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R4sumd Nous prdsentons un modble simple pour dtudier la diffusion de rayonnement par des

gels polylectrolytes k l'dquilibre de gonflement. Dans la limite d'dcrantage faible oh la longueur
d'dcran de Debye-Hiickel est plus grande que la motile du gel, les interactions 41ectrostatiques
directes sent ndgligeables et le gonflement est dli I la pression osmotique des contreions. La

tension cr44e par cette pression est transmise par les noeuds du gel aux
chaines dlastiques qui

se comportent comme
des chaines isoldes avec une

force ext6rieure appliqude
aux

extr4mitds. Le

facteur de structure du gel est la somme d'une composante gelde due aux hdtdrog4nditds de con-

centration fig4es et d'une composante thermodynamique due aux fluctuations de concentration.

la composante gelde
a un

maximum pour un vecteur d'onde de l'ordre de l'inverse de la maille

du gel et la composante thermodynamique
a un maximum pour un vecteur d'onde beaucoup

plus grand de l'ordre de l'inverse du rayon transverse des chaines. A temps longs, le facteur de

structure dynamique relaxe vers la composante gelde du facteur de structure statique. A foible

vecteur d'onde, la relaxation est diffusive avec un coefficient de diffusion de l'ordre du coefficient

de diffusion de Stokes des blobs de Pincus des chaines dtirdes. Le coefficient de diffusion est

minimal pour un vecteur d'onde de l'ordre de l'inverse du rayon transverse des chaines.

Abstract. We present a simple model for scattering properties of polyelectrolyte gels at

swelling equilibrium. In the weak screening limit where the Debye-Hfickel screening length
is larger than the mesh size of the gel, the direct electrostatic interactions are

negligible and

the swelling is driven by the osmotic pressure of the counterions. The tension created by this

pressure is transmitted through the crosslinks to the elastic char s which behave as isolated

chains with
an

applied force at their end points. The structure fz =tor of the gel can be split
into

a
frozen component due to the average concentration heterogencities and

a
thermodynamic

component due to concentration fluctuations. The frozen component has
a

peak at a wavevector

of the order of the mesh size of the gel, the thermodynamic component has a peak at a
higher

wavevector of the order of the inverse transverse radius of the chains. At infinite times the

dynamic structure factor relaxes towards the frozen component of the static structure factor.

In the limit of small wavevectors the relaxation is diffusive with
a

diffusion constant equal to

the Stokes diffusion constant of the Pincus blobs of the stretched chains. The diffusion constant

shows a minimum at a wavevector of the order of the inverse transverse radius of the chains.
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1 Introduction.

Charged polymer gels often show striking macroscopic properties. Their swelling degree in

water can be
as

high
as 1000 [II and can be monitored by changing the ionic strength;

this makes them good candidates as
superadsorbing materials for many practical applications.

From a more fundamental point of view however, the properties of polyelectrolyte solutions and

gels are not very well understood and the elegant scaling theories that have been successfully
developed for neutral polymer solutions are not easily extended to charged systems. This is

due both to the long range character of the Coulomb interactions and to the effect of the

counterions that insure the electroneutrality.
The equilibrium swelling of neutral polymer gels results from

a competition between the

excluded volume interactions between monomers which tend to swell the gel and the entropic
elasticity of the chains connecting the crosslinks. If the gel is not too heterogeneous, the

conformational properties of the elastic chains are essentially the same as those of isolated

linear polymer chains of the same molecular weight. Many properties of
a

neutral polymer
gel are thus identical to those of a polymer solution where the chains are just on the verge of

overlapping, this property is often referred to as the c* theorem [2].
The properties of polyelectrolyte gels at swelling equilibrium are qualitatively different from

those of polyelectrolyte solutions at the same concentration because of the different role of the

counterions. In polyelectrolyte solutions, the counterions are more or
less uniformly distributed

and contribute to the screening of the electrostatic interactions. At swelling equilibrium, poly-
electrolyte gels

