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Abstract. Membranes
are

often composed of
a

mixture of amphiphiic molecules which

aggregate into dusters or domains. A simple theoretical model is introduced which predicts
that flat or weakly curved domains become unstable at a certain limiting size and then undergo

a
budding

or
invagination process. This shape transformation is primarily driven by the line

tension of the domain edge. It is also predicted that the budding domain
can rupture the

membrane and then pinch off from the matrix. The size of the bud and the time scales involved

in the budding dynamics are estimated for model membranes composed of lipid mixtures. This

instability mechanism should also be effective for the budding of biomembranes.

1. Introduction.

Membranes sucb as lipid bilayers
are

highly flexible and thus can easily change their shape.
Recently,

a
variety of shape transformations have been observed by phase contrast microscopy

of giant lipid vesicles [1-7]. It was found that these vesicles can exhibit budding or invagination

processes in which small vesicles bud off from
a

larger membrane surface. These processes

can
be simply induced by

a
change in temperature. Such temperature-induced budding can

be understood theoretically if
one assumes

that the lipid bilayer of the vesicle is laterally
homogeneous. Its shape is then determined, to a

large extent, by the area to volume ratio.

The thermal expansivity of the bilayer membrane is large compared to that of the water.

Therefore,
as

the temperature is increased, the bilayer membrane expands more rapidly than

the enclosed water, and the
area to volume ratio of the vesicles is increased.

In biological cells, budding is a rather frequent event since it represents the first step in

the production of transport vesicles which shuttle between different compartments of the cell

[8- iii. Two budding processes can be distinguished: (I) Endocytosis of the plasma membrane,
I-e-, budding of the plasma membrane towards the interior of the cell; and (it) budding of the

membranes bounding internal compartments such
as

the endoplasmic reticulum, the stack of

Golgi cistemae, and the trans Golgi network. In the latter case, the budding vesicle points
towards the exterior of the internal compartment.



1826 JOURNAL DE PHYSIQUE II N°10

131 iii

Fig-I- Budding of the membrane domain fl embedded in the membrane matrix
a.

The domain

edge is indicated by the full-broken line. The length of this edge decreases during the budding process

from (1) to (3).

Even though the budding of biomembranes resembles the temperature-induced shape trans-

formations of lipid vesicles, the underlying mechanism must be quite different. Biomembranes

are
composed of many different lipids and proteins which diffuse laterally along the membrane

and
can

therefore aggregate into clusters
or

domains. Indeed, the budding of biomembranes is

believed to be preceded by the formation of such intramembrane domains [8-11].
It is shown in this paper that

a
domain within

a
fluid membrane should always undergo

a

budding process as soon as it has attained
a certain size. This process is induced by the line

tension of the domain edge:
as can

be seen by inspection of figure I, the edge energy of the

budded domain is much smaller than the edge energy of the flat (or weakly curved) domain.

More precisely, the instability of the flat domain is governed by the competition between the

line tension of the domain edge and the bending energy of the domain. This interplay will be

studied in section 2 within
a

simplified theoretical model. In section 3, the dynamics of the

budding process will be discussed. The various length and time scales involved in the process
will be estimated for lipid bilayers in section 4. Finally, it is argued in section 5 that this

mechanism should also be effective for biomembranes.

A variety of theoretical models for budding have been previously described in the literature.

[12, 13] It seems, however, that the important role played by the line tension of the domain

edge has been overlooked
so

far.

2. Energy of budding domain.

2. I EDGE ENERGY VERSUS BENDING ENERGY. A flat domain with Surface area A embedded

in
a

flat membrane matrix will form
a

circular disk of radius L
=

(A/~r)~/~ in order to attain

a state with the minimal Value, 2~rL, for the length of its edge. However, as far
as

the edge

energy is concerned, a flat circular disk does not represent the state of lowest energy since the

length of the edge can be further reduced if the domain deforms into the "third dimension"

and forms
a

bud, see figure. I.

Such a deformation necessarily involves an
increase in the curvature and thus in the bending

energy of the domain. The domain has minimal bending energy if its curvature is equal to the
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Fig.2. Bud of fl domain forming
a

spherical cap. The
area of the bud is Ap

=

~L~. The bud has

curvature C
=

1/R and neck radius N.

spontaneous curvature, Csp. As mentioned, I will focus on the case of fluid domains which do

not build up a shear stress. In this case, the only elastic contributions to the energy of the

budding domain are given by the edge and the bending energy.

2.2 A SIMPLIFIED MODEL. Now assume
that the domain forms a

spherical cap with curva-

ture C and curvature radius, R
=

I/C
as shown in figure 2. The curvature C

can be positive

or negative which allows to distinguish the two sides of the membrane. Here and below, an

"up" bud has positive and a "down" bud has negative curvature. The spherical cap has a neck,
the radius of which is denoted by N, see figure 2.

