially described by
an

exponential decay. The rate is slower than that

suggested by the "twc-stick" approximation for which the reaction rate had
a singularity at

the origin. At long times the decay must also be exponential with time constant
+~ mop.

This situation is somewhat similar to the case of reptative motion in isotropic melts studied

by Bernard et al. [12, 13]. Using the Doi-Edwards earthworm equations [43] these authors

found the exact reaction rate constant k(t). At times short compared to the reptation time

t « mop +~

~L~ /(kBT) it scales as +~

rQ((()~~~~, whereas at long times it becomes constant
rep

+~

roj. These scaling relations can be derived fairly easily. The long time behaviour, which

must be exponential decay with time constant
+~ rrep has already been discussed [13]. The

short term behaviour is caused by one well known fact [36]. For
a

primitive chain reptating in

a
tube the arc-length distance travelled is proportional to t~/~. However, the primitive path is

itself
a

random walk, and thus in travelling
an

arc-length distance s the displacement in real

space scales as
s~/~ Thus the displacement is bt~/~, where b is

a constant. We
now

imagine
the experiment is run

for
a

short time At. In this time only ends which are located within
a

sphere of radius A~
=

bAt~/~
can meet. The number of such ends, (assuming Ax « /§P)

is
c~

A~~. Thus the number of end collisions in time At is c~
At~/~, and hence the reaction

equation at short times is (f
=

-k(<)n with k(t)
+~

rQ((t/mop)~~/~, where we have inserted

factors of mop on
dimensional grounds.

On a chain of length L » I there is always
a

possibility of finding
n > I hairpins, given

by (8). What is the effect of
a

large number of hairpins? Because the length is unchanged
the diffusion constant is the same. As stated above the end to end distance along the normal

to the director is also unchanged since it depends mainly on the perpendicular meandering
behaviour. Ilowever, the distribution of end to end distances along the director does change.

In the
case

of a single hairpin we argued it was
uniform between -L and L. It is known [21, 22]

that the parallel end to end distance scales
as

Ln~~/~ for large
n.

The distribution must thus

be peaked about Ajj =
0. This can be seen qualitatively by considering figure 4. One takes
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(a)

(b)
~

s

(c)

(d)

FigA. A pictorial explanation for the peak in the parallel end to end distance distribution (Ajj( in

the presence of more than one hairpin. In (a) the first hairpin (represented by the black sphere)
can

be placed anywhere, giving
a

uniform distribution for (/hjj( and forming a hairpin like that shown in

(b). However, the next hairpin has a far greater probability of being placed on the long arm
(L) (say

where the black box is) and forming the shape shown in (c), rather than
on

the short arm (S) (where
the oval is) and forming the shape in (d). It is clear by comparing (c) and (d) that this produces a

bias towards small (Ajj(.

a
perfectly straight chain and represents the hairpins by points on the chain. We place one

point
on

the chain and bend the chain over at this point. Because this first point is placed
randomly Ajj has

a
uniform distribution. Now we

take another point and place it randomly

on the chain. It could either be placed
on

the long arm (L)
or the short arm

(S), forming the

two possibilities shown in 4c and 4d. Since the long arm is longer the hairpin is much more

likely to be placed there and hence make Ajj smaller. Thus, for n > I hairpins, small end to

end distances are favoured. The width of the distribution of (Ajj changes from L, for the one

hairpin case, to Ln~~/~ (n » I). Also, the number of ends
near (Ajj( =

0 is increased by
a

factor of @. Altogether the concentration of uncyclised chains with n hairpins, cn, is obtained

from our single hairpin result, multiplied by @

(j
~

-ni/2r~icn
n » I ~~~~

Thus the rate of cyclisation for a chain of fixed length grows with the number of hairpins. Of

course such hairpins
are

thermally activated. Thus cyclisation is not dominated by fluctuations
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with n > (n). We
can now discuss the

case of very long chains. On a long chain the average
number of hairpins is (n)

=
LI~J exp(-Uh/kBT). The distribution function is strongly peaked

about this number
so we can assume that there are only chains with (n) hairpins. At short

times the rate constant for cyclisation is then (using (26))

k
+~

fiL~~/~(kBT)~/~ exp(-Uh/2kBT) (n) » (27)

and because this is a constant the decay is initially exponential with this
as the inverse time.

