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Abstract. We have used a statistical method to describe an unsteady radial fingering pattem.

We determine a complete set of equations for the growth of the microstructure envelope which

couples envelope radius, individual growth rate of fingers and the distribution function in the cell

size space. In a preliminary approach, we neglect the important screening effect which may be

responsible for the commonly observed fractal structures. In that case, the structure is compact,

I-e- the relative width of fingers of order unity. The self-similar regime for which the time

dependence of the envelope radius is in t~'~ is then still a solution. The corresponding distribution

function in the A-space varies with t~". Contrary to regular structures for which any wavelength
and thus any growth velocity of the envelope can be a solution, the self-similar solution found here

determines unambiguously the growth velocity of the radial pattem. This velocity is a function of

the amplitude of the noise present in the Hele Shaw cell. Numerical integration of the equations is

performed and the time evolution of the distribution function starting from various initial

conditions analysed.

1. Introduction.

When a viscous fluid displaces another more viscous fluid in a Hele Shaw cell, long fingers of

the displacing fluid penetrate into the displaced fluid. When the displacing fluid is introduced

at the center of the cell at constant volume flow rate Qb, where b is the thickness of the cell, the

fingers expand radially. Then, an unsteady interface develops II where two basic mechanisms

take place : fingers frequently tip-split when they reach a critical size, and some of them are

screened by the faster ones leaving large holes in the final pattern. This is a prototype of an

unsteady microstructure with well defined statistical properties.
From experimental observations, the unsteady microstructure can be decomposed in an

assembly of elementary cells growing in size because of the broadening effect associated with

the increase of the mean radius of the envelope. They tip-split periodically when a critical size

is reached and eventually disappear because of the screening effect. Because of our lack of

knowledge of the initial conditions it is natural to describe the microstructure by a distribution

function from which all usual statistical quantities can be determined. The natural degree of

freedom associated to a unit cell is its size A since it has been shown (see for instance Ref. [2])

that as far as the width of a channel in which a finger develops is given, an asymptotic steady

state is reached in a unique fashion. It follows that the distribution function describing the
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statistical properties of the system will be defined in the A space (an analogous method was

used in eutectic solidification [3]).

The development of the method used here is inspired by the analysis of Lifshitz and Slyozov
[4] of the early stage of the coalescence of grains in a supersaturated solution. In that case the

system is described by a distribution function in the grain radius space. The grains are assumed

to grow without direct interaction. But the total quantity of impurities released by the grains
when they grow decreases the supersaturation and slows the growth of all the grains. Thus

there is a coupling between the supersaturation, the individual growth rate of each grain and

the distribution function in the grain radius space.

Here, the system is described by a distribution function in the cell size space. The

elementary cells are assumed to grow without direct interaction. Here, the time-dependent
quantity playing the role of the supersaturation in the former problem is the radius

R(t) of the envelope. Thus there is a coupling between, effective interface radius, individual

growth rate for a unit cell and the distribution function in the A-space.
To proceed further, we neglect the important mechanism of cell elimination which may be

responsible for the commonly observed fractal structures. This allows us to understand how an

assembly of cells growing individually with different relative widths, and thus different

velocities, behave collectively to determine an effective circular microstructure of radius

R(t). With this assumption, we are able to determine a complete set of equations for this

problem which couple the effective germ radius R(t), and the distribution function in the A-

space. Since the relative proportion of the displacing fluid remains of the saute order during the

growth, one finds again a self-similar solution, for which R(t) evolves like t~/~ The

corresponding distribution function in the A-space, which scales like t~'~ can be determined

analytically. In contrast with periodic cellular interfaces, for which any wavelength and thus

any growth velocity is allowed, the self-similar solution determined here selects unambi-

guously the growth velocity of the microstructure.

2. The model.

The basic assumption of the analysis is that the interface between the two fluids is considered

as an assembly of elementary units growing without direct interaction between them. The

envelope of these units is assumed to be a circle of radius R(t), large compared to the

individual size A occupied by each basic element. Each unit is a finger growing radially with

velocity v in a sector of angle RJR (Fig. I). From a geometrical consideration, the increase of

the radius of the envelope leads to an increase of the size of each elementary unit [5] :

(/
= ~~ (i)

where all possible tangential motion of an elementary cell is neglected.

LA A
V

R

Fig. I. Sketch of an elementary cell growing in an angular sector of angle RJR.
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It is customary to introduce the relative proportion of displacing fluid inside a unit cell, A.

This factor appears as an eigenvalue of the free-boundary problem which determines the shape
of the growing finger and is a function of the control parameters of the growth [6]. For

instance, when the angle of the sector is assumed small, which is the case when the radius of

the envelope becomes large, the cell shape is a Saffman-Taylor finger [6] of relative width

A(C), a function of the parameter C
=

3 ~1A~u/~rb~ gr~. Here, ~r is the surface tension

between the two fluids and ~1the viscosity of the displaced fluid, assumed much larger than the

viscosity of the displacing fluid. One can deduce the finger velocity from the mass

conservation relation

Au
=

$
(2)

where Q/2 grR is the velocity of the fluid just ahead of the fingers.
When the size of a sector enlarges because of the increase of the radius of the envelope, the

corresponding finger splits generally in two parts that we assume of equal size. When one

considers growth in a sector of finite angle, tip-splitting results [7] from a branch merger of two

Vanden-Broeck [8] solutions. But when the radius of the envelope increases, the sector angle
decreases, so that the usual cause of tip-splitting in rectilinear Hele-Shaw cells, I,e, the noise is

responsible. The now well known corresponding instability criterium [2] is simply that the

control parameter C is larger than a critical value C~~~ which depends on the amplitude of the

noise in the Hele Shaw cell. The tip-splitting operates at constant outer fluid velocity
Q/2 grR so that a newly formed semi-cell is associated to a control parameter C~,~ satisfying
g(C~,~)