The bending energy of the domain with surface
area

A
=

~rL~ is given by

Ebend
=

A )«(2C 2Csp)~
=

2~r«(LC Lcsp)~ (2.1)

where
K is the bending rigidity which has units of energy. The spontaneous curvature Csp is

zero if both sides of the membrane are identical. The expression (2.I) has to be supplemented
by

a
small scale cutoff which is of the order of the membrane thickness, am~m. Thus, the largest

values for the curvatures C and Csp which can be treated in the framework of this model are

of the order of I lam~m ci 0.25 nm~~

The edge energy, on the other hand, is determined by the length, 2~rN, of the edge. For

the simple geometry considered here,
one

has sing
=

2sin(@/2) cos(@/2)
=

N/R
=

NC where

the angle is defined in figure 2. The area of the spherical cap is given by A
=

~rL~
=

2~rR~(1- cos9)
=

4~rR~sin~(@/2) which implies sin(9/2)
=

L/2R
=

LC/2. A combination of

these two relations leads to N
=

L I (LC/2)2. Therefore, the edge energy is given by

Eedge = a
2~rN

= a 2~r L~ (2.2)

where
a

denotes the line tension. If the bud forms
a

complete sphere,
one

has LC
=

+ 2 and

thus Eedge =
0.

It is convenient to introduce the characteristic innagiiiatioii length, ( e K
la, which describes

the interplay between the bending rigidity and the line tension, and the dimensionless energy
11 e (Ebend + E~dge)/2~rK. Inserting the expressions (2.I) and (2.2) for Ebend and E~dge, one

obtains

E
=

(LC Lcsp)~ +
(L/()~ (2.3)
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Fig.3. Reduced energy
t of the budding domain

as a
function of the reduced curvature Lc: (a)

for zero spontaneous curvature, c;p
=

0, and (b) for nonzero spontaneous curvature with Lcsp
=

0.45.

The length scale L denotes the linear size of the domain; the invagination length (
=

~/«, where
~

and

« are the bending rigidity and the line tension of the domain edge. The uppermost curve corresponds

to the size L
=

L° at which the incomplete bud becomes unstable.

For zero spontaneous curvature, Csp =
0, such

a
model has been previously used to discuss the

size of vesicles generated by sonification [14].
In figure 3, the functional dependence of the reduced energy t

on the reduced curvature LC

is shown for zero and finite spontaneous curvature and for three values of L/(. It has been

tacitly assumed here that there is no external tension acting on the membrane matrix. It will

be shown below that the domain exerts a tension
on

the matrix during the budding process

but that this tension relaxes relatively fast.

2.3 COMPLETE AND INCOMPLETE BUDS. As can be seen by inspection of figure 3, the

energy
t has several minima and maxima

as a
function of LG. There

are
always two boundary

minima at LC
=

+ 2 corresponding to the complete "up" and to the complete "down" sphere,
respectively. The complete sphere with the lower energy will be called the complete bud. For

zero spontaneous curvature, Csp
=

0, both complete spheres have the same energy, see figure 3a,
and the complete bud can develop equally well

on
both sides of the membrane: there is no

difference between an "up" and a "down" bud. A finite value of Csp breaks this symmetry, see

figure 3b, and budding occurs preferentially
on one

side of the membrane.

The curvature radius of the complete bud will be denoted by l~cb
"

I/Ccbi its absolute value

is (Rcb(
"

L/2. Within the elastic model considered here, the complete bud is
a

limiting shape
with zero neck radius, Ncb

"
0. In practise, this neck will have a radius of the order of the

membrane thickness, Ncb Qf amour, as
long

as
it does not break off from the matrix.

For small values of L If, the energy t also exhibits a minimum at intermediate values of LC,

see
figure 3. The state corresponding to this minimum will be called the incomplete bud with

curvature radius Rib and finite neck radius Nib- For Csp
=

0, this minimum is at LC
=

0, see

figure 3a, and the so-called incomplete bud is not curved at all but flat with zero curvature

and maximal neck radius Nib
"

L.



N°10 BUDDING OF MEMBRANES INDUCED BY INTRAMEMBRANE DOMAINS 1829

In the following, the domain will be characterized by fixed elastic parameters K
,

Cap and

a, and thus by the fixed invagination length (
= K

la. The domain size L, on
the other hand,

changes because the domain grows in time by some aggregation process within the membrane.

Therefore, the domain size L will play the role of a
control parameter for the budding process.

For L « (, the energy
t has the functional forms as given by the bottom curves in figures 3a

and 3b. In this case, the domain forms
an

incomplete bud corresponding to the minimum of

t at intermediate LC-values. This state has the lowest energy and thus represents the stable

state of the domain since the cost in bending energy is larger than the possible gain in edge

energy. As L grows, the edge of the domain becomes longer, and the energy of the incomplete
bud is increased.

2.4 COEXISTENCE OF INCOMPLETE AND COMPLETE BUD. At a certain critical size, L
=

L*,
the energy, Eib of the incomplete bud becomes equal to the energy Ecb of the complete bud.

