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Abstract. We consider the mean square end-to-end distance of a long chain immersed in a

monodisperse, concentrated solution of shorter, chemically identical chains. In contrast with the

earlier work of Flory, no simplifying assumption on the wave vector dependence of the effective

potential between segments is made. In order to obtain a closed form expression for the dimension

of the long chain, we first derive a general expression for the mean square end-to-end distance of a

flexible chain with arbitrary two-body interactions using the Edwards-Singh method.

1. Introduction.

In dilute solutions with a good solvent, (nonoverlapping) polymer chains are swollen to a size

R N~'~ (N being the number of segments per chain) [I ]. What happens if we increase the

concentration and reach a concentrated regime ? It was argued by Flory [2] a long time ago that

in (monodisperse) concentrated solutions or melts the coils must be Gaussian (R N "~) : each

chain is no more repelled by itself than by all the others around it and so has no preference to

swell. This conjecture has been confirmed theoretically by Edwards [3] who established the

screening of the excluded Volume interaction as the polymer concentration is increased.

Consider a dense solution (monomer concentration cl of chains with a bare excluded volume

interaction between any two segments (intra and intermolecular interaction) of the type

u~~~~ (r )/k~ T
=

u 3 (r )

(*) On leave from Laboratoire de la Matidre Condensde, Collbge de France, 75231 Paris Cedex 05,

France.
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Using the Gaussian approximation for concentration fluctuations, Edwards showed [3] that the

effective potential u(r) between two monomers on a single polymer chain is given by

u(r)/k~ T
=

u13 (r) (4 vi ~ r)~ exp (- r/f )1 (2)

where f is the Edwards screening length

I-2
=

12 cur-2 (3)

and I is the step length. In addition to the strong repulsive part (u3 (r )) of very short interaction

range, the effective potential (2) contains a weak attractive part u (4 arf2 r)~ exp (- r/f ))

of interaction range f [4].

As a consequence of the screening of the excluded volume interaction, the conformation of

an individual chain becomes Gaussian [3]

(R~)
=

Ni~ (1 +
~~ ~) (4)

vi

For a reason that will become apparent below, it is important to notice that the expression (2)
for the effective potential is an approximation valid only at length scales smaller than the radius

of gyration R~
=

iN "~/ Qi. This is more easily seen in terms of k (k ), the Fourier transform of

u(r ). Within the framework of the Gaussian, or random phase approximation [4] one has (see
Fig. I, curve (a))

k(k)/k~ T
=

~ (5)
+ ucgo(k ; N

where the Debye function go(k N is the stricture factor for the Gaussian chain [4] :

U(kj/kBT

v jai

<hi

I/cN

I k Fig

Fig. I.-a) Schematic representation of the Fourier transform R(k~/keT of the effective potential

between segments in a concentrated Solution (Eq. (5)). b) The approximate potential used in the classical

approach of Flory.
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Equation (2) corresponds to the use of the asymptotic forrn go (k ; N
w

2 NJ (k~ R( (kR~ » ) :

R(k)/k~ T= vii ~

~

(7)
+ k f

Thus the behavior of equation (7) departs from that of the more accurate answer (5) for

k
~

Rj '. In particular, while equation (7) goes to zero with vanishing k, the correct answer (5)

does not :

(8)jjfl R(k)'kB T
" $

(where we have neglected I compared with ucN). The distinction between equations (5) and

(7) is irrelevant as long as one considers a monodisperse solution (since in that case the only
length scales of interest are smaller than R~). However, the difference becomes important in

polydisperse situations (see below).

In this paper we consider the statistical properties of a long chain (degree of polymerization
Ni) immersed in a monodisperse melt of shorter, chemically identical chains (degree of

polymerization fro (') [5]. If N
j =

N, we know that the chain is Gaussian. On the other hand, if

Nj is much greater than N, the chain sees the matrix of short chains as a good solvent and is

swollen. Our purpose is to describe the crossover between these two limits.

