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Abstract, The influence of the flexoelectric effect on the phase diagram relevant to the order

transition induced by an electric field on a nematic liquid crystal is considered. The analysis shows

that this influence can be important. It is found that the order phase transition between the initially
undistorted and distorted configurations always takes place. In contrast, the phase transition

between the distorted and the saturated configurations is possible only if the dielectric anisotropy is

large enough. The stability of the phases is analysed. The existence of a tricritical point is

predicted. The dependence of the tricritical point on the flexoelectric coefficient is discussed too.

The limits of our calculations and the performed simplifying hypotheses are critically analysed.

1. Introducdion.

Nematic materials are characterized by anisotropic properties Ill- In particular their dielectric

constant parallel to the symmetry axis ej can be different from the one perpendicular to it

ei. The dielectric anisotropy e~ = ejj ei can be positive or negative. From this anisotropy, it

follows that nematic materials can be oriented by means of an extemal electric field. If the

nematic is uniform, I-e- its symmetry axis is position independent, and the electric field is

parallel (e~
<

0) or perpendicular (e~
>

0) to it, an order phase transition is expected [2].
This well known transition is called Fr6edericksz transition. The critical field giving rise to

this transition depends on the elastic properties and on the anisotropy of the medium, on the

thickness of the sample and on the surface properties. A lot of papers are devoted to this order

instability. In particular special attention has been devoted to the undistorted
-

distorted
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transition [3] (usual Frdedericksz transition), and to the distorted
-

saturated transition [4]. In

the last case, everywhere the nematic symmetry axis n (the director) is parallel to the distorting
field when the applied field is larger than a critical one. The influence of the surface properties

on these transitions has been discussed by different authors [5] by using a phenomenological
expression for the surface free energy proposed a long time ago by Rapini and Papoular [6], or

variants of it [7].

In this paper the phase diagram undistorted
-

distorted
-

saturated configuration versus the

applied electric field will be considered. We use an expression for the surface free energy

recently proposed [8], and we take into account the flexoelectric effect [9].

In the analysis the anchoring energy strength and the flexoelectric coefficient will be

considered thickness independent. Consequently the obtained results have to be considered as

a first approximation of the true ones. Our paper is organized as follows. In section 2 the main

equations relevant to the interaction of the extemal field with the nematic are rapidly discussed

in the usual frame. In section 3 the flexoelectric effect is considered and a few peculiar aspects
discussed. In section 4 the phase diagram is reported and analysed. In section 5 the main

conclusions of our paper are stressed.

2. Dielectric interaction nematic-electric field.

Let us consider a nematic liquid crystal characterized by positive dielectric anisotropy. Let the

sample be of thickness d and the initial nematic orientation planar, I.e. the director n be parallel

to the surfaces in the absence of extemal field. In the limit of small e~ [10] the total free energy

of the nematic sample can be written in the form

F
=

~~
K( ~~

)~ e~E~ cos~ )
dz + fj + f)

,

(1)

_~~
2 dz 2

where : K
=

nematic elastic constant, e~ =
nematic dielectric anisotropy (supposed positive),

E
=

extemal electric field, z =

coordinate normal to the limiting surfaces,
=

cos~ (n z)

nematic tilt angle (see Fig, I), fj, f) surface free energy densities relative to the surface at

z =

d/2 and z =
+ d/2 respectively. By minimizing (I) one obtains for the differential

equation

~~
f~~ sin (2

=

0, Vz e (- d/2, d/2), (2)
dz 2

with the boundary conditions

K (~ +

~~~
=

0 at z =

d/2, and K (~ + ~~~
=

0 at z = + d/2 (3)
z do z do

In (2) f=/~(I/E) is the coherence length which it is useful to rewrite as

f
=

(dlar )(E/E ). E~
=

(ar/d) /~ is the threshold field for the Frdedericksz transition [I I

in the strong anchoring situation. In equations (3), H*
=

(± d/2 ) are the surface tilt angles.
In the following we suppose that in the absence of extemal field the planar orientation is

stable. Consequently fj and f) have a minimum for H~
=

H+
=

ar/2 hence

ldfj df)
" j "

0, (4)
do wQ do

wQ
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d/2
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z

dh

b)

' '

x

' '

d/2

C)

Fig. 1.- Geometry of the problem. A nematic slab of thickness d is considered. n =

(sin H, 0,

cos is the nematic director, His the tilt angle. a) In the absence of the extemal distorting field (parallel

to the z-axis) n is parallel to the x-axis (planar orientation). b) If an extemal field E, larger than a critical

one is applied, n is no larger uniform across the sample (distorted phase). c) If an extemal field larger than

the saturation field is applied n
is uniform across the sample and everywhere parallel to the distorting field

(homeotropic orientation).

and

ld2f-
~~f+

S y/-
~

~ S y~+
~

~ ~~~

d0 ~
w12

~ d0 ~ ~
w12

Furthermore we assume that fj and f] have a maximum for H~
=

+
=

0. This hypothesis
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implies

ldfi ldfl ~~
o

d°+
o

'
~~~