This situation corresponds to the middle curves
oft in figures 3a and 3b.

It follows from the expression (2.3) for the dimensionless energy t that the critical size L*

behaves as

~~ "
l +

~(Csp(
~°~ ~~~~~ ~~~~~ ~~'~~

and as

L~ *

)
(1

(flcspl)~~/~)
f°~ '~~g~ flcspl (2.5)

sp

For L
=

L*, the curvature, C]~, of the incomplete bud is given by

jcibj R

~((
for small (jcspj (2.6)

and by

(C]~( m (Csp( 1+ (((Csp()~~/~ for large ((Csp( (2.7)
4

Likewise, the neck radius, N~[, of the incomplete bud has the asymptotic behavior

N( m L* II (4((Csp()~~
for small ((Csp( (2.8)

2

and

~~b ~ ~/f~~~(~SP(~~~ ~°~ '~~g~ f(~sp( (~.~)

Inspection of figure 3 shows that the two minima for the incomplete and for the complete
bud

are
separated by

an energy barrier, AE*
=

t[~ E]~, where Emax is the energy of the

intermediate maximum. This energy barrier behaves as

At*
m

2(vi I)L* (Cap( for small ((Csp( (2.10)

and as

At*
m (7~ 37 + 2@)(((Csp()~~/~ for large ((Cap( (2.ll)

with 7 =
(2 vi)/2 and 7~ 37 + 2@ ci 0.35. Both, the critical domain size L* and the

associated energy barrier At* take
on

their largest values for
zero spontaneous curvature,

compare figure 3.

For L
=

L*, the incomplete bud can be thermally activated to transform into the
com-

plete bud. The time scale for these activated processes is proportional to exp[AE*/T]
=



1830 JOURNAL DE PHYSIQUE II N°10

exp[27r«At*/T] and these processes are rare fluctuations as long
as

At* » T/27rK. In the

following, I will focus on the case of relatively large KIT
as

appropriate for lipid bilayers.
Indeed, these bilayers are characterized by T/27rK ci

10~~ Using the asymptotic behavior

as
given by (2. II),

one then finds that activated processes are rare fluctuations as long as

((Csp( « 70. This inequality is fulfilled for all examples considered below, see table I. In such

a
situation, the domain will stay in the incomplete bud state even as

L exceeds L*.

Table I. Various length and time scales as appropriate for lipid bilayers characterized by
spontaneous curvature Csp and invagination length (.

o o

( [nm] 10 20 20 100 200 200

51

N[ [nm] 80 40 19 800 50 16

R[~ [nm] 40 28 16 400 60 25

id

ts [s] 10~~ 10~~ 10~~° 10~~ 10~~ 10~~°

if jsj lo~~ lo~~ lo~~ lo~ lo~~ lo~~

2.5 INSTABILITY OF iNco&IPLETE BUD. For domain size L > L*, the incomplete bud

represents a
metastable or locally stable state up to the limiting size L

=
L° at which the energy

barrier disappears and the incomplete bud becomes unstable [15]. This situation corresponds
to the top E-curves in figures 3a and 3b.

It follows from the expression (2.3) for the energy
t that the limiting size L° is given by

L°
=

8f/ ii +
4((Csp()~/~j~~~

(2.12)

which is valid for all values of ((Csp(. As the incomplete bud becomes unstable, it is charac-

terized by the curvature

~~
"

~sp (1+ (4f(~sp() ~~~) (2.13)

and by the neck radius

fill
"

8t/ II + (4t 1CSP
)~~~j ~

(2.14)

represents
the amount of u.ork

the budding
domain

can do on the rest of the system.

This energy di~erence is given by

6f°
=

-4(q/8)~/~ + q(q/8)~/~ + ql(8/q)~/~ ll~/~ll (q/8)~/~l (2.15)
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with q e L° If and L° as given by (2.12). For zero spontaneous curvature, the incomplete bud

is flat and N(
=

L°. In this case, one has q =
L°/(

=
8 and the reduced energy difference

6t° is given by 6E°
=

4. For 4( (Csp (= I, one has lq~
=

N(, and the incomplete bud forms

a hemisphere which is now transformed into a
complete sphere. In the latter case, one

has

6E°
=

2(V5 1)
=

0.83.

In the next section, the time scales for the dynamics of budding will be estimated. One

then finds that the domain size remains essentially constant during the transformation from

the incomplete to the complete bud. This implies that the complete bud has curvature radius

(R[~( =
L°/2. It then follows from (2.12) that its curvature Ccb

"
I/Rcb is given by

~$b
"

Csp(1 + (4f(C~p()~2/3j3/2

"
Ctll + (4jjCspj)~2/3jl/2

(2.16)

3. Dynamics of budding.

The simple model discussed above reveals that the budding process involves several steps.
First, the domain forms

an
incomplete bud which grows by diffusion-limited aggregation up

to a
certain limiting size. At this point, the incomplete bud becomes unstable and is then

transformed into a
complete bud [15]. The relative contribution of these two steps to the

curvature of the domain is determined by the dimensionless ratio 4((Csp(
=

4K(Csp( la. For

relatively small spontaneous curvature Csp or relatively large line tension a, the incomplete
bud is flat

or
weakly curved and the bud has to acquire most of its curvature during the

transformation step. For relatively large spontaneous curvature or
relatively small edge tension,

on the other hand, the curvature of the bud builds up already during the growth step. In

addition, there can be another step in which the neck breaks off from the matrix and the

budding domain becomes a separate vesicle.