are
in contact with

a
reservoir of solvent but the counterions are confined

inside the volume of the gel. They exert thus
a strong osmotic pressure that tends to swell the

gel. This role of the counterions in the swelling of polyelectrolytes has been recognized very

early in the seminal work of Katchalsky and his coworkers [3,4] who described the swelling
of polyelectrolyte gels as a balance between the elastic energy and the osmotic pressure of

the counterions. In this paper we study theoretically the properties of polyelectrolyte gels at

swelling equilibrium. We first discuss the relative role of the counterion osmotic pressure and

of the direct electrostatic interactions, We then focus on
the weak screening limit where the

counterions play a dominant role and the direct electrostatic interactions can essentially be

neglected. We discuss macroscopic quantities such as the shear modulus and more microscopic
properties such

as
the static structure factor measured in radiation scattering experiments

and the cooperative diffusion constant measured either by quasielastic light scattering or by
studying the swelling kinetics.

The paper is organized as follows: in section I, we present a
simple theory for the equilibrium

swelling of
a

polyelectrolyte gel in
a

theta solvent. The
cases

of
a

salt free solvent and of
a

finite

concentration of added salt are considered. In section 2, we investigate the consequences for the

static properties (shear modulus and static structure factor) of the simple microscopic picture
of the gel that emerges from the results of section I. Dynamical properties are discussed within

the same context in section 3. The paper ends with
a

short discussion and a generalization of

the results to the good solvent case.

2. Equilibrium swel1illg of a polyelectrolyte gel.

The equilibrium swelling of polyelectrolyte gels has been the subject of numerous theoretical

studies (see for example [5, 6] and Refs. therein). In this section,
we

restrict ourselves to a

particularly simple case, namely
a

polyelectrolyte gel immersed in a
theta solvent. The only

interactions are
therefore of coulombic origin. We first consider the hypothetical case of

a
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totally salt-free solvent, then the effect of adding
a

finite concentration of salt to the solvent.

While our treatment does not aim at any originality [3, 4], we
hope by using the theta solvent

condition to free ourselves from some of the complexities that sometimes obscured the physical

content of earlier treatments.

2. I SALT-FREE THETA SOLVENT. We consider a macroscopic polyelectrolyte gel in a
salt-

free solvent: the number of monomers
between crosslinks (I.e. the chain length), the distance

between crosslinks and the fraction of charged
monomers

(bearing
a

charge -e)
are denoted by

N, R and f respectively. We assume throughout that the gel is ideal and does not have any large
heterogeneities,

we
thus ignore the polydispersity of the chains between crosslinks. We also

assume
that the charge fraction f is smaller than the value at which Manning's condensation

[7] takes place, so that the Debye-Hiickel linear screening approximation is valid. The total

number of chains in the sample is Nc; the chains
are strongly stretched

so
that the volume of

the gel is NCR~. The gel is immersed in
a

large volume V of solvent. Finally, the number of

positively charged counter-ions is Q
"

NON f.
In a

first step, we assume that all the counterions are
confined to the volume of the gel. This

is necessary to preserve electroneutrality at a macroscopic level, and can be further justified
using the method decribed in the appendix. Moreover, we also neglect the contribution to the

free energy and the osmotic pressure arising from local charge fluctuations inside the gel. The

equilibrium swelling of the gel is thus determined by the balance between the osmotic pressure

of an ideal gas jf counterions, kBTfc and the elastic pressure due to the stretching of the

chains, ~ kBT~~. Here
c =

N/R~ is the monomer concentration in the gel, and Ro
=

N~/~a
N Ro

is the end-tc-end distance of
an

unstretched chain. This immediatly yields:

R
"

Nf~/~a (1)