The classical approach to this problem is due to Flory [2]. More recently de Gennes has

considered the case of a long chain immersed in a semi-dilute solution of shorter, chemically
identical chains [6]. In the Flory approach, the free energy of the long chain is written as

(ignoring numerical factors of order unity)

F i~ N1
~

R~
(9)

kT~ N

~
i~Nj

The first terra of equation (9) is a repulsive terra due to the screened excluded volume

interaction. The second terra is an elastic deforrnation energy (i~ N
j

being the ideal chain mean

squared end-to-end distance, R(). From equation (9) we can define a dimensionless parameter

t which tells us whether the chain is ideal or not :

f3N( N('~
~~fif ~3~ fit

~~~~

o

(I) if Nj «N~, the perturbation parameter ( is small and the chain is ideal (R mRo)

(it) if Ni »N~, the chain is swollen.

The criterion Ni %N~ is usually refereed to as the Flory criterion. For interrnediate

f values the behavior of the chain may be described by the interpolation forrnula [2]

(11)~5
~y

3 coast ~

where «
is the expansion factor :

«~m (R~) (i~Nj)~~

(1) We will in fact consider a slightly more general problem, where instead of a melt, we have a dense

Solution with a concentration c greater than the critical concentration c * *
=

vii ~ [4]. The case of a melt

corresponds to the limit c =

lli~,
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The expressions (9) and (11) deserve some comments, They implicitly assume that the

interaction can be approximated by a delta function of strength i~/N. In other words, the

function k(k) (Eq. (5)) is replaced by a constant equals to its value at the origin (Eq. (8)) [6]

see figure I. One may wonder how good this approximation is to describe the statistical

properties of the chain and in particular the crossover regime between the ideal and the swollen

state. Our aim in this paper is to investigate these questions in detail. In order to do so, we will

need first to derive a closed forrn (analogous to ( II )) for the general case of a nondelta function

potential. The paper is organized as follows : the conventional two-parameter model for a

chain with excluded volume interaction is reviewed in section 2.I. In section 2.2 we consider

the case of a nondelta potential. The configuration of a long chain immersed in a

(monodisperse) dense solution of shorter, chemically identical chains is then studied in

section 3. The paper ends with a discussion.

2. Chain with excluded volume interaction.

The influence of the excluded volume interaction on the statistical properties of macromol-

ecules has been one of the central problems in the field of polymer solution theory since the

original studies of Kuhn [7] and Flory [2]. In section 2.I we briefly summarize the conven-

tional two-parameter model. In this model, the interaction between segments is represented by

a delta function pseudopotential. In addition to the familiar perturbation approach, we also

present the Edward-Singh method to obtain a closed forrn for the chain dimension. We then

generalize these methods to the case of an arbitrary potential, keeping in mind the nondelta

potential (2).

2.I THE Two-PARAMETER MODEL. One of the simplest model used to describe a linear

flexible chain (of contour length L) with excluded volume interaction is the two-parameter
model [8, 9]. The chain is considered to be a space curve r (s ), where s is an arc length variable

(0
w s w L). The random walk constraint is represented by a Wiener measure

In expression (12), I is the step length, so
that

Lit = N is

The
xcluded interaction between two

olymer
egments at a apart is

odeled
by a

delta

~
L L

ds ds'3[r(s)-r(s')] (13)
2

0

0

where w m

vi ~~. In what follows we shall assume w ~
0 (repulsive interaction).