and

l~2f-
~f+

s fl/- ~ S fl/+ ~ ~~~d~-2 ~
' ~~+~ ~

0 0

Finally the surface energies are supposed monotonic decreasing functions of e (0, ar/2).

Consequently the surface torques df)/dH* vanish only for the homeotropic and planar
alignment. The threshold field for the undistorted

-
distorted order phase transition is obtained

by putting
=

(ar/2 ) 7~, and considering the case 7~ -
0. In this limit equation (2) reduces

to

d~ ~j+ ~ih) 7~=0, (8)
dz d

where h
=

E/E~ is the reduced applied field. Solution of (8) is

7~
(z)

=

A cos
I hz + B sin I hz (9)

By substituting (9) into (3), taking into account (4) and (5), we deduce that a nontrivial solution

of the kind (9) exists only if the reduced field h is larger than a threshold field

h'given by

tg(arh')= (~ )~~ ~,ji(1-~~' $~ ~,)~j, (lo)
" K "

which is a generalization of the well known equation proposed a long time ago by Rapini and

Papoular in the simple case in which W~
=

W+ ~~~~. h' is called Frdedeflcksz's field.

The saturation field for the distorted
-

saturated order phase transition is obtained by
equation (2) in the limit of H

-
0. In this case equation (2) reduces to

d~~ ~

j
I h)

=
0, (11)

dz d

whose solution is

(z )
=

d ch I hz +
h sh I hz (12)

By substituting solution (12) into boundary conditions (3), and taking into account equations
(6, 7) one obtains that the solution (z)

=

0, Vz e (- d/2, d/2 ), is stable if the reduced applied
electric field is larger than a critical value h" given by

,,

#~
+

#~
d

1) ii'~ ii'~
d ~

~~ ~~"~
K arh"

~
K~ arh" '

~~~~

which is a generalization of the saturation field given by NehfIng, Kmetz and Sheffer [13].
h" is called saturation field. Equations (lo) and (13) are general, and they hold in the case in
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which f) are monotonic functions of H, having a minimum for
=

ar/2 and a maximum for

=

0.

In the following we limit ourselves to consider the symmetric case in which

f/
=

f)
=

Ki~ cos~
+ K~~ cos~

,

(14)

where Ki~ and K~~ are phenomenological parameters temperature dependent. An expression for

the surface free energy of the kind (14) has been proposed [14] in order to interpret recently

observed spontaneous surface order transition [15] (see appendixA). By using for

f~ expression (14), equations (lo) and (13) are written

,

2(81/h')
~~ ~~~

l (&i/h')~'
~~~~