This result should be compared with the classical estimate for the size of
a

polyelectrolyte
~2

chain in
a very dilute solution [8], R

+~
N f~/~(£~a~)~/~, where £~ =

is the Bjerrum
4~eoerkBT

length. In both cases, the chains are strongly stretched, R
+~

N. For the gel, however, this

stretching does not explicitly depend on the strength of the coulombic interactions: those only

serve to confine the counterions through the electroneutrality constraint. Note also that if

the fraction of charged monomers f is small, the chains are more
extended in a gel than in

a dilute solution. This is different from the prediction of the c* theorem which for neutral

gels predicts the same
stretching for isolated chains and for the chains of the gel [2]. Taking

into account local charge fluctuations of the counterions within the framework of the Debye-
Hiickel theory [9] (but still considering the polymer as a uniform background) does not alter

our result: the contribution of charge fluctuations to the osmotic pressure is -kBTK~/(24~),
where K =

(4~£~ fc)~/~ is the appropriate inverse Debye screening length [6]. This term is

easily shown to be much smaller than the "ideal gas" contribution kBTfc when equation (I)
is verified. It turns out that the contribution from fluctuations in the local monomer density
also has

a
negligible contribution to the free energy. This effect, however, is more subtle, and

its discussion is postponed to the last paragraph of this section.

The fact that the strength of the electrostatic interaction £~ does not appear in equation (I)

may first appear as a
rather surprising result: the only forces that act on

the polyelectrolyte
chains are coulombic, so

that the stretching necessarily originates from the presence of
a

Ic-

cal electric field. Equation (I) was obtained under the assumption of an electrically neutral

gel. Clearly, this assumption cannot be true everywhere if the gel is swollen. This apparent
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contradiction is resolved if we realize that our reasoning does not exclude the presence of a

narrow nonneutral region localized at the boundary of the gel. The electric fields that cause the

swelling
are

localized in this region, but the contribution of this region to the thermodynamics,
and therefore to the energy balance yielding (I),

can be neglected. Similar situations, where

forces are localized in boundary regions that are neglected when writing the energy balance

equations, are not uncommon in classical electrostatics [10]. The same conclusion
was

also

reached by Pincus [11] in his study of grafted polyelectrolyte layers, and can be further jus-
tified on the basis of the numerical solutions of the Poisson-Boltzmann equation presented in

the appendix.

2.2 THETA SOLVENT WITH ADDED SALT. A finite concentration
n

of monovalent salt is

now
added to the solvent. A Donnan equilibrium [12,13] establishes, in which the electroneu-

trality constraint
on

the gel volume plays the role of a semi-permeable membrane keeping the Q
positive counterions from diffusing away. The salt concentration inside the gel, nin, is therefore

smaller than the nominal salt concentration n. If
we assume n to be larger than the counterion

concentration fc inside the gel (if the reverse
inequality is true, the results of the previous

paragraph obviously apply),
we

find by equating the chemical potential of the salt inside and

outside the gel
a

difference in osmotic pressure:

II~~ II~ut
=

kBT( fc + n;n n)
=

kBTc~ f~/(4n) (2)

This result is most easily obtained by using the ideal gas expressions, p =
2kBTln(n) and

II/kBT
=

2n, for the chemical potential and osmotic pressure of the salt respectively. Remark-

ably, equation (2) remains unchanged if the Debye-Hiickel limiting laws p =
2kBTln(n) K£~

2
and II/kBT

=
2n K~/(24~) (with K~

=
4~£~(2n))

are used instead.

Balancing this osmotic pressure difference against the elastic restoring force
we

obtain [6]:

f2~2 1/5

R
°~

N~~~ (3)
2n

The degree of swelling is reduced compared to the salt-free
case. Note, however, that

as
in the

salt-free case, it does not depend on the strength of the coulombic interactions.

2.3 ELECTROSTATIC INTERACTIONS AND MONOMER DENSITY FLUCTUATIONS. In the

two preceding sections, the charges on the polymer chains
were considered as simply providing

a rigid negative charge background to the positively charged counterions. This would be

justified if both the monomers and the counterions were uniformly distributed throughout
the gel. In general, however, both densities are nonuniform quantities, and their fluctuations

or inhomogeneities contribute to the free energy of the system. We already included the

contribution due to the thermal fluctuations of the ionic density when using the Debye-Hfickel
law for the osmotic pressure of the ions. The effect of this correction

was
found to be negligible

in the salt-free
case

and strictly
zero

in the presence of salt. At the same level of approximation,
however, we must consider the contribution from the inhomogeneities in the

monomer
density.