The probability distribution fl~ [R, L] for the end-to-end vector R is thus given by

~ ~~ ~~ ~

ll~10~
~ ~~~ ~~~

~ II ~~ ~i~ ~ i II ~~ II ~~' ~ ~~~~~ ~
~'~~~

(14)

The expression D [r] denotes the summation over all possible paths between the end of the

chain r (0 which is taken to be the origin and r (L)
=

R. This model is called the two parameter
model since it includes only two parameters I, which represents the short range interaction,
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and w, which represents the long range interaction (the terrns «short» and
«

long
»

representing the distance along the chain) [4].

The mean square end-to-end distance of the chain is given by

(R~)
=

ldR R~ fl~ [R, L if dR fl~ [R, L] (15)

We now review two theoretical approaches for the properties of the chain described by
equation (14).

2. I. I Perturbation calculation. Perturbation theory is made by expanding the distribution

function (14) in terrns of w. Hence (R~)
can be calculated as a power series of w. This

method initiated by Fixman [10] has been recently taken to as many as six terrns by
Muthukumar and Nickel [I Ii. The third order perturbation result is

(R~)
=

Li I + z 2.075 z~
+ 6.297 z~ (16)

where the dimensionless interaction parameter z is defined by

z =

(3/2
ar )~'~ wL~'~ I- ~'~ ( I 7)

Since z is proportional to
/, equation (16) has a very limited range of validity. It has been

shown that the series (16) is asymptotic, and suffers from an explosive increase in its

coefficients [12].

2.1.2 Uniform expansion model. In order to improve the difficulty of the perturbation
calculation, Edwards and Singh [13] have derived a simple Scheme of calculation. In this

scheme, it is assumed that the expansion of the chain is represented by the expansion of the

step length, I-e-, that the distribution of R can be approximated by

where I' is an expanded bond length still to be determined. We briefly summarize the method.

The perturbation theory provides

~I/2
(1l~)

=

Li I + K
~ (19)
i~'~

with
K m

(4/3) (3/2ar)~'~ Introducing the effective step length I' such that

(R~)
m

Li' (20)

and expanding iii around iii'
so that

-I+ll~l
l~

+~'(li II

I=i~l' -i~ll-I +i~~ll-I
)~ (21)

equation (19) becomes

<R~>
=

Li ii + ~jil'~ I i I
+ (22)
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Since I' is defined by equation (20), the first order correction (the square bracket) must vanish.

This condition gives

Next, we define an expansion factor
«

in the usual way :

" " Li ~~~~

Equation (20) gives «~
=

i'li,
so that equation (23) is written as

«~- «~= ~z.
(25)

For small z, this theory agrees with the first order perturbation result (Eq. (19)). On the other

hand, for large z the theory gives (R~) L~'~ in agreement with the original Flory theory [14].

Thus the theory gives an interpolation between the two cases. The closed forrn (25) is called

the modified Flory forrnula.

It can be shown that the structure of the equation (25) is stable to all order in perturbation
about I' [12]. For the limitations of the uniforrn expansion model, see reference [4].

2.2 A MORE GENERAL MODEL. In the two-parameter model (see preceding section) the

interaction between two segments is modeled by a delta function of appropriate strength. In

this section we generalize the model for arbitrary pair interactions. The probability distribution

fl~[R, L] for the end-to-end vector R is then given by

r<L>=R ~~ L ~~~~~ 2
~' ~~ ~ ~ r<0>

0

~ ~~ ~~~ "
0

~~ ~

j L L

dS
S'W[r(S)-r(S'))~

(26)
~

0 0

where k~ Ti~ W(r) is the interaction energy between two segments at a distance r apart (in

what follows we shall assume that W(r) depends only on the magnitude of the vector r).

2.2.I Perturbation calculation. The first order perturbation calculation of (R~) (Eq. (15))

is rather straightforward and gives

~
~l/2 + oJ ~

