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Rdsumd.-L'dtude de l'dcoulement d'un fluide newtonien dons une matrice poreuse et la

dispersion de marqueurs au cours de l'6coulement a fait l'objet de nombreux travaux depuis Taylor

et Saffman. Les caractdristiques de l'dcoulement d'un fluide non newtonien sont moins connues.

On se propose de g6ndraliser h un fluide de Bingham l'approche ddveloppde par Saffman. Le

milieu poreux est supposd statistiquement homogdne et isotrope. La dispersion est compldtement
ddcrite par les coefficients transverse et longitudinal. Les pores sont reprdsentds par des capillaires

rigides monodispersds dont la distribution angulaire est isotrope. On montre, dans l'approximation
de champ moyen utilisde, que le gradient de pression satisfait encore h l'dquation de Laplace.

L'existence d'un seuil d'dcoulement a pour consdquence l'dmergence d'un angle critique au-dell

duquel les pores sont exclus de l'dcoulement. La dispersion lat£rale suit une loi de Gauss : le

coefficient de dispersion diminue lorsque la contrainte seuil du fluide augmente. La dispersion
longitudinale suit une loi anormale de diffusion : le thdorbme de la limite centrale ne s'applique

plus. Le coefficient de dispersion ddpend d'un temps de coupure arbitraire. Pour un temps de

coupure donna, la compdtition entre la dispersion spatiale et temporelle a dt6 mise en Evidence.

Finalement, on ddmontre que la distribution en taille des pores d'un milieu poreux peut dtre

obtenue h partir des caractdristiques de l'dcoulement d'un fluide h seuil.

Abstract. The study of the flow of a Newtonian fluid in a porous medium and the dispersion of

markers has been the subject of numerous works after Taylor and Saffman. Characteristics of the

flow of a non-Newtonian fluid have not been investigated as much. In this paper we attempt to

generalize the Saffman modelling to the case of a Bingham fluid. The porous medium is assumed

to be statistically homogeneous and isotropic. Dispersion is completely described by a lateral and a

longitudinal dispersion coefficient. Pores are represented by monodispersed capillary tubes with an

isotropic angular distribution. In the used mean field approximation, we show that the pressure
gradient still satisfies the Laplace equation. The emergence of a critical angle in the orientation of

the capillary tube is the consequence of the presence of the yield stress. The lateral dispersion stays
Gaussian : the lateral dispersion coefficient is found to decrease with the increase of the yield

stress. The longitudinal dispersion obeys an anomalous diffusion law. The longitudinal dispersion
coefficient depends on an arbitrary cut-off time. For a given cut-off, a competition between spatial

and temporal dispersion is evidenced. At the end, we demonstrate that the pore size distribution of

a porous medium can be obtained from the characteristics of the flow of a Bingham fluid.
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Introduction.

The modelling of the flow of non-Newtonian fluids through porous media has already been the

subject of numerous publications because of the wide range of application areas [1, 2]. Many
of these areas take today a greater importance and give a new interest to such a study. For

instance the flow of mineral colloidal suspensions or diluted aqueous solutions of polymers,
which behave as non-Newtonian fluids, through porous media, is a basic step in a water

treatment process. In the biomedical area, the flow of a suspension of biological cells through
the micro vascular network is a very important process regarding the exchange of oxygen or

macromolecules which occurs at the level. All these phenomena can be modelled by a similar

approach.
Experimentally, it has long been known that a non linear relationship between the flow rate

and the pressure drop imposed on the porous medium is obtained for non-Newtonian fluids [3].

The apparent permeability is not only a feature of the porous medium but also depends on the

flow conditions.

The mathematical analysis was classically based on rather empirical models combining the

simple capillary bundle model of the porous medium with the power law model for the

rheological behaviour of the fluid II ]. The discrete approach, recently developed by Sorbie [4,

5], seems however more appropriate to describe the flow of a non-Newtonian fluid through a

porous medium and it will be developed here, as well.

Other theoretical and experimental investigations have shown in the case of Newtonian

fluids the strong correlation between dispersion and the disordered state of the porous medium,

in particular the pore size distribution [6, 7].