3.I GROWTH OF INCOMPLETE BUD. First, let us consider the growth step. As mentioned,
the intramembrane domain grows via the aggregation of molecules which diffuse laterally within

the membrane matrix. If one can ignore interactions between different domains, the size L of

a
single domain grows as L

~J
(Dt)~/~ with time t where D is the diffusion coefficient of the

molecules. It then takes a time of the order of

td
-~

L~/D (3.1)

until the domain has grown up to size L. In this estimate, the nucleation time for the domain

formation is not included.

If the membrane contains many domains, the interaction of these domains
can

lead to var-

ious growth mechanisms. If the collective diffusion of the domain within the membrane is

relatively fast, the domains will collide and can then grow by coalescence. On the other hand,
if the domain diffusion is relatively slow, the growth could be governed by the evaporation-

condensation mechanism of Lifshitz-Slyozov in which the growth rate is limited by the diffusive

transport from small to large domains. If the growth is dominated by coalescence, the domain

size L will again grow as L
~J

t~/~ with time t [16]. In contrast, the Lifshitz-Slyozov mechanism

leads to L
~J

t~/~ [17].

3.2 TRANSFORMATION FROM INCOMPLETE To COMPLETE BUD. Next, consider the trans-

formation step from the incomplete to the complete bud. During this step, the domain has

to pull in membrane area. For the bud geometry considered here, this area, 6A, is equal to



1832 JOURNAL DE PHYSIQUE II N°10

bA
=

7rN~ where N is the neck radius of the incomplete bud. In principle,
a

variety of area

reservoirs could be accessible to the budding domain such as e.g. adhering vesicles which fuse

with the membrane or membrane foldings and pockets. For simplicity, let us focus on the case

where the membrane matrix surrounding the bud is essentially flat but exhibits thermally-
excited undulations. In this situation, the transforming bud can pull in the excess area stored

in the undulations or pull in area by stretching the matrix surrounding it.

In both cases, the bud perturbs a certain minimal size Li of the matrix. As shown in appendix
A, the matrix segment stretched by the bud has

a
linear size Li which can be estimated

as

Li Ci
(KA/4K 6E°)~/~N~ (3.2)

with N
=

N~[ as
given by (2.14). The parameter KA denotes the

area
compressibility modulus.

This stretching process takes a time is which is of the order of

is
~J

(pA/f(A)~~~Li (3.3)

where pA is the mass density of the membrane per unit area.

On the other hand, the bud may also pull in area if it flattens the undulations of the

surrounding matrix. As shown in appendix A, it then perturbs
a

matrix segment of linear size

Li * (87rK/T£n(1+ 2 6E°/7rT)]~/~N (3A)

with neck radius N
=

Nj[ of the incomplete bud. This flattening process takes a time if which

is of the order of

if
~J

qL(/K (3.5)

where q denotes the dynamic viscosity of the aqueous solution.

3.3 DETACHMENT OF BUDDING DOMAIN. Up to now, it has been tacitly assumed that

the bud remains connected to the membrane matrix by a narrow neck. However, during
the transformation towards the complete bud, the neck radius decreases which implies that

the lateral tension exerted by the bud onto the surrounding matrix along the domain edge
increases. Within the model considered here, the tension Z along the edge of the domain, I-e-,

along the neck of the bud is given by

Z
=

(1/27rN)(3E/3N)
=

(a IN) 8K(1 Cap /C) /L~ (3.6)

where the curvature C depends on the neck radius N via (LC/2)~
=

l (N/L)~.
By definition, the lateral tension Z is positive if the surrounding matrix is pulled by the bud,

and negative if the bud is pulled by the matrix. In figure 2, those segments of the f-curves

which have negative slope correspond to a positive lateral tension.

During the transformation step, the neck
narrows down and the tension Z

as
given by (3.6)

becomes larger. As the neck attains
a

certain radius, this tension may exceed the tension of

rupture, Zmax, of the domain edge. Since the edge represents a
linear defect (with

a finite

line tension), its tension of rupture is smaller than the tension of rupture for the rest of the

membrane. For Z ci Zmax, the bud pulls
so

strongly that the neck breaks off and the budding
domain becomes

a
budding vesicle. In this way, the action of the line tension provides a general

mechanism for the detachment of the budding domain.