~~~~ ~~
~

f3/2

~
~~ ~ ~~ ~ ~/ fL ~ ~~~~

where #(k) is the 3d Fourier transform of W(r)

w(k)
=

dr W(r) exp (- ik r (28)

and
K m

(4/3) (3/2ar)~'~ The function h(u) is defined by
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and satisfies

+ o~

du h(u)
=

(30)

o

Figure 2 shows the dependence of h(u) vs. u.

hjuj

o

0.

U

Fig, 2. The function h[u] defined by equation (29).

We shall now examine some consequences of the expression (27). If the interaction between

two segments is modeled by a delta function (I,e. W(r)
=

w3(r)) then #~k)
= w, and

equation (27) becomes (see Eq. (30))

~~l/2
(R~)

=

Li I + K j
(31)

i '

in agreement with the familiar result of the two parameter model (Eq. (19)). In the general case

of a non-delta interaction, the first order correction depends on the shape of the potential (see

Eq. (27)). However, in the particular limit of very long chains (L
~ + oa ), and provided that

#/(k
=

0) exists [15], the first order correction can be approximated as

and one recovers an equation similar to equation (31) with w simply replaced by
#(k=0).

2.2.2 Uniform expansion model. We now use the Edwards-Singh method to obtained a

closed forrn expression for the chain dimension. Starting from the perturbation result (31) and

expanding lli around lli' (Eq. (21)) we obtain

<R~> -Li~
i

+ jl)ll~
j[°'dub(u)'(jAu) i~l ~-l II +. (33)

JOURNAL DE PHYS'OUE II T 2, N' 10, OCTOBER 1992 68
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Since I' is defined by equation (20) the first order correction must vanish. This condition gives

illl~ II °~

dU h (U) W I£U
-

I i i
(34)

Introducing the expansion factor
a

(Eq. (24)) we obtain

~5
~

3
4 3 ~'~ L~'~

j~
~

~~ ~ ~~~ fl/ l j 6
~) ~~~~

3 2~T f3/2
~ ~y

fL

The closed forrn (35) is a generalization of the modified Flory forrnula (Eq. (25)) to the case of

an arbitrary two-body interaction. For a given forrn of the potential W(k), equation (35) gives
the value of the expansion factor

« as a function of the chain length L. We shall now examine

some consequences of this expression :

(I) If the interaction between two segments is modeled by a delta function (I.e.

W(r)
= w 3 (r)) then the right hand side of equation (35) is independent of

«
and we have

~y
5

~
3

4 3 3/2 ~I/2

~ ~" 13'2
~ (36)

(I,e. we recover the usual modified Flory forrnula, Eq. (25)).
(ii) In the general case of a non-delta interaction, the right hand side of equation (35)

depends on a.

If the effect of the excluded volume interaction is weak, a is close to I and the

expression (35) agrees with the result of the first order perturbation expansion (27).

On the other hand, in the limit of large a
values, one can evaluate the right hand side of

equation (35) as

4 3 312 L"2 #(k
=

0), (37)
3 2ar f3'2

provided that W(k
=

0 ) [15] exists (for a counterexample see Sect. 4. I). In this limit the mean

square end-to-end distance is given by

(R~)
m

L~'~ i~'~ (#(k
=

0 )) ~'~ (38)

in agreement with the classical result (R~) L~'~ [14].

The intermediate regime is described by the full expression (35).

3. Size of a single chain.

Having derived a closed forrn for the expansion factor in the general case of a non-delta

potential, we can now retum to a deeper discussion of the conforrnation of a long chain

(contour length Lj) immersed in a (monodisperse) dense solution of shorter, chemically
identical chains (contour length L).

The effective interaction between any two segments is given by (see Sect. I)

k(kyk~ T
=

)~ (39)
+

wi

~o(k

; L)

where the function go(k L) is the structure factor for the Gaussian chain (Eq. (6)). For
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convenience of calculation, we approximate go(k L) by [4]