These inhomogeneities arise as a
result of the presence of fixed crosslinks. It can

be shown

that at the level of the Debye-Hfickel approximation (linear response of the ionic density to

the monomer charge inhomogeneity) the energy associated with an inhomogeneous monomer

density cp(r) is

Einh
=

( / drdr'(Cp(r) C)Uott(r r')(Cp(r')
))

(4)
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where u~~(r) is the Debye-Hfickel screened potential:

u~~ (r)
=

kB T
~~

exp (- Kr) (5)
r

and K~
=

4x£~(2nin + c).
Introducing the Fourier components bcp(q) of bcp(r)

=
cp(r)

c and the structure factor of

the gel

S(q)
=

(
< bcp(q)bcp(-q) > (6)

the value of the inhomogeneity contribution to the free energy can be rewritten as

E;nh/(NNCkBT)
=

f
dqs(q) (~~"

~

(7)
q + K

The properties of S(q) will be discussed in the next section using
a very simplified model. Two

features of this function are already obvious from its definition: first, it must have
a

peak at

q* ci
~, reflecting the network structure of the gel with a meshsize R. Second, S(q*) is at

most
j

order Nf, since the contributions from different chains having random orientations

will add in
an

incoherent way. As the structure factor is strongly peaked, we can
estimate the

integral in equation (7) by approximating it with S(q)
+~

fNq*b(q q*). In this way we ignore
logarithmic prefactors; we obtain:

~inh/(QkBT) t

~f~B
~ ~~~~~~~)

(8)

Let us
first consider the salt-free case: here K~

=
4~£~ fc. Inserting the result of equation (I),

one can check that the contribution from (8) to the swelling pressure is negligible, which
a

posteriori justifies the derivation of equation (I).
When a concentration n > c

of salt is added, two cases must be considered. If KR < I

(weak screening) the contribution of E;nh to the swelling pressure is smaller by a factor (KR)~
than that arising from the Donnan equilibrium, equation (2). The result of equation (3) is still

valid. If KR > I (strong screening), both contributions become of the same order of magnitude.
Therefore equation (3) still applies, but the numerical coefficient is modified compared to the

previous case.

Although the scaling law (3) does not change, it must be realized that the two cases of strong
and weak screening correspond to rather different physical situations. In the latter case, the

swelling is caused only by the counterions osmotic pressure. As in the salt-free case discussed

above, the action of the counterions can
be explained by the existence of electric fields localized

at the gel boundary. Therefore the gel can be described as a network of stretched Gaussian

chains, a picture that
we

shall use in the next section. When KR > I, the contributions to the

gel free energy obtained from equation (4) and by integrating equation (2) can be added to

yield
a

total "electrostatic free energy"