In this paper, the porous medium is assumed to be completely disordered. We compare the

yield fluid flow to that of a Newtonian fluid. For that, we generalize the classical results

obtained by Saffman about dispersion to the case of a Bingham fluid by using a mean field

approximation [8]. Both lateral and longitudinal dispersion coefficients will be expressed as a

function of the yield stress characterising the fluid. Then we show, as we have already
suggested in a preliminary study [9], that experimental curves relating the flow rate of a

Bingham fluid to the imposed pressure drop can be used to determine the pore size distribution

of a porous medium. This new method has also been proposed by other authors II 0] and seems

very fruitful.

Modelling.

SAFFMAN HYPOTHESIS. Let us recall the basic assumptions proposed by Saffman to describe

dispersion in a porous medium by a random walk procedure [8]. The porous medium is

statistically homogeneous and isotropic. It is regarded as a 3D assemblage of randomly
oriented straight uniform pores. The disordered state is ascribed to a disorder of orientation of

pores. The pores are assumed to be connected with one another at the end, several pores may

start or finish at these end points. The average velocity U is assumed to be constant and

unidirectional and to satisfy the Darcy law :

U=-K.Vp (1)

where
«

is the permeability for a Newtonian fluid.

The path of a single fluid particle is decomposed in statistically independent steps. Each step
corresponds to the passage through one pore whose random direction is classically defined by

the two angles it and q~ as indicated in figure I. The hypothesis of independence between
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Fig. I. Orientation of a capillary tube. The x axis refers to the mean direction of the flow. U is the

average velocity through the porous medium.

successive steps requires that the length of the capillary tubes correspond to the length for

which the velocities are decorrelated. The duration t,
=

t(it,) of each step I depends on the

pore direction ; it corresponds to an average convective time through the capillary tube. This

time is computed by neglecting the inertia of the fluid. The probability for a fluid particle to

choose a given direction is proportional to the flow rate fraction in this direction. The paths of

initially neighbouring particles become statistically independent when time is sufficiently
large, the dispersion of a marked volume of fluid being obtained from the probability

distribution of the displacement of a single fluid particle.
The position (X~, Y~, Z~) after n steps and the transit time T~ of a fluid particle are computed

from the following relationships :

n

X~
=

~j ni
cos (it~) (2a)

, =1

n

Y~
=

~j ni sin (it,)cos (q~,) (2b)

1=1

n

Z~
=

~j ni sin (it,) sin (q~,) (2c)

, =1

T~
=

f ni t(O,) (2d)

=1

CASE OF A BINGHAM FLUID. Let us consider a Bingham fluid where the rheological
behaviour is characterised by a yield value r~ and an asymptotic viscosity v~ related by the

rheological law :

T = T~ + ~l~ y, (3)

Below the yield stress, the fluid behaves like a solid. For such a fluid, the average velocity
b(r~) through a cylindrical pore subjected to a pressure gradient Vp can be written as :

U(Vp, r~)
=

I
ii ~ fi

+

~ ~~ j
(4)

8R 3aVP 3 aVP
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By extension, the relation between the average velocity U(r~) through the porous medium

and the pressure gradient is non linear

u(r~)
= K

(Vp ). Vp (5)

where the permeability « depends upon the pressure gradient.

The basic question is how the pressure gradient is distributed over the porous medium in the

case of a non linear fluid ? In the mean field approximation, the pressure gradient is uniformly

distributed through the porous medium. In the following part we will show that this assumption

is justified as soon as the average velocity and the pressure gradient obey the typical

relationship above (Eq. (5)).
In a system of Cartesian coordinates in three dimensions we note

~2~ ~2~ ~2~

k
~

~'~
P

with these notations, the relation (5) associated with the continuity equation for an

incompressible fluid, leads to :

"(P'I'~VXX~P~~~PZZ)+

+
/~ $ lP)Pxx + P) Pyy + P) Pzz + 2 PxPy Pxy + 2PyP= Pyz + 2 PzPxPzxl

=

0 (7)

It can be easily shown that the Laplace solutions which satisfy the condition :

P)
=

P)
=

P)
=

Pl~ (8)

are solutions of the equation (7).

The pressure fluctuations arise from the existence of the local non linear relationship
between the average velocity and the pressure gradient. Experimental evidence of these

pressure fluctuations is carried out by direct observations of the diffusion front of a Bingham
fluid into another one.