go (k ; L
=

~(
~~

~~~~

l + k ~

The error of this equation is less than 15fG for the entire region of k[4]. Inserting
equations (39) and (40) into equation (35) we obtain the closed forrn

a~
a

~
=

~ ~ ~~~ (Lilt )"~ (wli) F 2 a
~(Lj/L) 2

a
~X(Lj/L)] (41)

where the function F (x ; y) is defined by

+ oJ ~2 ~
~2

F (x y m
du h (u

~ ~
(42)

0 u + y

An explicit expression of F (x ; y) is given in the Appendix. The parameter X is defined by :

xm i +
(wit) (c13) (Lli)

=

(wit) (c13) (Lit) (43)

(for convenience of calculation, we assume that the size of the matrix chains is large enough
for the above indicated approximation to be valid when this is not case, one has simply to use

the full definition of X).

In the limit
a ~ + oa, the function F 2

a
~(Lj/L) +/2

a
~(wli ) (ci~) (Lilt )] becomes

independent of
a

and tends to

rim F
j~

+~/2 a
~(wli) (c13) (Lilt )j

=

(wit ) (c13) (ilL ). (44)

Thus, if one replaces the r-h-s- of equation (41) by its asymptotic value while keeping the I-h-s-

unchanged, one obtains

~ ~
~ 3 3/2 (L

j
Ii

)~
'~

a a =
(45)

3 2" (Lli) (c13)

which corresponds to the Flory results (Eq. II)). We can therefore anticipate that the Flory
theory will describe correctly the high swelling regime (large values of a), but will not

necessary give a good description of the crossover regime.

3.I NUMERICAL RESULTS. In what follows we shall solve numerically equations (41) and

(45) and compare the results obtained.

Figure 3 shows the dependence of
a

~
vs. Lj for a given length L of the matrix chains. The

figure compares the result obtained by solving equation (41) to the corresponding result

obtained from the Flory theory (Eq. (45)). The main modification is an increase in the

expansion factor of the large chain. The reason for this increase can be traced back to the

a
dependence of the r-h-s- of equation (41); the r-h-s- is a decreasing function of

a, so that the crossover with the I-h-s- (an increasing function of
a occurs for a larger Value of

a.
Figure 3 indicates that the two curves(a) and (b) converge for large Values of

a
,

as expected.

3.2 DISCUSSION. In the previous section the closed form (41) has been solved numerically,
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2

1

&~
t$

-
1

~i

la)

(b)

o

9 13 17 21 25 29

Log[ Li Ill

Fig. 3. The Log-Log plot of
a

~
vs.

Ljli for L
=

10~ I, wi~ '
=

and cl 3
= ; a) plot of equation (41),

b) plot of the Flory prediction equation (45).

using the full definition of the function F (x y) (see Appendix). In order to obtain a more

tractable closed expression for a, one can approximate the function Fj 2 a~(Lj/L);

~/2 a~(wli) (ci~) (Lilt )] by

~
~~' ~~

~ ~~~~~~ ~~~~~ ~~~~~~~ ~ (wli) (ci~) (ilL) ~ P J(wli) (ci~) ~~~~

Equation (40) then becomes

~ ~ ~~~~~

5 ~
4 3 3'2 (Lj Ii )"~ l j2 gr

(wli )
~~~ ~

~ ~" (Lit (ci~) ~
"

(ci~)

This (approximate) expression indicates that the expansion factor
a depends on L and

Lj only through the ratio L('~/L.

Equation (47) should be compared to the Flory result equation (45). For large Values of

a, the second term in the square bracket of the r-h- s. of equation (47) can safely be neglected.
However, in the crossover regime (a of order unity), both terms in the square bracket are

important and equation (47) gives rise to an expansion factor larger than the one predicted by
equation (45).

Figure 4 represents the variations of the square of the expansion factor
a

~
as a function of the

ratio (Ljli)"~/(Lli) for L =10~i, ui~~
=

I and ci~
=

I. The curve (a) corresponds to

equation (47) while the curve (b) corresponds to the Flory result equation (45). For large
values of (Ljli)"~/(Lli), the two curves (a) and (b) are both asymptotic to the curve

a
~

=

[6/
ar

"~ (Lilt )"~/ (Lit ]~'~ At the other end, for L
j =

L, equation (47) gives
a

~
=

l .495

while equation (45) gives a lower value
a

~
=

l.004. For both curves (a) and (b) the crossover

regime is rather broad. If one tries to define a crossover criterion as the intersection of the
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Log( tx~l

1 '

/

(hi /
F

~~ ~~ ~ ~ Logi( Li )"2/Ll

Fig. 4. The Log-Log plot of a~
vs.

(Lilt )"~/ (Lit ) for L
=

10~ I, wi~ '
=

I and ci~
=

I a) plot of

equation (45), b) plot of the Flory prediction equation (44). The points E and F correspond to the

crossover between the asymptotic behaviors (see text).

asymptotic behaviors (see points E and F in Fig. 4), one obtains (Lilt % 38.652 (Lit )~ for

curve (a), and (Lilt) %5.176 (L/f)~ for curve (b). Therefore the usual Flory criterion

(Lilt ) % (Lli)~ retains it significance as far as the scaling laws are concemed, but the actual

numerical factor could be quite large.