If the membrane contains many budding domains, each bud will experience an
effective

lateral tension, Ze~ < 0, arising from the completion of other buds. In the presence of an
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external lateral tension Z, the energy of the bud is given by Ez
=

E + 7rN~Z where 7rN~ is

the area of the neck of the bud. Using the relation N~
=

L~(I (LC/2)~),
one obtains the

dimensionless energy
fr

=

f + (L~Z/2<) (L2Z/8<)(LC)~ (3.7)

For Z
=

Ze~ < 0, this tension acts to stabilize the incomplete bud and thus to prolong
the budding process. For example,

a
domain with zero spontaneous curvature now

becomes

unstable for the limiting size

L°
=

(a/22)(-1+ ~) (3.8)

~~~~~ ~~~~~~~ "

~o ~ 8j(1- 8zjZ) for small Z(~. (3.9)

In practice, the effective tension within the matrix arising from the buds will strongly fluctuate

since it depends on the density and on the states of these buds.

4. Budding of lipid bilayers.

Budding induced by intramembrane domains could be studied experimentally in simple model

membranes such as lipid bilayers which
are composed of

a
mixture of lipids and exhibit

a

coexistence region between two phases. In most systems studied
so

far,
one of the two phases

was a
gel or a polymerized state [18-21]. However, systems with two coexisting phases which

are both fluid have also been identified. One prominent example is a mixture of phospholipids
and cholesterol which exhibits

a
broad coexistence region for

a
fluid "ordered" and

a
fluid

"disordered" phase [22-24]. Other examples are the binary mixture of DEPC and DPPE [25],
and mixtures of phospholipids with partially unsaturated acyl chains [26].

First, consider
a domain in the bilayer which extends

across
both monolayers. In this case,

both monolayers of the domain have the same chemical composition and the bilayer has zero

spontaneous curvature, Cap =
0. Its bending rigidity

K can
be deduced from experimental

observations
on

the shape fluctuations (or flickering) of vesicles;
a

typical value is
K ci

10~~~ J

[27, 28]. Finally, the line tension
a can

be estimated
as

follows.

The edge of the bilayer domain represents a cut across the whole bilayer. The cross-section

of such
a cut consists of three distinct regions: two hydrophilic head-group regions of thickness

ah Ci I nm
and

an
intermediate hydrophobic tail region of thickness at ci 4 nm. The headgroup

region and the tail region can have distinct interfacial free energies per unit area, say Zh and

Et. Then, the edge tension
a can

be estimated by
a ci ahZn + atZt. For 3-dimensional fluid

phases,
a

typical value for the interfacial free energy is Z ci
10~~ Jm~2 If one assumes (I) that

Zh Ci Z and (it) that Et < Zh (as appropriate for two phases which have
a

similar hydrocarbon
region),

one obtains the crude estimate a ci ahZ ci
10~~~ J~m~~

For the typical values K ci
10~~~ J and

a ci 10~ ~~ J~m~~, the invagination length (
= K

la
ci

10 nm.
According to (2.6), the incomplete bud becomes unstable when it has the limiting size

L°
=

8f ci 80 nm.

For lipid molecules in fluid bilayers, a typical value for the diffusion coefficient D is D ci 10~ ~2

m~ s~~ [29]. It then takes of the order of id Cf
L~ ID ci

10~~
s to grow a domain of size

L
=

L°
=

80 nm. When the domain has attained this size, it becomes unstable and transforms

into a complete bud. The time scales for this transformation can be estimated from (3.2)
(3.5). For lipid bilayers, the area compressibility modulus f(A has been measured to be of the

order of f(A Cf
10~~~ J nm~~ [30], and the mass density pA Per unit area can be estimated to

be of the order of pA Ci 3 x
10~~ kg m~~ It then follows from (3.2) and (3.3) that it takes a

time is of the order of is ci
10~~

s in order to pull out the area by stretching the matrix.
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The time scale if for the flattening of the undulations, on the other hand, depends
on

the

dynamic viscosity q of the surrounding medium
as in (3.5). The dynamic viscosity of water

is q ci
10~~ Pa

s =
10~~ kg m~~ s~~. At room temperature, one has KIT

ci 20. It then

follows from (3.4) and (3.5) that it takes a
time if of the order of if ci

10~~
s in order to

flatten the undulations. Thus, the transformation from the incomplete to the complete bud

will first proceed by stretching the surrounding matrix. This induces
a

lateral tension within

the membrane matrix which will then flatten the membrane undulations.

Since the time scale is ci
10~~

s is also very small compared to the diffusion time id, the

domain size stays essentially constant during the transformation step. This implies that the

complete bud has the radius R[~ ci L° /2
=

40 nm
for the above choice of elastic parameters.

The various length and time scales for the budding of
a

bilayer domain with Csp
=

0 are

summarized in table I.

The line tension a is substantially reduced in two cases: (I) the lipid mixture exhibits a

critical point at which
a

vanishes (this critical point belongs to the universality class of the

2-dimensional Ising model); and (it) the lipid bilayer contains edge-active molecules which

preferentially adsorb at the domain boundary. (This represents the two-dimensional analogue
to the reduction of the interfacial free energy by surface-active molecules in three dimensions).
In both cases, the edge tension could be reduced and the bud radius could be increased by more

than
an

order of magnitude. For a ~ 10~~~ J~m~~,
one obtains larger buds with R[~ j~ 0A ~m

which could be directly observed by optical microscopy.
Next, consider

a
domain within the bilayer which extends only across one monolayer. The

line tension of such
a

monolayer domain is about half the line tension of a bilayer domain.

The bending rigidity K will have the same order of magnitude,
K ci

10~~~ J, as for the bilayer
domain. These values for the elastic parameters lead to the invagination length ( ci 20 nm.

For
a

monolayer domain, the lipid composition in both monolayers is different, and the bilayer
membrane

can
have a finite spontaneous curvature Cap # 0. This spontaneous curvature

depends on the shape of the molecules and thus cannot be estimated in general. A rough
idea about its magnitude

can
be obtained by comparison with surfactant mixtures in water

which spontaneously form