and

tgh(arh")=
~~~~~~~~~~~~~

,

(16)
+ [(81 + 2 8~)/h"]~

where

81
=

~ ~~~
d and 8~

=

~ ~~d, (17)

are adimensional parameters taking into account the surface anchoring parameters Ki~ and

K~~, the elastic properties of the medium K and the sample thickness d.

The standard analysis performed in this section to deduce the threshold and saturation fields

is limited only to the vicinity of the phase boundaries. However the result obtained are

meaningful, because the surface energies are supposed monotonic functions of H, having a

minimum for
=

ar/2, and a maximum for
=

0. The same kind of analysis will be

performed in the next section, in which the flexoelectric effect is considered.

The phase diagram obtained by means of equations (15) and (16) has been recently

considered [16].

3. Flexoelectric interaction nematic-electric field.

In the previous section only the dielectric interaction has been considered. As is well known it

is proportional to the square of the electric field and it gives a bulk effect, resulting in a torque
density proportional to the dielectric anisotropy. In compensated nematic (e~

=

0) this

interaction vanishes.

In this section the flexoelectric interaction will be considered. As shown a long time ago [17]

a distorted nematic usually presents an electric polarization proportional to the spatial
derivative of the nematic director. This polarization is called flexoelectric polarization, and it is

given by

P= en ndivn-e~~nxrotn, (18)

where ejj and e~~ are the flexoelectric coefficients. The coupling of this polarization with an

extemal electric field has been the subject of many theoretical and experimental investigations.
The electric contribution to the energy density connected to the coupling of P with the extemal

field E is of the kind P E. The flexoelectric polarization introduces also a renormalization of

the elastic constants [18], which can be neglected if we are looking for instabilities separating
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an undistorted state from a distorted one. In the event in which the problem is unidimensional

the flexoelectric contribution can be integrated, as discussed in detail by Durand [19]. In this

case the effect of the flexoelectric polarization is a renormalization of the surface energies.

Simple calculations [20] show that, near the undistorted orientation, the flexoelectric

contribution reduces to

~l~~
P E dz

-

~l iC°S ~2 ~+ C°S ~2 ~ )i ~19)

where e
=

en + em.

It follows that the analysis reported in section 2 remains unchanged if f)
are substituted by

Fj
=

fj +
~

cos (2 0 ) and F ]
=

f] ~
cos (2 + ) (20)

In particular by assuming for f) the functional form (14), in equation (lo) we have to put

W~
=

2(Ki~ + eE) and W+
=

2 (Ki~ eE), (21)

whereas in equation (13) the parameters ii7~ and ii7+
are now given by

#7~
=

2 (Ki~ + 2 K~~ + eE) and ii7+
=

2 (Kis + 2 K~~ eE ). (22)

Equations (21) show that the presence of the flexoelectric effect introduces an asymmetry in

the surface energy, and consequently in the problem we are analysing. In particular in the event

in which E
>

0, the flexoelectric effect stabilizes the lower surface and destabilizes the upper

one. By substituting equations (21) and (22), into equations (lo) and (13) we obtain for the

Fr£edericksz field and for the saturation field the expression

2(81/h')
~~ ~~~'~

~

l (81/h')~ + (4 e~/Ke~l'
~~~~

and

tg h(arh")
=

~ ~~~~ ~ ~ ~~~~~~~

,

(24)
+ [(&1 + 2 &~)/h"]~ (4 e~/Ke~)

respectively. By equations (23) and (24) simple calculations give

&i
=

(- cotg (arh') + ~/cotg~(arh') + [1 + (4 ehKe~)]) h', (25)

and

&1 =

2 &~ + (cotg h ( ark " ~/cotg h~(arh" ) [1 (4 e~/Ke~)j) h " (26)

Equation (25) in the limit e~ -
0 gives for the critical field E' of the flexoelectric instability the

value

~ Ki~ ~ in

E'
= (2 d + I lj

,

(27)
2 ed K

which generalizes a formula obtained in a different way some years ago [21]. By using
equation (27) we can estimate the order of magnitude of the threshold for the flexoelectric
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instability in nearly c jfnsated (e~~0) nematic liquids crystals. By assuming K~
10~~ dyn [2], e

10~~ dyn [22], Ki~ 10~~ erg/m~ [13] and d lo ~m one obtains for the

threshold voltage V'
=

E'd (l-2) V, I.e, of the same order of the threshold voltage of the

Frdedericksz transition in usual nematics.

We point out that the analysis presented in this section refers to one-dimensional director

deformation. But as it is well known, in the event in which en # e~~, the planar nematic cell

considered in our analysis can present a bidimensional instability. This bidimensional pattem,
due to the flexoelectric effect, may have a threshold field lower than the one connected to the

one-dimensional instability, as discussed in detail in references [23, 24]. As it is shown in the

quoted references, the bidimensional instability appears at the threshold voltage V~ given by

~
2 arK

~ e*(I + pl'

where e*=en-e~~ and p =

e~K/4are*~ At the threshold the wave-vector of the

bidimensional structure q~ is

arji-J1qc"j ~~~

As it is evident from the expression of q~ the bidimensional instability exists only if

p <
I, which implies e*~

> e~ KM
ar.