There
are

three things to note about (27). Firstly k is time independent. Secondly, k decreases

steeply with chain length. Thus, while hairpins favour cyclisation of long chains by reducing
the parallel end to end distance, this effect is overwhelmed by the dynamics. Finally, the

reaction rate has
a very strong dependence on temperature. This exponential type dependence

is typical of many chain properties which depend on hairpins, in particular the giant dielectric

response prediction [3]. From (26)
we can

derive the integrated intenisty Z. This is

where
we

have summed over
all possible hairpin numbers n. We know the time evolution is

cn(<)
=

cn(0) exp(-< /@mop) where the distribution function cn(0)
=

cP(n) and P(n) is given
by (8). P(n) for large r is efsectively

a
delta function peaked about

n =
(n)

=
r and so

(assuming rs < rrrep) the integrated signal is

Z
+~

crsr~/~rjj
c~

cL~~/~ (29)

We have Z
+~

k and the integrated signal measures the rate constant.

5. Ilinglets.

Our discussion
so far has suggested no cylisation mechanism for short chains. For long chains

L » I
we

know that the cyclisation rate is
a decreasing function of L. However, we have been

able to say little about chains with L m I, in part because previous hairpin studies have been

usually restricted to L » I. Here we
will show the cyclisation rate is expected to be maximal

for L m I. The regime L m I is in fact of some intrinsic interest in itself, independent of any

reaction rate efsects. For linear chains it is known that the lowest energy state corresponds to

a chain aligned along the nematic director, and that the excited equilibrium states are hairpins
[20, 4]. One can ask exactly the same questions for cycles. What is the ground state of such

a

chain and what are its excited states? In this section we answer the first part of this question
and predict

a new object,
a

"ringlet" for which the cyclisation rate is maximal. We begin with

energy functional of
a

chain with trajectory b(s) (3). To find the equilibrium states for
a

closed

loop we
need to extremise this functional subject to two constraints. Firstly, that we begin

and end at the
same point in space

L L

ds cos
b(s)

=
ds sin b(s)

=
0. (30)

We also need to impose continuity of the tangent vector

b(L)
=

b(0) + 2nx n an
integer, (31)

to avoid an infinite bending energy at the point of discontinuity. Now it is feasible to ex-

tremise (3) subject to constraints (30) by introducing two Lagrange multipliers, ~ and
w

for



N°1 NE&IATIC POLY&IER CYCLYSATION 83

--
n

Fig.5. The possible ground states for
a

cyclised chain. A long chain (left) will want to form the

double hairpin configuration. A short chain (right) will form a ringlet. One should note that both

these objects are actually the lowest energy states for
a

cyclised chain. This should be contrasted with

a
non-cyclised chain which has as its ground state a straight line aligned along the director.

the constraints. This would reduce the problem [23] to one of
a

classical particle moving in a

potential
u(b)

=
-3aS sin~ b + ~ cos b + w

sin b. (32)

The solutions for the extremal trajectories will be complicated elliptic functions [23]. However

a
semi-quantitative analysis yields the information

we
seek. By definition the lowest energy

state of this cyclised system is not a
straight line. In the limit L » I the lowest energy state

will be the double-hairpin configuration of energy 2Uh, shown in figure 5, because for such a

state the chain is mainly aligned along the director. In the limit of L m I the exact shape taken

by the ground state is unkown, but we can
aprroximate it crudely by a circle R(s)

=
2xs/L.

The energy of such
a

circle is

Ur(L)
=

Uh ix~(() + j( )] (33)

We now
ask the following question: is there

a
chain length L which yields the ground state

with the lowest energy? For the assumed circular shape there is
a

minimum at

Lm;n
=

2Vixl, (34)

with
an energy of

~~"~ ji~~ ~ ~~~' ~~~~

Thus a cyclised chain of length fit certainly has a lower energy ground state then
an infinitely

long chain for which the ground state is two hairpins. There
are now two possibilities. Either

the minimum energy occurs for L
+~

I and its energy is
+~

Uh or
the minimum energy occurs

as L
-

0 and is U
-

0. This reasoning is based
on

the fact that there is only one length
scale, I, and

one energy, Uh, in the problem. It is easy to exclude the zero length possibility by
examining the bending term. From an elementary inequality of calculus (the CBS inequality
[44]) we know the bending energy satisfies

/~ ds ((~
~

/ )(2nx)~ (36)
o s

where
n

is the number of loops. For a simple closed curve this is just I. Since (36) diverges

as L
-

0 any small loop always has
a very large energy, due to the bending term. For short

lengths the bending energy is very large, whilst for long lengths the nematic energy can become

large. Thus the chain length which gives the minimum energy is L
+~

I and this minimum

energy is aUh where 0 < a <
~

Like
a

hairpin this minimum is a balance between the
Vi
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Fig.6. A sketch of the integrated signal versus chain length for
a

nematic chain and an isotropic

chain. For the nematic chain at very small chain lengths L « the bending penalty is too great for

intramolecular cyclisation. At long lengths where there are many hairpins the integrated signal should

decrease
as

L~~/~ At lengths close to a few there will be a strong ringlet peak. For the isotropic

chain undergoing reptative motion we expect Z
-J

L~~/~ The dotted line represents deviations from

reptative motion caused by the Rouse modes. The exact position of intersection with the nematic

curve is not known.

nematic and bending terms. In keeping with the usual hairdressing terminology [20, 23] of this

field we shall refer to this minimum energy loop
as a

"ringlet" (see Fig. 5).