The regular solution P
= a x which corresponds to the mean field approximation is also

the solution of equation (7). As a consequence, there is an excluded volume effect : a solid

core entirely fills the volume of all capillary tubes whose direction it is greater than a critical

value it~ defined by :

2 r~
~°~ ~~

a(Ap/L)
~~~

where L is the length of the porous medium. The mean velocity F it ; it~ inside the capillary it

can be easily expressed as a function of it and it~ from the classical Reiner-Buckingham
relationship :

4 cos it~ i
cos~ it~

~ ~~' ~~~ ~° ~°~ ~
3 cos it

~
3 cos~ it

~~~~

where @o is the mean velocity of a Newtonian fluid of viscosity v
~

inside a horizontal capillary
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tube subjected to a pressure gradient Ap/L. Neglecting the inertia of the fluid, the mean

velocity Do is determined by the Hagen-Poiseuille relationship :

bo= ~ ~~. (ll)
8 ~~

L

By using the two above relationships and after straightforward calculations we obtain the

probability f(it ; it~) do and f(q~)dq~ for a particle at step I to choose the direction

it + do and
q~ + dq~ :

f(~)dq~= dq~ (12)

fl(1% ; d~) Sin (d) dd
~~~' ~C~

W~

~~~~

fl(d ; d~) Sin (d ) dd

0

Discussion and results.

AVERAGE VELOCITY. The porous medium being characterized by one size of randomly
oriented pores, the average velocity U~(it~) in the x direction is given by

w~ ~i~ i~ 2 cos it~ + 2 cos~ it~ cos~ it~
~/C~°C~

"

(
~ ~° ' °C~ ~°~ ~°

(i cos o~)
~°

" i cos o~

(15)

The influence of the imposed pressure drop on the adimensional average velocity
U~/U for a given value of the yield stress is evidenced in figure 2, where U is the average

velocity of a Newtonian fluid with the viscosity v~ under the same pressure conditions. This

curve clearly shows the expected threshold pressure drop (AP/L)~ below which the average

velocity is zero. This threshold is directly derived from the yield stress of the fluid :

Ap r~
=

(16)
L

c
a

When the pressure is increased above this threshold, some capillary tubes previously closed

are open and both the average velocity and the apparent permeability of the medium increase.

For large enough pressure gradients, we obtain again a linear relationship between the flow

rate and the pressure gradient. The corresponding permeability tends to the permeability
defined by the Darcy law for a Newtonian fluid with the asymptotic viscosity v~.

THE LATERAL AND LONGITUDINAL DISPERSION. The next part is concemed with the

determination of the asymptotic values of the longitudinal and lateral dispersion coefficients

obtained at large time. In accordance with Saffman, calculations proceed in successive steps.

First the statistical properties of the displacement of a single particle after n steps must be

established. Then the statistical properties of the time after n steps are expressed as a function
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Fig. 2. Plot of the dimensionless average velocity UjU from the equation (15) against the imposed

pressure gradient VP for a fixed yield stress. This curve shows the existence of a threshold pressure
gradient below which the mean velocity approaches zero. At a high pressure gradient the Darcy law is

satisfied.

of an arbitrary cut-off time. The average number of steps after a large given time is estimated.

By this way, the lateral dispersion coefficient D~ can be expressed as a function of the critical

angle. The longitudinal dispersion coefficient Djj also depends on the cut-off time.

Statistical properties of the displacement after n steps. The three components X~,

Y~, Z~ of the position of a particle after n steps are the sum of n independent variables. The

average value and the variance are classically expressed as a function of the critical angle
it~

W~
X~(i~~)

=

ni
j

CDS i~, f(i~ i~~) di~ (17)
0

(X~ i~)~
=

ni~
~~

(cos O i~)~. f(O ; O~) do
=

ni~ try(O~) (18)

o

(other components as in appendix A). Calculations are lengthy but straightforward ; analytical

results are given at the end of this paper (see appendix A).

In accordance with Saffman's analysis, we define dimensionless random variables :

~~ ~j~~ ~~
i~i

~~

i~
~~~~

Then x~, y~, z~ have zero mean and variances «j(it~), «)(it~) and «)(it~) respectively.

Because of the symmetry, the covariances are zero. It can be established from the central limit

theorem that the probability distributions of these random variables are asymptotically normal

and statistically independent as n ~ ct~.
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Statistical properties of the time after n steps. Consider now the average time fl~(it~) and

the variance «((it~) after a given number of n steps. The variance is divergent, so both

quantities are computed as a function of a cut-off to such as :

~< "

t(i~,) If t, S t~

t;
"

to otherwise.
(20)

From this assumption T~(it~) and «((it~)
are expressed as :

~0 ~c
T~(it~ do)

= n t(it ; it~) f(it ; iY~) diY + n to f(iY, iY~) diY (21)
0 Wo

and

Wo
(T~ T~)~

= n (t(1%, 1%~) t (1%~, to))~ f(1% 1%~) d1%

0

W~ ~f2
n (to I(iY~, to))~ f(iY ; iY~) diY

= ~
«((iY~, to) (22)

w~
U

where do and to are related by :

~ ~°~

o13 ~ ~°S ~'c cos4 o

Cos @
+

c

~
~~~~ ~'0