a dispersion of vesicles in full chemical equilibrium. For example,

mixtures of two single-chained surfactants with oppositely charged head groups spontaneously
form vesicles with

a spontaneous curvature radius l~p
=

I /Csp which varies from 30 to 80 nm

depending
on

the concentration of the surfactants [31]. If one assumes that these values also

apply to a
monolayer domain in

a
lipid bilayer (for which the exchange of molecules with the

surrounding aqueous medium is extremely slow), one
finds from (2.12) and ( ci 20 nm that the

bud radius >Y[~ =
L°/2 varies from 16 to 28 nm. These length scales and the corresponding

time scales
are

also displayed in table I.

What is the lateral tension, Z
=

Zcb, across the neck of the complete bud? It turns out that

in all cases
discussed here this tension is primarily determined by the first term in (3.6), I-e-,

that Z ci
a/Ncb with Ncb Ci amem flf 4 nm. Using the above estimates for the line tension a,

one finds that Zcb is of the order of10~~ J /m~ for the bilayer membranes. It is important to

note that this lateral tension is comparable to the tension of rupture, Zmax, for lipid bilayers
which typically lies in the range (1- 5) x

10~~ J /m~ [30]. Thus, for lipid bilayers, the lateral

tension exerted by the bud
can

be sufficient to break the neck of the complete bud and thus

to pinch off the budding vesicles.

5. Budding of biomembranes.

As mentioned, budding of biomembranes represents the first step in the production of vesicles

for intracellular transport. Two pathways are currently distinguished: (I) budding domains
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which are coated by a
network of clathrin molecules; and (it) budding domains which

are not

coated by such
a

network. In the latter case, the domain may have
a coat which does not

contain clathrin
or

it may have no coat at all. It is believed that clathrin-coated domains

or
pits provide the major pathway for endocytosis of the plasma membrane but that non-

clathrin-coated domains
are

involved in most exocytic processes of internal membranes ill].
In general, the main function for clathrin and other coating proteins seems to be that it

facilitates the uptake ofreceptors and ligands: there is "life without clathrin"
even

though it is

less efficient ill]. It seems
plausible to assume that the evolution of biomembranes progressed

from budding without
a

network ofcoating proteins towards budding with such
a

network. In

the absence of coating proteins, the budding mechanism of biomembranes should be induced

by the formation of the receptor domain and thus should be governed by the interplay of the

bending energy and the line tension of this domain as discussed above. How is this budding
mechanism affected by the presence of coating proteins?

One important class of budding processes which involve a coat of assembled proteins is

receptor-mediated endocytosis of the plasma membrane via clathrin-coated pits
or

domains.

It is now generally established that many receptors which diffuse within the plasma membrane

aggregate into such domains [10, iii. Many of these receptors participate irrespective of

whether they have bound their specific ligands. In addition, different kinds of receptors cluster

in the
same

coated pit.

The elementary building blocks of the coat are receptor molecules with clathrin trimers

(or triskelions) attached to receptor tails via assembly polypeptides. The clathrin molecule

has three kinked legs extending from a central vertex. In aqueous solution, these trimers

spontaneously assemble into polyhedral cages; at pH 6.2, these polyhedra consist of140 clathrin

molecules (which form 12 pentagons and 60 hexagons) and have
a curvature radius, lt~j ci

60 nm.
Similar cages have been identified in various tissues: three distinct polyhedra with

curvature radius l~cj ci 38, 45, and 60 nm
consisting of60, 82, and 140 clathrin molecules have

been found in brain, liver and fibroblast cells, respectively [32].
The binding energy of the clathrin molecules within the polymerized network

can
be esti-

mated from the depolymerization process which is regulated in the cell by special uncoating
proteins. It seems that these proteins need to hydrolyse three ATP molecules in order to

detach
one

clathrin trimer from the polymerized coat [29]. Each hydrolysed ATP molecule

releases
a

free energy AGATP Ci 8 x
10~~° J ci 20kBT at room temperature. Thus, within the

polymerized network, the binding energy per dathrin molecule seems to be ci 60kBT.
Originally, it was thought that the clathrin molecules adsorb onto the protein-lipid bilayer

and first form
a

planar hexagonal network. However, because of the large binding energy

involved in the polymerization, it would cost a lot of energy to disassemble and reassemble

this network during the subsequent budding process. Thus, it seems
plausible to assume that

the molecules polymerize only
once

during the budding process and then form a
network with

curvature C ci Ccl.

If the building blocks had an appropriate conical shape which leads to a spontaneous curva-

ture Cap =
Ccj, the polymerization could proceed at the growing edge of the domain. In this

case, the domain starts offfrom
a

nucleated cluster with curvature C ci Ccl, and each building
block is incorporated into the polymerized network

as
it is attached to the growing domain.

Since different receptors are
assemblied within the

same
coated pit, the conical shape and the

resulting spontaneous curvature must arise from the geometry of the receptor tails with the

attached clathrin molecules (and assembly polypeptides).
On the other hand, the aggregating molecules could also have a spontaneous curvature,

Cap, which is small compared to the curvature, Ccj, ofthe polymerized clathrin cage provided
the domain stays initially fluid. In the latter case, the budding of the domain would first be
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governed by the interplay of bending energy and line tension, and the polymerisation would

only set in during the late stages of the budding process when the curvature of the budding
domain attains the value C ci Ccj.

One should note that the two possible modes of polymerization just described
are

qualita-
tively different. If the building blocks are polymerized at the edge of the growing domain, the