=
g (C~~~)/4, where g(C

=
A (C ) C. Thus the domain of possible wave-length A is

the segment [A~,~(t), A~~~(t)], where, from the expression of C and equation (2), one

obtains :

Amax (t )
=

Jg (C
~ax

R (t
)

(3

where Ca is the capillary number Ca
=

(3/2 gr~) ~IQ/~rb.
Let n(A, t) be the wavelength distribution function, normalized so that

A~~(t)
2 grR(t)

=

An (A, t dA. (4)

A~,n(')

Hence, n(A, t)dA is the number of cells on the effective germ of size between A and

A + dA. From equations (Ii and (2), one obtains

~~
~ 2gr/~R

(t ) ~ b/~t ~~ ~~~

as the rate of motion in the A space. Then, the continuity equation in that space reads

~
~

~i
~~~~~ ~ ~~~

with the boundary condition (nu~)(A~;~)
=

2(nu~)(A~~~), which expresses the tip-splitting
rule.

Here, we neglect the cell death process which occurs when one cell backs away from two

neighbouring ones. This process is important since it mainly determines the large scale
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properties of the microstructure. However no way to take it into account has been found for the

moment.

When the function A (C is given, equations (4)-(6) form a complete set of equations for the

distribution function
n and the radius of the envelope R(t) as a function of C~~~.

It is interesting to notice that this problem is analogous to the well known problem of the

early stage of coalescence of precipitated grains solved by Lifshitz and Slyozov [4]. In the

latter case, the statistical variable is the radius a of a grain whose individual growth rate

depends on the supersaturation A(t). This quantity is coupled to the statistical problem by the

conservation of impurities. It is well known that in this case this coupling leads to an evolution

law for the mean grain radius d-t'/~ and not am t~/~ as for a growth at constant

supersaturation.
For practical purposes, simply because the boundaries of the domain remain independent of

time, it is more convenient to work in the C-than in the A-space, the relation between them

being determined by equation (3). With this new space variable, equations (4)-(6) become :

2
gr

/)
Ca

= j~~"
fin (C, t dC (7)

c~,~

i+t Trill1=0 (9>

with the boundary condition (n dC/dt )(C~,~)
=

2(n dC/dt )(C~~~).

3. Self-similar solution.

A self-similar solution of equations (7)-(9) can be found for which R (t
=

(7~ t )~/~. Then, from

equation (7) the distribution function n must be taken of the form n =

t~" N (C where N is

normalized as :

2«
Jfi (a

=

~~~~ fi© N (c i dc (ioi
c~

From equation (9), one obtains :

j
=

r(Q/1~, cl (i11

where

r(Q/~, Cl
=

glc SC
~~l> (12>

from which follows the equation for N (C ) :

jN
+

~
(Nr)

=
0. (13)

This equation can easily be integrated to obtain

N (C )
=

A exp
~~~~ ~~/~ dC' (14)

c

~~
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Here, the factor
7~ appears as an eigenvalue which will be determined by the boundary

condition

N (Cm>nl r(Cm>n1
"

2 N (C maxi r(C maxi (lsl

The norrnalization constant A is then determined by equation (10). As the condition of tip-
splitting at constant outer fluid velocity determines C~,~ as a function of C~~, Q/gr7~ is only a

function of C~~~. As C~~~
m

Log (A, ), where A, is the relative amplitude of the noise present
in the system [2], the self-similar distribution function and the associated physical quantities
characterizing the growth of the effective interface are determined by the amplitude of noise in

the Hele Shaw cell. To proceed further, we use an interpolation formula of the McLean and

Saffman function A (C
=

((C Co ) + Ail (2(C Co + Al with Co
=

2.87 and A
=

50.8

which reproduces within a few percent, their numerical data for values of A ranging between

I-o and 0.6 [6]. In figure 2 plotted the factor Q/gr7~ is plotted as a function of

C~~~. This factor characterizes the ratio between the inner volume outlined by the envelope and

the total volume of displacing fluid injected, since Q/gr7~
=

Qbt/grR~ b. Figure 3 shows the

norrnalized distribution function N (C if (2 gr7~1"(Ca/b)'/~)
as a function of C for C~~,
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Fig. 3. Distribution function N (C )/2 gr~ "~(Ca/b)~'~
as a function of C.
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cells. There is no clear deviation from the self-similar values. In figure 5a the integration of the

distribution function starts from an initial Gaussian function. As previously, the bump moves

towards larger C values due to the increase of the mean radius of the germ. Then tip-splitting
occurs and the bump is redistributed towards smaller values of C. The corresponding values of

R(t) and N(t) are shown in figure 5b.
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Fig. 5. a) Distribution function n(C ) at different times starting from a Gaussian initial condition.

b) Corresponding evolution of the mean radius of the germ R(t) and the total number of cells

N(t).
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similar solution of these equations can be determined, for which the time dependence of radius

and distribution function are respectively in t~'~ and t~" The prefactor of these power laws is a

function of the amplitude of the noise present in the Hele Shaw cell.

It is interesting to notice that the self similar solution characterizes completely the

microstructure and the dynamic variables of the growth. This is not the case if pattems with

uniform wavelength are considered. As the wavelength is arbitrary, arbitrary growth velocity is

allowed too. But if one starts from reasonable initial conditions, one can expect that the

microstructure evolves towards the self-similar state growing in a unique fashion. We expect

that such an approach can be useful too, for the directional solidification configuration where

the problem of wavelength selection is not yet understood.
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