It follows that the analysis presented in our paper is

valid for e*~
< e~ KM ar, which we assume to be verified.

Note that equation (27), deduced in the limit of e~ -
0, is correct, in the sense that it refers to

a unidimensional instability, only if also the other limitation et1 e~3 « ei1 + e33 is introduced,

as we have assumed in deducing the above mentioned equation.

4. Phase diagram of the order phase transition h vs. &~.

To obtain the phase diagram 81 vs. h we have to consider the stability of the three phases, I,e.

planar (H
=

ar/2, Vz e
=

d/2, d/2) distorted (H
=

H(z)), and homeotropic (H
=

0,

Vz e d/2, d/2). To this end let us rewrite the total energy F of the nematic sample given by

(I), in which f) have the functional form (14), as

G
= i~~

~'~ ~
h~ sin~

7~
du + 81(sin~

7~
+ +

sin~
7~ + 8~(sin~

7~
+ +

sin~
7~ +

~~
du

+ rh [cos (2
7~

+ cos (2
7~

)
,

(28)

where G= (2dlarK)F is the reduced total free energy, u= arz/d, r=

fi,

7~
~

= 7~ (± d/2), and
7~ =

ar/2 H. In the limit 7~ -
0 (near the P-phase), at the second order

in 7~, G is given by

G= (( ~'~ )~-h~~~j du+ (81-2rh)~~~+ (81+2rh)7~~~ (29)
~~~

du

In the considered limit
7~

(u)
=

A cos (Au) + B sin (Au), as follows from equation (9). By
substituting this expression of

7~
(u) into (29), simple calculations give G in terms of A and B

only, I-e-

G IA, B )
=

h sin lark ) + 2 81 cos~ I h A~
+ h sin lark ) + 2 81 sin~ " h B~

2 2

2 rhAB sin (arh ) (30)
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The P-phase corresponds to A =B =0. The stable phase is obtained by minimizing
G IA, B ) with respect to A and B. By imposing

~~ ~~ ~ ~~~~

we obtain the system

I-hsin (arh)+281cos~ "h)jA-rhBsin (arh)=0,
2 (~~)

[hsin (arh)+281sin~ "h)jB-rhAsin (arh)=0,
2

which admits always the solution A
=

B
=

0. This solution is stable if

l~~(
=

2 (- h sin (arh ) + 2 81 cos~ ) h
>

0
,

(33)
3A A B 0

and furthermore

H(0, 0
=

~~( ~~(
~~~ j

aA BE 3A BE
A B o

81 ~ &~
=

+ 2 cotg (arh ) (I + r~) h~ sin~ (arh
>

0 (34)
h h

Equation (33) gives

81
>

h (- cotg (arh ) +
VI

+ cotg~ (arh ))
=

f
,

(35)

whereas from equation (34) one derives

&i
>

h (- cotg (arh) +
N/I

+ cotg~ (arh) + r~)
= &1* *

>
( (36)

Consequently the P-phase is stable for 81> Et * The condition 81
=

3f* gives again the

threshold (25).

We wish to underline that for E
>

Kile and K~~ >
0 I.e, for Et

<
El

=

2 hr the easy axis on

the upper surface is different from ar/2, as discussed in detail in appendix B. However the

threshold for the P
-

D transition is the one given by equation (25), since the El does not take

into account the bulk contribution to the total energy.

To analyse the stability of the H-phase we move in the same way as done for the P-phase. By
substituting now in G, written in terms of Hand expanded up to the second order, solution (12)

one obtains G
=

G(A, B). By imposing again

3b 3©
~

al ah ~

it is easy to show that I
=

fi
=

0, I-e- the H-phase, is always a solution. This phase is stable if

~~
~

l»
o

,

(37)
~

d fi 0

and

~~/~ ~~/~ ~~/~fi(0, 0)
= ~ j 1 »

0 (38)

3A~ 38~ 3A BE a fi o
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Equation (37) gives

&1 <
2 3~ + (cotg h(wh) N/cotg h~(arh) I

=

if
,

(39)

whereas from condition (38) one obtains

31
<

2 3~ + (cotg h ( ark ) N/cotg h~(arh I + r~) h
=

if
*

<

if (40)

Note that in the hypothesis Ki~ + 2 K~~ >
0, giving &~ + 2 &~ >

0, the saturation phenomenon

can take place only if r <
I, I-e- 4 ekKe~

<
I (see appendix C).