(~~)

In the case of a Newtonian fluid, this limit time was correlated by Saffman to the molecular

diffusion. The physical meaning of to for a Bingham fluid is more complicated. Results are

discussed as a function of this arbitrarily theoretical threshold. The average time is

I(I
cos do) to

~~'~' ~°~
~ 3 N~ U

~ j~ ~~~~

and the variance :

«((iY~, do)
=

(B + C + D + E)/N~ (25)

where the coefficients A, B, C, D, E and N~ are given in appendix B.

The variation of the variance «((iY~ with the limit time to is represented in figure 3 for a set

of values of iY~. The time variance diverges as to ~ ct~. The dimensionless random variable :

u T~ T~
~~ i / ~~~~

has a zero mean and variance «((iY~) but it is not normally distributed as it will be more

precisely discussed later. The covariance «x~(it~) is written for a given limit

time to.

~/ ~0
x~t~ (it~, to )

= ~r (cos it I)(to t (it~, to )) f (it, it~) do +

~

~/ W~

+ ~n
(CDS i~ X)(t(i~, i~~) t (i~~, to)) f(i~, i~~) di~

=
Wx~(i~~, to). (27)

Wo
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Fig. 3. Variation of the temporal variance defined in equation (22) with the dimensionless cut-off time

lo Uli for different values of the critical angle O~ as indicated on the plot; if~ is such as

cos if~
=

2 r~la VP with r~ is the yield stress of the fluid, a the radius of the pores and VP the pressure
gradient. At a given cut-off time, the variance increases with the ratio 2 r~la VP and opposes the decrease

of the spatial dispersion introduced in equation (18).

The result is given at the end ; because of the symmetry, other covariances are zero.

The remaining step consists in calculating the probability distribution of the number of steps

after a large given time T. The calculation bears no difficulty it is not reported here.

The lateral dispersion. As Saffman, the Y component of the displacement after a large time

T in the y direction is approximated from equation (19) by :

Y(*c)
~

i /(Oc). Yn(*c). (28)

Y is normally distributed and the lateral dispersion coefficient D~ is given by :