These ringlets are significant in the cyclisation problem because
we

know that for rods

cyclisation rate ~f is 2ero. A ma~~imum is thus expected at some intermediate L. We also

know that (f for long chains decreases with increasing chain length, despite the presence of

hairpins. In this section we identify the maximum in the cyclisation rate at L
+~

with ringlet
formation, providing kBT < Uh and R~ < A. Chains of length « cannot cyclise because the

bending penalty is too large and the rate is controlled by
a

Boltzmann factor. Chains of length
L » can

cyclise, but the rate of cyclisation is slow because of the reptational dynamics.
Cyclisation in the vicinity of the maximum L m I gives rise to an

integrated signal of the form

f(L, kBT) exp(-L/(L)/(kBT)) where f is
a

weak function of L and U(L) has roughly the form

of Ur(L) (33) (see Fig. 6). The exact form of f depends on the dynamics. For small L, below

the entanglement threshold, the NE modes will dominate the dynamics. At large L, and at

long times reptative dynamics control f. What is clear is that the dependence
on L is weak

compared to the exponential dependence of the second term. The maximum in the integrated
signal is then very close to L

+~
I when kBT < Uh. The above statements are subject to the

following caveat. The hairpin length was assumed to be much greater than
a monomer length.

If this condition is not satisfied the discrete nature of the chain can have quantitative efsects

[4].

A similar efsect has been
seen

previously, experimentally and theoretically, in wormlike chains

with no nematic field and in DNA fragments [45 -48]. For isotropic chains with finite persistence
length the peak in the cyclisation i-ate balances two effects. At short lengths the chain rigidity

decreases the cyclisation probability. At long lengths there is
a

phase space efsect. A chain

with N monomers
has

a smaller chance of returning to its starting point as N grows. There is

thus
a

peak in the cyclisation rate for chains roughly one persistence length long. The analysis
reported relied

on
chain statics rather than dynamics.



N°1 NE&IATIC POLY&iER CYCLYSATION 85

In(I)

,, ~
~'''~'~'

Isotropic Chain

I/T

Fig.?. A sketch of the logarithm ofthe integrated signal
versus

reciprocal temperature for
a

nematic

and an isotropic chain. Both undergo reptative motion. For the nematic chain the temperature

dependence is Z
-J

T~/~ exp(-Uh/2kBT) which dominates the isotropic result at small i/T because of

the creation of hairpins. The expected result for
an isotropic chain is Z

-J

T~"

6. Discussion and conclusion.

Nematic polymers can hardly cyclise when their length is short compared to their persistence
length. Formation of hairpins enables cyclisation by allowing the ends to approach each other.

If we vary the chain length then an
interesting efsect occurs.

At very short chain lengths the

bending term in the chain energy prevents cyclisation. At large chain length lengths, although
hairpin formation is favoured the cyclisation decreases rapidly with chain length. This is for

dynamical reasons the reptation time increases as
L~ and slows the cyclisation rate by this

factor. It is clear then that the cyclisation rate must reach
a maximum at some chain length

(Fig. 6). What we propose is that this occurs for
a

chain of a few hairpin lengths. Such chains

can
form "ringlets" which

are
the minimum energy shape for

a
closed chain. Because of the

Boltzmann factor responsible for ringlet formation
we argue that this conclusion is not sensitive

to the details of the dynamics. Thus the cyclisation peak should always be around the ringlet
length irrespective of whether reptation or Rouse-like behaviour governs their dynamics. The

ringlet peak is absent in ordinary isotropic Gaussian polymer systems where the rate constant

always decreases with increasing chain length. For chains of constant length the reaction

rate is predicted to depend exponentially on the temperature (Fig. 7). This is because the

production of hairpins requires an
activation energy. In turn, the end to end distance decreases

as
the number of hairpins grows, thus favouring cyclisation. This exponential dependence

on

temperature is typical of many chain properties which are
hairpin dependent, such as the radius

of gyration along the nematic director or the dielectric response. Any physical property which

depends
on the number of hairpins, even weakly, will always show

a very strong temperature
dependence.