Previous analysis shows that for h<h' the nematic sample is in planar orientation.

Consequently the region of the (81, h)-plane limited by the line 31= 81(h') and the

81-axis corresponds to a planar phase. On the contrary for h
>

h" the stable phase is the

homeotropic one (I.e. n is everywhere parallel to the distorting field). Hence the region of the

(81, h )-plane limited by the line 81
=

81(h") and the h-axis corresponds to a homeotropic
phase.

The line 81= 81(h') is shown in figure 2. In figure 2a the two lines correspond to

4 e~/Ke~
=

0, I (dashed) and to 4 ekKe~
=

0.9. As expected the two lines coincide in the limit

of 81- oJ, which corresponds to strong anchoring. In fact in this limit the flexoelectflc

contribution can be neglected. In figure 2b the curve 81 vs. h' is reported in the limit of weak

anchoring, for the same values of 4 ekKe~ considered above. In this limit 4 e~/Ke~ plays an

important role on the critical line. As stated in section 2, in the absence of extemal field the

planar orientation corresponds to a stable state having minimum energy, whereas the

homeotropic one to a unstable configuration, whose energy is maximum. Consequently

Ki~
>

0 and Ki~ + K~~ >
0, which are equivalent to 81 and 81 + 2 8~

>
0. In the following

figures 3, 4 and 5, in which the phase diagrams 81 vs. h are reported we have to underline that :

I) for 8~
>

0, the phase-diagram is meaningful for 81> 0

it) for 8~
<

0, the phase-diagram is meaningful for 81> 2 8~.

In the opposite case, in the absence of the extemal field the sample is not planar, nor

homeotropic. Hence the reorienting phenomenon connected to the extemal field is not a

threshold phenomenon. The curve 81
=

81(h") is reported in figure 3 by considering the cases

4ekKe~
=

U-I and 4ekKe~=0.9 and furthermore 8~
=

0.25. Note that in the case

8~
>

0, h", for Et
=

0, is given by

(cotg h (arh") ~/cotg h~(arh" ) [1 (4 ekKe~)]) h "
=

2 8~

In contrast, in the case 8~
<

0, to h"
=

0 corresponds 81
=

2) 8~).
In figure 4 are reported the lines 81

=

81(h') and 81
=

81(h") for 8~
>

0. In this case by
increasing the applied electric field one observes the order phase transitions

Planar
-

Distorted
-

Homeotropic
h' h"

All the phase transitions are of second order. In figure 5 the event 8~
~

0 is considered. In this

case for &i >
&)~~'the situation is sbnilar to the previous one. In contrast, for &j~

&)~~'the distorted phase is never stable, and the P
-

H order phase transition is of the first

order. Of course our analysis is valid only for 81
>

2 8~ ), as stated by means of equation (7).
The coordinates of the tricritical point TCP in figure 5 depend on the flexoelectric coefficient

as shown in figure 6.



156 JOURNAL DE PHYSIQUE II N°
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/
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/
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/

/

/

/

/

/
I'

/

h

b)

Fig. 2. Phase diagram 31
=

3
j

(h') for the Planar
-

Distorted phase transition for different values of

the flexoelectric parameter 4 e~/Ke~. 4 e~/Ke~
=

0.9 (continuous curve), 4 e~/Ke~
=

0.1 (dashed curve).

For h
~

h' the stable configuration is the undistorted (Planar) one. For h
~

h' the stable configuration is

the distorted one. a) OS &j w10. Note that for large 31 (I.e. for strong anchoring) the h' is nearly
independent of the flexoelectric parameter. b) 0 w i w 1. This sub-case refers to very weak anchoring.
For h'~ 0, &1= (w/2)[1 + (4 e~/Ke~)] h'~,

as follows from equation (25).

We underline that the phase-diagram 31 E are, actually, phase diagram d E. They are

meaningful only if Ki~, K~~, e~ and e are thickness independent. Recent experimental

investigations [25] show that the anchoring parameters Ki~ and K~~ seem to depend strongly on

the thickness of the sample. As it has been shown in reference [26] this is connected to long

range surface forces, like electrostatic forces, due to selective ions adsorption. Furthermore, as

discussed in reference [27], the flexoelectric coefficient can also depend on the thickness, as a

consequence of the spatial variation of the nematic scalar order parameter.