~~ ~~~
~T

~~~~~~
4(1

~ ~
it~)

~

x [o.25 sin4 o~ +
cos4 o~ in cos o~ ~/ + 15 cos~ oc cos dcj (29)

The decrease of the dimensionless lateral dispersion coefficient D~/Ui with the ratio

2 r~la VP is shown in figure 4. This decrease reflects the existence of the excluded volume

effect due to the yield stress of the fluid. This coefficient does not depend on the cut-off

to. Dispersion in the z direction is govemed by the same law.

The longitudinal dispersion. In the same way, the X component of the displacement after a

large given time T is approximated from equation (19) by :

X(iY~)
=

I /(iY~), x~(iY~) +
k~(iY~). (30)
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Fig. 4.-Variation of the dimensionless lateral dispersion coefficient D~/Ui with the ratio

2 rja VP (r~ is the yield stress of the fluid, a the radius ofthe pores and VP the pressure gradient). The

coefficient D~/Ui is computed from equation (29). The existence of the yield stress decreases the lateral

dispersion.

The longitudinal dispersion coefficient Djj is expressed as a function of the critical angle

iY~ and the cut-off time to.

Djj(it~;to)= (X-U~T)~=

3N~
~

U~ U~ 2
~~ ~~

2(1 cos iY~)

~'~~~~~
~

U
~'~~~~~'~°~ ~

U
°~~~

'~°~~

When the limit time is fixed, the dimensionless longitudinal coefficient Djj/Ui exibit a

maximum for a given value of iY~ as can be seen in figure 5. This unexpected result arises from

the competition between the spatial and temporal dispersions represented by the variances

«((iY~) and «((iY~), respectively.

An anomalous longitudinal diffusion law. The dispersion laws of markers in porous

medium are usually obtained by applying the central limit theorem. This theorem establishes

that if the transit time T in the porous medium for a particle becomes much larger than the

duration t; of any step, then the probability distribution of transit time T for many particles
should be normal. By applying the ergodic principle, the spatial distribution of a set of particles
should also be normal II Il. More precisely, a Gaussian distribution of transit time T is

expected if the probability f(t)dt for a particle to stay a long time inside a capillary tube

decreases faster than I/t~ [6]. We have represented the probability functions f(t, iY~)dt

computed from equations (lo), (11) and (14), in figure 6 for different values of the critical

angle iY~. In the case of a Newtonian fluid (iY~
=

90° Saffman introduced a duration limit
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Fig. 5. Plot of the dimensionless longitudinal dispersion coefficient Dj/Ui computed from equation
(31) against the ratio 2 r~la VP where with r~ is the yield stress of the fluid, a the radius of the pores and

VP the pressure gradient. Each curve corresponds to a particular cut-off time value io/Ui
: (A) 100, (v) :

000, (o) 10 000.

correlated to the molecular diffusion ; calculations thus lead to a normal diffusion process. An

anomalous effect is however expected as soon as molecular diffusion does not significantly

occur [12]. In the case of a Bingham fluid, an anomalous diffusion law is always expected and

especially at high values of the yield stress or at low pressure gradients. The residence time

distributions, obtained from numerical simulations, actually show a long tail of dispersion
[12].

DETERMINATION OF THE PORE SIZE DISTRIBUTION OF A POROUS MEDIUM. We pointed Out

above that the flow of a yield fluid through a porous medium obeys a non-linear relationship
between the average velocity and the pressure drop (Eq. (5)). In particular the flow through the

porous medium only occurs above a critical value of the pressure gradient. For a 3D network

composed of randomly oriented and monodispersed pores of radius a, the threshold value

refers to the yield stress of the fluid (cf. Eq. (16)).

We feel that there exists a strong correlation between the flow characteristics described by
the permeability « (VP and the structure of the porous medium (orientation and size of pores).
Considering now a pore size distribution f(a) : the flow rate inside a capillary tube both

depends on its orientation and its radius seen here as a random variable (cf. Eqs. ( lo) and (I I)).

An increase in the pressure drop imposed on the porous medium produces the opening of all

capillary tubes for which the radius a, and the angle iY, satisfy the condition :

2 r~
a, cos iY, <

-.
(32)
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Fig. 6. Theoretical probability functions p (t) dt for a particle to stay in a capillary tube for a time lying

between t and t + dt. Each curve corresponds to a particular value of the critical angle if~ as indicated on

the plot (cos if~
=

2 rja VP with r~ is the yield stress of the fluid, a the radius of the pores and VP the

pressure gradient). These curves are compared to the reference curve (solid line) I/t~. For a Bingham
fluid, dispersion is expected to obey an anomalous diffusion law.

A critical value iY~(a,) and consequently an average velocity U~[iY~(a;)] defined in

equation (15) are associated with each radius a;. If no correlation between the orientation

it; and the radius a, of the capillary tube is assumed, the flow Q (VP in the x direction through
the porous medium can be expressed as a function of the pore size distribution f(a) :

Q(VP
=

j~ f(a)( ~~~~~ q(VP, a, it ) cos it
~~~ ~ ditlda (33)

~~ o
(I cos it~)

where ao= 2r~/VP is the size of the smallest tube for which the flow occurs and

q(VP, a, it
=

gra~ U (VP, a, it ), the elementary flow rate through a pore.
The pore size distribution can be obtained from the experimental determination of the flow

curve Q (VP by using a differential operator :

4~ j2
~ vp

j
+ Vp~

fi Q ~~~ ~~~~~

j
j(P~~

12
j ~

3VP~

The above relationship corresponds to the generalization of the expression proposed by
Ambari et al, in the simpler case of a one dimensional porous medium [10].

Conclusion.

This paper dealt with the modelling of the flow of a yield fluid through a porous medium. We

proposed a model consisting of a generalization of the analysis developed by Saffman for

Newtonian fluids. The porous medium was assumed to be statistically homogeneous and
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isotropic so dispersion can be defined by lateral and longitudinal coefficients. In the used mean

field approximation, we showed that the pressure gradient still satisfies the Laplace equation.
When the porous medium is characterized by one size of randomly oriented pores, there exists

a critical angle below which pores are excluded from the flow : indeed the local pressure
gradient is not large enough compared to the yield stress of the fluid. Flow through the porous
medium only occurs above a threshold of the pressure drop.