f2
~eiectrcstat>C j

/
~~~~'~p~~~~DH~~ ~'~~P~~'~ ~~~

The properties of the gel are then similar to those of a
semidilute polyelectrolyte solution at the

same concentration. Since the Debye-Hiickel potential is short-ranged, in the limit of high ionic

strength the free energy can be described
as a

usual Flory type excluded volume free energy
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with strength £~K~~. The gel is then similar to an ordinary Flory gel. In an intermediate range
of ionic strength, the electrostatic interactions can contribute to the persistence length of the

chains [14].

3. Static properties of the gel.

3.1 3fODELISATION OF THE MICROSCOPIC STRUCTURE. From now on, we limit ourselves

to the salt-free solvent
case or to the case of added salt in the weak screening limit. In both

cases, the arguments developed in the previous section show that the gel can be described as

a set of stretched Gaussian chains of length R given by equation (I)
or

(3) respectively. The

picture that we adopt is therefore that of a random network of Gaussian chains connecting
the crosslinking points which are separated by an average distance R. Each crosslink of this

network is actually the averaged position of
a

real crosslink. Each chain is subject to a force

F of typical magnitude 3kBT£ and of random direction. This force, transmitted through
a

the crosslinks, creates the elongation R. From the magnitude F of the force we extract the

typical"blob size" f, I.e. the size over which the force only weakly perturbs the usual Gaussian

statistics, and the number of monomers in
a

blob, g:

~ ? (lo)

g =

~a~~

In the absence of added salt f
+~

f~~/~ while at higher ionic strength, f
+~

N~/~(n/ f~)~/~.
Finally, we also introduce the transverse radius Ri of the chain, which characterizes the

lateral extension of the chain in the direction perpendicular to that of the force. Since the

chains are
Gaussian, this transverse radius is not affected by the stretching in the direction of

the force, and we can define it as being the usual radius of gyration:

RI
=

Na~/6 (11)

3.2 SHEAR MODULUS. As a first application of our simple model, we estimate the shear

modulus G of the polyelectrolyte gel. This can be done by assuming that
an homogeneous

deformation is applied to the crosslinking points network. Let 7 be the magnitude of the

displacement gradient. The average increase in chain length caused by the deformation is of

order (7R)~. The cost in elastic energy per unit volume is therefore:

Fej
=

kBT ()) ~~ (12)
a

from which
we

obtain the shear modulus:

~ ~~~ ~i~
j~a2

+~
kBTfc (salt

~e

case) ~~~~

+~
kBT f~c~£~K~~ (with added salt)

The shear modulus scales thus
as

the osmotic pressure that swells the gel (Eq. (2)).
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3. 3 STATIC STRUCTURE FACTOR. In the model described above, the structure factor S(q)
of the gel, defined by equation (6), is the sum of two components: one of these components,
which we will call the 'frozen" component and denote by So(q), reflects the existence of a

non-zero average value of the density Fourier component cp(q), < cp(q) >. This
non zero

value stems from the existence of the crosslinks that restrict the translational motion of the

chains and from the stretching of the chains. The existence of this component has recently
been discussed in the context of neutral gels 16]. The second component, or fluctuating part

°f S(~)> iS Sf(~)
"

(
(< ~P(~)~P(~~) > < ~P(~) >< ~P(~~) >)

c
The general behaviour of So (q) and Sj(q)

can
be infered from rather simple considerations.

In the q -
0 limit, < cp(q) >- 0, the gel appears uniform. This is due to the fact that we study

an
ideal gel, in which

no
heterogeneities at length scales larger than R are present. Thus,

in this limit Sj(q)
=

S(q). Since total charge fluctuations must vanish in this macroscopic
limit, fS(0) must be equal to the small wavevector value of the counterions structure factor.

This yields S(0)
m

I/f in the absence of salt, and (from Eq. (2)) S(0)
ci

f~n/c when salt is

added. When on the other hand qR > I, different chains contribute (as
a first approximation)

independently to the structure factors Sj and So These quantities can thus be computed by
evaluating the contribution of a single Gaussian chain with

one
end fixed and the other subject

to a force F. These contributions to S(q) and S are respectively given by:

j /
dm

f
dn < exp iq.(Rn R) >= NRe (gD (R(((q(~ + 2iF.q/kBT)))

~ ~

(where gD is the Debye function) and by

N N

dm dn < exp I(q.Inn) >< exp I(q.Bm) >
N

One then has to sum the contributions of all the chains, which amounts to take
an average over

a randomly oriented force F. Performing these calculations (and replacing the Debye function

by its Lorentzian approximation 16]) we
finally obtain:

~~~~ qR~~~~ (2(1+ q~Rl/2)) ~~~~

~ ~~~

3Rl
j~~ ~~

i 2COS(1t)exp(-q~Rl) + exp(-2q~Rl)
~~~~~ qRa~

-qR
(qRl )~ + '~~

From these expressions we can extract the scaling behaviour of So(q) and Sj(q) in the region
qR > I. There are three different characteristic lengthscales R, Ri and f in the problem, and

we must thus distinguish between three different regions:
(I) q > f~~

Sj(q)
=

12(qa)~~

~ ~ ~

(16a)
So(q)

"
3~q~ a~ R~

In this region, the fluctuating contribution is the
same as

for
a

usual Gaussian chain, and the

frozen component is essentially negligible in comparison.
(ii) f~~ > q > R[~