curvature of the domain will stay constant during the whole budding process. In contrast, if

the polymerization is postponed until the curvature of the bud is compatible with the cur-

vature of the clathrin cage, the domain curvature increases continuously during the budding

process. For the endocytosis of large hen oocytes, electron microscopy
seems to support the

latter possibility since it indicates such
a continuous increase of the domain curvature [8].

As long as the clathrin molecules form
a

polymerized network, the curvature of the bud

remains fixed. In this way, the polymerization acts to select
a

certain curvature and thus

to quantize the size of the budding vesicle. This could be advantageous for the subsequent
transport and sorting of budded vesicles. In addition, the polymerized network also acts to

stabilize the bud against the effective lateral tension exerted by competing buds. Indeed, in

the absence of the polymerized coat, an almost complete bud could be flattened out again by
this tension.

6. Summary and outlook.

In summary, a
simple theoretical model has been introduced for domain-induced budding of

membranes. This model predicts that domains should always undergo budding
as soon as

they
have grown up to a certain limiting size L° as

given by (2.12). This shape transformation is

primarily driven by the line tension of the domain edge.

For bilayer membranes composed of lipid mixtures, the model makes definite predictions
about the size of the bud and about the time scales involved in the budding process, see

table I. These theoretical predictions are accessible to experiments. For example, one
could

study vesicles
or

multilayer suspensions composed of phosholipids and cholesterol. Initially,
the concentration and the temperature are chosen in such

a way that the bilayer membranes

are
in

one
of the two fluid phases and thus

are
laterally homogeneous. Then, a temperature

quench is performed into the two-phase region where the two fluid phases can coexist. This

will lead to the nucleation of intramembrane domains which should then undergo the budding

process described here.

As discussed in section 5, the same mechanism should apply to the budding of non-coated

domains in biomembranes. In fact, this mechanism could even be effective in the presence

of coating proteins such
as

clathrin. In the latter case, the budding domain would stay un-

polymerized until the curvature of the bud has attained
a

value which is compatible with the

curvature of the polyhedral clathrin cage.

The simple model studied here has some obvious limitations. For example,it does not give
an

accurate description for the shape of the membrane close to the edge of the bud which should

join smoothly with the larger membrane surface. This can be improved in a more refined

theory in which the shape of the membrane is determined by
a

minimization procedure. Such

an
approach

can
also be used to incorporate the effect of global volumelarea constraints on

domain-induced budding of vesicles. In addition,
one may study the effects of the Gaussian

curvature term. Work
on

such
a

refined theory is in progress.
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Appendix A. Time scales for transformation step.

Consider
a segment of

area
Ai

"
7rL( of the membrane matrix surrounding the domain. In

order to pull out the area 6Ai from this segment, the bud has to perform a certain amount

of work, 6Fi In this appendix, this work is first determined for the process in which the
area

is pulled out by stretching the surrounding membrane, and secondly for the case in which the

area
is pulled out of the surrounding membrane by flattening its undulations. In both cases,

6Fi decreases monotonically with increasing size Li of the segment.

The maximal work which the transforming bud with L
=

L°
as

in (2,12)
can

do is given by
6E°. Obviously, one must have 6Fi Ql 6E°. This implies

a
certain minimal value for the size

Li of the membrane segment which is necessarily perturbed by the transforming bud. From

this minimal size Li, one can estimate the time scale for the transformation step.

This minimal value for Li follows from the two relations

6Ai
"

7rN~ and 6Fi
"

6E°
=

27rK 6t° (Al)

Throughout this section, N denotes the neck radius N[ of the incomplete bud as given by
(2.14).

Al. STRETCHING OF SURROUNDING MATRIX.- The work necessary to stretch
a

membrane

segment of
area

Ai by the amount bAi is given by

bfi
=

Al jf(A(bAi/Ai)~ (A2)

where f(A is the area compressibility modulus which is
an energy per unit area. If one now

uses the relation (Al),
one obtains the minimal segment size

Li
"

(f(A/4K bt°)~/~N~ (A3)

Using the general relation f(A
"

c«la$~~ for the area compressibility modulus where
c

is a

dimensionless coefficient,
one obtains

Li
"

(c/4 bt°)~/~N~ lamem (A4)

How long does it take to stretch
a

membrane segment of s12e Li? The sound waves within the

membrane
are propagating modes with velocity

rw
f(A/pA, where pA is the mass density per

unit area. Thus, it takes
a

time of the order of

is
rw

(pA/f(A)~~~Li
"

(pA/4« 6E°)~/~N~ (AS)

with N
= N~[ as

given by (2.14) in order to pull in the
area

of the neck by stretching the

surrounding membrane.
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A2. FLATTENING OF SURROUNDING MATRIX.- The undulation modes of the membrane

segment can
be described in terms of the variable £ which

measures
the local displacement of

the membrane from
a

flat reference state. A membrane segment of area Al
"

7rL( contains

ci
Aila$~~ undulation modes, I, which

are
the Fourier components of the displacement field

£. The probability to find
a

certain configuration of the displacement field is given by the

Boltzmann factor, exp[-7i(t) /T], with the effective Hamiltonian

7il£1
=

/ )
)(Zq~ + «q~) li(q l~ (A6)

The two parameters Z and
« are

the lateral tension and the bending rigidity, respectively.
Starting from this model,

one can
calculate the

excess area AAI stored in the undulations.

As
a

result,
one

obtains [34]

~~l (I) ~
~~

ii'l ~ ~$ax
~~)

Al 87r« Eli + q$~~

where qmm and qmax are
appropriate spherical cutoffs for the absolute value, q, of the

wavevec-

tor: qm,n < q < qm~, The
area

pulled out by the lateral tension Z is 6Ai
"

AA1(0) AAI(Z).
It then follows from (A7) that

@ i~~ lit) ~ fi
~~~~