It follows that the phase-diagram presented in our paper have to be considered as a first

approximation of the true ones. However it is important to underline that if the Debye



N° FLEXOELECTRICITY AND PHASE TRANSITION IN NLC 157

61
~

/

/

/

/
/

/

/

/

/

/

/

/

~

o h

Fig. 3.- Phase diagram &i
=

&i(h") for the Distorted -Homeotropic phase transition for 32
"

0.25 and for different values of the flexoelectric coefficient 4e~/Ke~. 4 e~/Ke~
=

0.9 (continuous

curve), 4e~/Ke~
=

0.1 (dashed curve). Note that h" (the saturation field) is different from zero for

&1 =

0, whereas h' (the critical field) goes to zero when at
-

0. For h
~

h" the stable configuration is the

distorted one for h~h" the stable configuration is the homeotropic one. The phase diagram is

meaningful in the region &1~ 0.5 (see the text).

61

P

D

H

0
h

Fig. 4. Phase diagram &i
=

&i(h) for the Planar
-

Distorted
-

Homeotropic phase transition for

positive &2 (&~
=

0.25 ) and 4 e~/Ke~
=

0.1. The phases transition P
-

D and D
-

H are of second order.

The phase diagram is meaningful in the region &1~ 0 (see the text).

screening length is small enough the dependence on the thickness of the sample of the

anchoring parameters disappear. Furthermore, the dependence on the thickness of the sample
of the flexoelectric coefficients is important only for very small thicknesses [28]. Consequently
our results are expected to work well for thicknesses of the sample larger than a few microns.

5. Conclusions.

The influence of the flexoelectricity on the phase diagram of the order transition on the plane
extemal field-anchoring parameter has been considered. The analysis shows that in the limit of

weak anchoring, the flexoelectric effect can change drastically the phase transition. In
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~
i

h

D
~~

P

H

~ "~ °~ "~
h

'

Fig. 5. As in figure 4, with &~ ~
0 (&~

=

0.25 ). Note that for &1 ~
&)~~ the P

-
H transition is of

first order. For &j ~
&)~~ all the order transitions P-D and D-H are of second order. &)~~,

h~~~
are the coordinates of the tricritical point. The phase diagram is meaningful in the region

at
~

O-S (see the text).

fit

6z"~0.25

~r=O
r=O&9

h

Fig. 6. Tricritical line for the case &~ =

0.25. It represents the tricritical points for different values

of the flexoelectric coefficient 4 e~/Ke~, for 0 w 4 e~/Ke~
w

0.99. The phase diagram is meaningful in the

region &j ~
0.5 (see the text).

particular in the limit of very weak anchoring, the flexoelectric interaction is more important of

the dielectric one, and hence the effect is strongly polar. The existence of a tricritical point has

been shown and its connection with the flexoelectric effect discussed.

6. Acknowledgments.

Many thanks are due to the referees, of Joumal de Physique II, for important suggestions

relevant to the phase-diagrams, and on the bidimensional flexoelectric instability.



N° I FLEXOELECTRICITY AND PHASE TRANSITION IN NLC 159

Appendix A.

As discussed in reference [7] expression (14) for the surface energy at first sight can appear not

very useful because the set of functions (cos~~ H) is not orthogonal.
It has been shown in reference [8] that the above mentioned expression is obtained by

expanding f~ in terms of the symmetry elements of the surface and of the nematic liquid
crystal. If the substrate can be supposed flat and isotropic, its symmetry elements reduce to its

geometrical normal K. On the other hand the liquid crystal is characterized by its quadrupolar

tensor order parameter Q;~ =

S(T)(n,
n~

1/3 3,~), where S(T) is the scalar order parameter

[2]. Hence expression (14) is found by means of the expansion

fs
~

PI
I
(Ki Qi/ Kj) + pm (K; Q<j Q<e Ke) + Pm (K; Q</ Kj )~, (Ai)

where p,j are phenomenological parameters temperature independent. From the preceding
discussion it follows that even if (cos~~ ) is not a set of orthogonal functions, the previous

expansion for f~ is correct, since it has to be considered as an expansion, in the sense of

Landau, in terms of S and not in term of orthogonal functions. However it is also possible to

obtain (14) by expanding f~ in term of orthogonal functions. As discussed in reference [7] a set

of functions useful for this expansion is (P~~(cos )), where P~~(cos ) are the Legendre
polynomias. In this framework one writes

f~
=

aP ~(cos ) + bP~(cos ), (A2)

where P~(cos
=

(1/2)(3 cos~ I ), and P~(cos H
=

(1/8 (35 cos~ 30 cos~ H + 3).