~~~

"

~~~~ ~~~~~~~ ~~ ~

~~~~~
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Here the instantaneous structure factor S(q)
m Sj (q) is similar to the structure factor for rods

of length R, and its frozen component is still negligible.
(iii) Rj~ > q > R~~

Sj(q)
=

Nx(qRi)~R~~
=

Nxqf/2

So(q)
"

Nx(qR)~~
=

xfq~~a~~ ~~~~~

In this region, the structure factor is dominated by its frozen component So and is similar to

that of a
rod of length R.

Fig. 1. Schematic representation of the structure factors So (full line) and Sj (dotted line) for

N
=

loo and R
=

sea. The scale of the horizontal axis is logarithmic.

The general shape of So(q) and Sj(q) is sketched in figure I. The behaviour of So(q) in the

region qR < I could only be determined from
a

detailed knowledge of the crosslinking points
network. Here we assumed

a
smooth crossover to the q =

0 limit. In the
same

spirit, and since

using formula (16c) for qR
=

I yields (both with and without added salt) Sj(I/R)
=

f~a~~
The structure factor crosses over smoothly to Sj(0), it is thus natural to assume that Sj is

approximately constant in this region. The most remarkable feature of figure I is the existence

of two peaks for So and Sj at very different positions, q =
I/R and q =

I/Ri respectively. The

resulting S(q), however, is peaked at q =
I/R only

as can
be checked from (16a) and (16b).

The height of the peak in So(q) is N, while the peak in Sj(q) has
a

magnitude N~/~fla.
These results

can
be given

a
simple physical interpretation: each chain is confined to a fixed

cylinder of length R and radius Ri On a length scale larger than Ri, the fluctuations of

the density inside this cylinder are
irrelevant, and one gets for So(q) the structure factor of

a

rod, equation (16c). The relevance of the fluctuations, however, increases as the length scale

approaches Ri This results in an increase of the fluctuating part Sj for qRi < I. When

the length scale I/q becomes smaller than Ri, the chain still has instantaneously a rod-like

configuration. This rod-like aspect, however, is smeared out by the transverse fluctuations as

time evolves, and does not appear anymore in the frozen component of S(q). Therefore Sj

now
behaves as

I/q, and is much larger than So- Finally for q larger than f~~,
we

probe the

correlations inside
a

blob which are by construction Gaussian.
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4. Relaxation of concentration fluctuations.

4. I TWO-FLUIDS MODEL OF COLLECTIVE DIFFUSION. In order to study collective diffu-

sion in the gel in the long wavelength limit, we first
use a

simple "two-fluids model". The

displacement field of the polymer network u(r,t) results from a mechanical balance between

an elastic restoring force and a
viscous drag force exerted by the solvent. The elastic force per

unit volume
can be written as

Gi7~(u(r, t)), where G is an elastic constant which we take equal
to the shear modulus calculated in the previous section. The drag force exerted by a solvent

of viscosity q flowing through a network with a meshsize R is given by the Brinkman equation

[17] and is of order qR~~~"~'~~ Balancing these two terms we obtain
t

~v~~~~~ ~~~ ~

~~-~ou(r,t) ~i~~

and therefore
a

diffusion constant:

D
+~

~~~
+~

~~~
(18)

6xqf

This diffusion constant is the same as that one would obtain by applying the Stokes-Einstein

formula to a blob of size f. Note that D is independent of N in the salt-free case, D
+~

f~/~
and is

a decreasing function of N in the presence of salt, D
+~

N~~/~( f~ In) ~/~

4. 2 WAVEVECTOR DEPENDENT DIFFUSION CONSTANT. The relaxation of density fluctu-

ations at larger wavevectors, is measured through the time dependent structure factor:

S(q>t)
"