GS
j£11(~ + ~l'~ ~~Jin)

where the asymptotic equality holds for Eli < q$ax.
As area is pulled out by the lateral tension, the free energy of the membrane segment changes

according to

6Fi
"

Fi (Z) Fi (0)

m Ai(T/2)
/ fi

£n(i + y /,~2~
(A9)

(2~r)

in the limit of large segment area Al An asymptotic expansion of the integral in (A9) leads

to

6Fi
=

Al (TZ /87r«) -£n(L/K q$~~) + l + O(Z /K q$~~) (A10)

In the latter expression, the lateral tension Z may be expressed in terms of the
area

difference

6Ai by inverting the relation (A8). It is convenient to choose the cutoffs qmax =
2@lamem

and qmjn =
2@/Li with Al

"
xL(

as before. As
a

result,
one

obtains the excess free energy

6F~ j
~T7ry(-tn(y/ysc) + I (All)

with

y e exp
(~) ~j~ (A12)

1

and ysc e Lilamem which applies
as

long
as y « ysc.

In order to determine the minimal value for Li, one
has to insert the relations 6Fi

"
AE°

and 6Ai
"

7rN~ into (All) and (A12). In the limit of small y/ysc,
one then obtains the

asymptotic behavior

Li * (87rK/Ttn(1 + 2 6E°/7rT)]~/~N (A13)
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Note that this value for Li has only
a

weak logarithmic dependence
on

6E°
=

27rK 6t°. Apart
from this logarithmic factor, the behavior as given by (A13)

can
also be obtained directly from

(A7) or (A8) with AAI Ci
7rN~

or
6Ai

"
7rN~ provided one ignored the logarithmic factors in

the latter equations.
How long does it take to flatten

a
membrane segment of size Li? The undulations of

a
fluid

membrane are
overdamped modes which have

a relaxation time
~J

q/«q~ where q is the (dy-
namic) viscosity of the aqueous solution surrounding the membrane [35]. The parameter q has

the units of time x energy /volume. Therefore, the perturbation induced by the transforming
bud will spread over the membrane segment of size Li in the time

tf
~J

qL(/«
rw

(87r)~/~ q«~/~ N~/T~/~ (A14)

where N denotes the neck radius N
=

N;[ of the incomplete bud and the logarithmic factor

in (A13) has been omitted.
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