Simple calculations show that f~ in term of P~~(cos b) can be written in the form (14).
It is important to underline that in (A I) the phenomenological parameters p,~ are temperature

independent (the temperature enters in f~ via the scalar order parameter S(T)), whereas in (A2)

a and b depend on T.

Appendix B.

In the considered case, as follows from equations (20) and (14), the effective surface energies

are

F)
=

Ki~ cos~ 0* + K~~
cos~ 0 * ±

~~
cos (2 * (B1)

2

The easy directions are defined as the ones minimizing the effective surface energies. Simple
calculations give

~(
=

[(Ki~ ± eE ) + 2 K~~ cos~ H* sin (2 * ),

~~~ (82)
~ ~~

=

2 [(Ki~ ± eE ) + 2 K~~ cos~ *
cos (2 * K~~ sin~ (2 H * ))

do *~

In the event in which Ki~ >0 and Ki~ + 2K~~ >0, from equations (82) we deduce that

H~
=

ar/2 corresponds to a minimum of Fj for every applied electric field. Let us consider

now the easy direction of the upper surface, H+. If K~~ >
0, by equations (82) we obtain that

H+
=

ar/2 corresponds to a minimum of F] for E~EI
=

Kile. On the contrary H+
=

0
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minimizes F), for E
>

E~
=

(Ki~ + 2 K~~)le. For Ei
<

E
~

E~ the easy direction is tilted and

given by

~ ~

eE Ki~
~°~ ~

2 K~~
~~~~

Simple calculations show that: I) for small E-Ei, 7~+
=

(e/2K~~)(E-Ei), where

7~+
=

(ar/2) H+ it) for small E~ -E, 0+
=

(e/2K~~)(E~ -E). The easy direction

0+
vs. E in the case K~~ ~

0 is shown in figure 7a.

If K~~ <
0, by equations (82) we deduce that +

=

ar/2 is stable for E
~

Ei
=

Kile, whereas

+
=

0 is stable for E
>

E~
=

(Ki~ 2 K~~ )le
<

Ei. In the range E~
<

E
<

Ei, F] (ar/2 and

F](0)
are two minima of F](H+). Simple calculations show that for E~<E<E~

=

(Ki~ (K~~ )le, F+ (ar/2 )
<

F + (0), I.e. +
=

0 is metastable. However, for E~
<

E
<

Ei, F+ (0)
<

F+ (ar/2), I.e. H+
=

ar/2 is metastable. The trend of H+
vs. E in the event

K~~ <
0 is shown in figure 7b.

For a nematic liquid crystal cell like the one considered in reference [29], K~~ is of the same

order of magnitude as Ki~ (and of the order of magnitude of 10~~ erg/cm~). More precisely
)K~~/Ki~ 0.25. This experimental result shows that the critical fields above evaluated are

of the same order of magnitude for the sample analysed in reference [29]. Consequently the

phase-diagram shown in figure 7b is expected to be experimentally detectable.

6 6~

Kzs>O ~m<°

n/2 n/2

E Ez E Ez E~ E~ E

a) b)

Fig. 7. Easy direction of the upper surface (at z =

d/2) vs. the applied electric field. a) K~~ ~
0. In this

case 6+ vs. E shows two critical behaviours, typical of second order transitions near to Ej
=

Kj~le and E~
=

(Ki~ + 2 K~~)le, b) K~~ ~
0, but Ki~ + 2 K~~ ~

0. In this case 6 + vs. E shows the critical

behaviour of a first order transition of which the hysteresis loop is drawn.

Appendix C.