Dispersion of marked particles was then described by a random walk. The paths of particles

were decomposed into many independent steps corresponding to the passage through one pore.
The duration of each step was the average convective time in the given direction. The

expressions of the asymptotic lateral and longitudinal dispersion coefficients were obtained

from the statistical properties of the displacement and time of a single particle after a large
given number of steps. The lateral dispersion is Gaussian and decreases when the yield stress

of the fluid increases. As a consequence of the existence of the yield stress, the elementary
time distribution in pores was broader compared to that of a Newtonian fluid. Then the central

limit theorem cannot be applied : longitudinal dispersion obeys an anomalous diffusion law.

The longitudinal dispersion coefficient depends on an arbitrary cut-off time. For a given cut-

off, a competition between spatial and temporal dispersion was found.

At the end, we pointed out the strong correlation between the structure of the porous medium

(orientation and size distribution of pores) and the feature of the flow of a Bingham fluid. A

differential operator was found to determine the pore size distribution from the relationship
pressure/flow rate.

This paper was concemed with asymptotic dispersion. We performed moreover numerical

simulations, by using Monte Carlo techniques, to investigate the transient regime preceding
the asymptotic regime described here. Simulations also provide an interesting tool for studying
the correlation between dispersion and the disordered state of the porous medium.

Appendix A.

The components of the average displacement of a single particle after n steps are :

X~(iY~)
=

~~
[l 2 sin~

iY~ cos iY~
cos~

iY~ (A.1)
3 N~

Y~(iY~)
=

ni
~~

sin iY cos q~ f (iY ; iY~) diY
=

0 (A.2)
o

Wc
Z~(iY~)

=

ni sin iY sin
q~

f (iY ; iY~) diY
=

0. (A.3)
o

The variances are given by :

(X~ i~)~
=

~ ~
ln (cos iY~) +

~ i~ X() cos~
iY~

~
X~ cos~

iY~ +
N~ 36 3 3 6 3

+
X~ cos~

iY~
~

(k~ X~ + cos iY~ + X( ~
X~ + (A.4)

" 3 ~ 3 2 3 4

2 w W~

(Y~)~
=

ni~ (sin d cos q~
)~, f(d ; d~) dd f(q~ ) dq~

=

ni~ tr](d~) (A.5)
o o

2
w W~

(z )2
=

nf2 (sin iY sin q~
)~, f(iY ; iY~) diY f(q~ dq~

=

ni~ «j(iY~) (A.6)
~

0 0

i~ 2~
~~~ sin~ iY +

cos~ iY In (cos
Y~))

+
~ cos~

iY~

~
cos

Y~j
(A.7)

~ ~ 2 N~ 4 ~ ~ 3 2 9



N° 12 DISPERSION OF A BINGHAM FLUID IN A POROUS MEDIUM 2157

Appendix B.

The coefficients occurring in the statistical properties of the time after a large given number of

steps n are respectively :

~ ~
4

cos~
iY~

A
=

0.5 + cos iY~ 0.5 sin do cos iY~ cos do
~

(B,1)
3 6 cos do

5 so I I lsi So
~

~ 0 ~~
si

~
18 (so I )(si 1)

~ ~2 ~ ~ ~ i IS Q5Si
~~

0 ~° l
arctg

°
arctg

~
(B.2)

108 3 s(
+ 2 si + 54 / ~

c
=

~~
(cos do i ) (B.3)

_~

l~
4

cos~
iY~ 4

cos~
iY~

D
=

t 0.5 sin do + cos iY~ cos do +
~

cos iY~ (B.4)
3

cos do 3 6

~ ~ ~
4

cos~
iY~

E
=

(to t ) 0.5 + cos iY~ 0.5 sin do cos iY~ cos do
~

(B 5)
3 6 cos do

with

cos do
~° ~

cos d~ ~~ ~

cos d~

So
-

/
So +

§
Si

-

/
Si +

fi ~~'~~

N~
=

0.5 sin~ it~ +
~ cos~ it~ +

cos~ it~ sin~
iY~

~
cos iY~ (B.7)

3 6 3

The covariance «x~(iY~, to ) is :

+ ~ .

o

_ [ ~ 4
cos~ iY~ i j I

+
it ,

3 do
(to

-
j ~ ~ ~ cos4 o~

3 ' ~°
~

~°~
~ ~° ~

~
~~ cos do

- I
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