4. Discussion.

1. One aspect of this paper is the derivation of a closed form expression for the mean square

end-to-end distance of a flexible chain with arbitrary two-body interactions (Eq. (35)). This

expression has been obtained by using the uniform expansion model introduced by Edwards

and Singh in the case of a delta function pseudopotential. These authors have shown that the

structure of equation (45) is stable to all orders of perturbation about f' (Eq. (21)) if one goes

to higher orders, only the numerical coefficient of the r-h-s- of equation (25) is modified. It

would be interesting to investigate whether this remarkable feature is still retained in the case

of an arbitrary interaction.

Note that in addition to the modified Flory forrnula (Eq. (25)), many approximate closed

expressions for a
exist in the literature [16]. However, like equation (25), they generally

assume a delta function pseudopotential.
One might consider using the closed expression equation (35) in the case of long-range

forces. Consider for example the case of a Coulomb potential. For a single linear flexible chain

of contour length L, with a charge density fe (e is the electronic charge) and immersed in a salt

free H-solvent, the interaction energy between two monomers is given by kB T f~ W(r) with

~2
W(r)

=

j (48)

(i~ is the Bjerrum length i~
=

e~/(4 arek~ T) and
e

the solvent dielectric constant). The r-h-s-
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of equation (41) can be easily calculated and we obtain

~
2 8 "~ ~~~~ ~~ ~~

a
~ ~~~~a

~
a " j $ 15'~

or, equivalently,

~
2 8 1/2

L~'~ i~ f~
a a =

(50)
15 3ar f5'2

If the r-h-s- of equation (50) is small, the electrostatic interactions are weak and the chain has

statistics which are nearly Gaussian

~
2 8 1/2

L~'~ i~ f~
" ~

15 3~T f5/2
~ ~~~~

One the other hand, if the r-h- s. of equation (50) is large, the electrostatic interaction dominates

and

~
~ 8 1/2

L~'~ I
~

f~
" ~15 3~T f5/2

~~~~

Neglecting all numerical prefactors, the mean square end-to-end distance is then given by

lR~)
=

(iBf~'i)~'~ L2 (53)

The overall size of the chain is thus proportional to L. Equation (53) is in agreement with the

early work of de Gennes et al. [17].

This agreement in the case of a Coulomb interaction might however be rather fortuitous and

the ability of equation (35) to describe properly the behavior of a self-interacting polymers with

long-range repulsive forces might be questioned. Consider for example the case of a

I/r~ repulsion. According to the variational approach of Bouchaud et al. [18], one expects in

the limit of very long chains R L (with some logarithmic corrections) while equation (35)

predicts R L~'~

2. Another aspect of this work concerns the size of a long chain immersed in a

monodisperse, concentrated solution of shorter, chemically identical chains. Using our general
forrnula (Eq. (35)) as well as the effective potential calculated by Edwards (Eq. (5)) we have

shown that the classical approach of Flory underestimate the swelling of the long chain. This

effect could provide a qualitative explanation for some of the discrepancies between the

experimental results obtained by Kirste and Lehnen using neutron scattering [19] and the Flory
theory (Eq. (45)). We hope to return to this point in a later paper.
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Appendix.

The function F (x ; y) defined by

F(x;y)m lduh(u)~~~~ (Al)~~
~+y
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with

12 + 8 U~ + 2 u~ 12 exp (u~) + 4 u~ exp(u~)
h(u)

=
~ ~ ~

(A2)
ar~'

u exp(u

can be calculated explicitly. One obtains :

x ~

~~ «
ij~

~ ~
~

Y~

~ 15~~~ + Ii + ~j "~ j
+

j~'/2
~

+~~~~~~~~ar"~(
~-l) [I-Erf~y)]exp~y~) (A3)

y~ y

where Erf denotes the error function :

2 Y
Erf ~y)

m
du exp (- u~) (A4)

ar
~'~

o
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