The N and T dependence of the cyclisation rate are
qualitatively difserent from the cyclisa-

tion dynamics of isotropic chains where the reaction decreases monotonically with chain length,
and the temperature dependence is weak. These results suggest the use of excimer fluoresence

as a
probe for hairpin formation. Such

an
endeavour is of interest because of the paucity of

experimental evidence for the existence of hairpins. At the same time such experiments can

test the vailidity of current ideas concerning the dynamics of nematic polymers. Ideally, the
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experiments should test both the T and the N dependence. However, in melt conditions one

should allow for the efsect of N and T on the nematic order parameter which itself afsects the

characteristic lengths and energies in the problem. One should also avoid a change of phase as

T and N are varied. By definition, hairpins exist only in the well-ordered nematic phase with

order parameter S m I.

There
are

essentially two parts to the cyclisation problem. The first involves equilibrium
statistical mechanics of the chain ends. Only for a

hairpin and
a

ringlet are the chain ends

close together. For a rod this is impossible, and for a chain which has no hairpins it is very

unlikely. The second contribution, which determines the precise time behaviour, arises from

the dynamics. Given that two ends are a certain distance apart at
=

0 we need to find when

they will collide. This depends on the timescales
we are

interested in. In this paper we
have

assumed that measurements can be made
on

timesacles for which reptative motion becomes

important. This iniplies that long-lived fluorescent tags are
needed. However, qualitatively we

expect similar results for motion based on the NE modes
or any other short-time behaviour.

Clearly,
a

direct test of the theoretical predictions presented above requires samples of low

polydispersity. We note however that the detection of excimer formation in
a

dilute nematic

sample of tagged chains is
a

qualitative test for the occurence of hairpins.

One other possible experimental effect might involve the
use

of nematic chains which also

have electric dipoles in the backbone [3, 23]. By applying
a strong electric field to such

a

polymer
one expects an exponential decrease in both hairpin and ringlet formation and hence

an
large decrease in the cyclisation rate.
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Appendix.

Excimer fluoresence fi~om rods.

Here we
calculate the reaction rate for excimer formation when we have a dilute solution

of labelled rods. Naturally, such excimer formation cannot occur by cyclisation, but only
by two different rods meeting. As explained in section 4 the rods undergo one-dimensional

diffusion. One
can say something quantitative by using the theory for diffusion limited reactions

developed by de Gennes [14, 15]. Because
we

have ordinary diffusion in one dimension the

process is "compact" each possible site is visited many times by the chain end. Let the

number density of A ends which have not yet contacted a B end be nA. The number of such
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ends per unit length is then nAR( and we have

=

-k(<)ni, (37)

where k(<) is a time dependent rate constant. We are in one dimension d
=

I and have ordinary
diffusion,

so
that in time t each rod moves a

distance
+~

t" with
u =

1/2. From the general
formula k

+~

t"~~ [14] we
have

k(t)
=

R(t~ ~/~/(ax), (38)

where a is a constant. The number density of ends thus satisfies

nA(t)
=

(c~~ + 2t~/~Rj/«x)~~ (39)

On dimensional grounds the constant a is approximately ~L/kBT. The reaction rate is
t

At ort compared

d~ ~

,
-l/2

+~

and at long times > ra
~~ +~1~3/2, ~-2

~

~ )(
t )-3/2 (~~~

dt ~ ra ra

Thus at long times
~'~

is independent of c. The reaction is initially very fast, but the reaction

rate declines rapidl/(ecause the supply of initially close ends is quickly exhausted. The time

ra marks roughly the half-way point of the reaction, so that roughly half the ends have collided

by then. At very short times the analysis used here breaks down because then the NE modes

become important. Also, at very long times the diffusion is not entirely in one dimension

and the ends can explore the full three dimensional volume, albeit with
a very anisotropic

diffusion constant. If ra « rs essentially all the ends meet in the time it takes the A* ends to

decay spontaneously. If however ra » rs very few end meet before spontanueous decay, and

the integrated signal is small. It is now easy to calculate the integrated intensity Z. If the

spontaneous decay is slow then

Z
-~

c[I O(r~/rs)~/~] r~ « rs. (43)

In this case of
course

almost all the rods meet so
the leading term scales

as
the number of rods.

In the
case

where the spontaneous decay is fast one obtains

~
+W

c(/_
>~r~ $ exP(->sr~)j r~ » r~

~

(44)

In this regime the integrated signal scales
as

c~W. Thus, since ra c~
c~~, by reducing the

concentration
one can

easily get into a
regime where ra < rs and the integrated signal is small.

Note however
a

complication which is missing from this theory. Each chain has of
course

two ends. If one end is cyclised and remains joined for
a

long time (I.e. if rg is large) then

it afsects the dynamics of the other ends by making the chain twice as long. We have ignored
this

rare process and its generalisations to larger numbers of chains.
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