The condition 4 e~/Ke~
<

I to observe the D
-

H phase transition may seem strange. It follows

from the fact that, if e is too large the flexoelectric contribution to the surface energy prevents
the saturation transition. This order phase transition takes place only in the weak anchoring

case. To understand the effect of the flexoelectric polarization on the P- D
-

H phase
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transitions we consider in appendix C the case of a compensated nematic (e~
=

0). In this

situation the reduced total free energy G is given by

G
= l~~

~'~ ~
du + &i (sin~

7~
+ +

sin~
~ ) + &~(sin~

7~
+ +

sin~
7~ +

«a
dU

+
~~~

[cos (2
7~

+ ) cos (2
7~

)]
,

(Cl)
arK

whereas in the general case it is given by equation (28).
The solution of the Euler-Lagrange associated to equation (Cl) is

7~
(u)

=

'~ '~
u +

'~ ~ '~

,

(C2)

where
7~

+ and
7~ have to be determined by minimizing the total energy. By putting (C2) into

(Cl) simple calculations give

G (7~ +,
7~

)
=

~'~ '~
+ 31(sin~

7~
+ +

sin~
7~

) + 3~ (sin~
7~

+ +
sin~

7~ +

~

ar

~

+
~~~

[cos (2
7~

+ ) cos (2
7~

)] (C3)
arK

It follows that 7~+ and 7~~ are deduced by solving the system of equations 3G/37~+
=

3G/37~~
=

0, I,e.

(~ + ~ + 31 2
It

sin (2 ~ + ) + 2 &~
sin~

~ + sin (2 ~ +
=

0,
~~~~

~
(7~ +

1~
) + &i + 2

~~~
sin (2 7~~ ) + 2 &~

sin~
1~

sin (2
1~ =

0.
ar arK

As is known the solution is stable if 3~G/37~+ >0 and H= (3~G/3~+~)(3~G/3~~~)-
(3~G/37~ + 37~ )~ >

0. Let us consider the solution
7~

+
=

7~~
=

0 (the P-phase). In this case

13~G
K

~ o,o~~~~~2ed~"~~~~~

and H(0,0)>0-E<E'=£~/(ar&i+1)~-l.

Consequently in a compensated nematic initially in planar orientation, the undistorted

configuration is stable for E
<

E'. Note that E' coincides with the one given by equation (27).
The other homogeneous configuration, I,e, the H-phase, is characterized by 7~+

=

7~~
=

ar/2. In this event

l~~~~) >0-E>
~

(ar&i-I)
a~+ I,I 2ed

~ ~

and H(ar/2,ar/2)>0-E<
~ ~/(ar&i-1)~-l.

These two conditions are incompatible: this mean that the H-phase is never stable for

compensated nemaLics. In figure 8 the function G (7~ +,
7~

) given by (C3) for different values

of the extemal field E is shown. This figure shows that for E
<

E', G(7~ +,
7~

) has a unique
minimum for

7~
+

= 7~ =

0. For E
>

E' the minimum of G (7~ +,
7~

) corresponds to
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fl'

E/ELo5

a)

n. n'

[
©

a5

n~

E/E'= 2 E /E'= lo

b) c)

Fig. 8.- Total energy G for a compensated nematic vs. the surface tilt angles ~+ and ~~. al

E
~

E'. The minimum of G is reached for ~ +
= ~ =

0 (P-phase). b) E
~

E'. G reaches its minimum for

~+ and ~~ different from zero (D-phase). c) E»E'. The minimum of G corresponds to

~ + ar/2 and ~~ 0. The alignment of the nematic is nearly hybrid.
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7~
+ and

7~
different from zero. If the field is very large with respect to E', G (7~ +,

7~
) reachs

its minimum for
7~

+
~

w/2 and
7~

0. This fact shows that a compensated nematic submitted

to a large electric field tends to assume the hybrid configuration. The trend of 7~+ and

7~ vs, the field is reported in figure 9. Figure 9a shows that
7~

+ is a monotonic function of E,

whereas
7~

presents a maximum for a field a little larger than E', after that it tends to zero.

This analysis shows that the dielectric anisotropy can be responsible of the stability only if it

overcomes the effect of the flexoelectricity.

n[n

a

b

O 2 3 4 E/E'

Fig. 9. Surface tilt angle ~ * vs, the applied field. For E E' the trend of ~ * vs. E is typical of second

order phase transition. a) ~ + vs. E is an increasing monotonic function tending to ar/2 for large field. b)

~ vs. E presents a maximum for a field near to E'. For large E, ~ tends to zero.
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