(
< CP(q>t)CP(q>0) > (19)

The time dependent structure factor can be split into the frozen component So(q) and
a

component Sj(q,t) due to the thermal fluctuations which relaxes to zero at infinite time:

S(q,t)
=

So(q) + Sj(q,t). The initial relaxation rate r(q) is then defined
as

the logarithmic
derivative of Sj(q,t) at time zero, and characterizes the short-time behaviour. From r(q)

we

can extract a wavevector dependent diffusion coefficient:

D(q)
=

r(q)/q~ (2°)

The relaxation rate r(q)
can be obtained from the knowledge of the static structure factors So

and Sj using the linear response formalism described in [16]. The final formula, which takes

into account hydrodynamic interactions between monomers, reads:

~~~~ ~

w j d~k S(k + q) k~ (k.q)~/q~
~~~~

n (2«)~ SJ (q) k~

This formula is similar to the one obtained for neutral polymer solutions [16]. One differ-

ence
worth noting, however, is the presence of Sj(q) rather than S(q) in the denominator of

equation (21). The origin of this difference is in the expression for the free energy associated

with a deviation bcp(q) of the concentration from its average value. If we adopt the same

Gaussian approximation used in [16], this energy reads in our case kBT~~~~)(~~~
~~

The
f(q)
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structure factor in the numerator of equation (21),
on

the other hand, results from averaging
the hydrodynamic interactions over all monomer pairs, and involves therefore the full structure

factor.

A detailed study of equation (21) using the structure factors computed in section 3 yields
the following predictions:

(6f)~~In(R/f) for q < R~~

6~~D(~)
(2/«)Ri~q-~in(i/qf) for R~~ < q < Ri~

~ ~ =
(22)

~ (2/x) q In(I/qf) for R [~ < q < f~~

3~q/8 for f~~ < q

In the small wavelength limit,
we recover -except for

a
logarithmic correction- the prediction

of the simple twc-fluids model. The logarithmic factor is similar to the one that appears in the

diffusion constant of rods with hydrodynamic interactions [16]. The diffusion constant D(q)
then becomes

a
decreasing function of q in the range R~~ < q < R j~, and reaches

a
minimum

at q +~
R [~. This minimum originates from the corresponding maximum in Sj(q). At larger

wavevectors, r(q) displays a q~ behaviour and is independent of the blob size f. A schematic

representation of the wavevector dependence of D(q) is given in figure 2.

1/R 1/Ri 1/(

Fig. 2. Schematic representation of the wavevector dependent collective diffusion coefficient D(q).
The scale of the horizontal axis is logarithmic.

An alternative way to study the relaxation dynamics
on

short length scales (qR > I) is to

compute the relaxation times of the Rouse modes of a stretched chain. These relaxation times
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were first obtained in [18]. The relaxation time rp of the ~Hth Rouse mode is given by:

~ ~

~0p~~/~ if p > (f/~)~
~~3~

~ Top~~(a/f) if p < (fla)~

where To is a microscopic time and we ignore logarithmic factors. The blob size f appears here

as the length at which a crossover takes place from a Rouse free-draining behaviour at large
length scales to a

Zimm non-draining behaviour at short length scales. The relaxation times

(23)
can

be inserted into the classical formula for the dynamical structure factor of a single
chain [16]. The result, valid for qRi > I and for t < ri> is

s(q, i) =N- i j~ dn j~ dm (exp [- ~~ + ~~.~(~ '~' '~'~~

~~~ ~~ ~~~~
~~~~~ ~~

~~ ~~~~
~~~~~ F ~~~~

where the brackets denote an average over the orientation of the force F. Taking the derivative

with respect to t at t
=

0, and dividing by Sj(q),
one recovers

the result of equation (22) for

f~~ > q > R[~. This derivation makes clear that the q~ dependence of r(q) in this region,
although similar to that of a Zimm chain [16], has

a
completely different physical origin. The

dynamics is that of a Rouse free-draining chain, and the mobility
~~~~'~~

It-o increases as q~.
0t

The q~ law is obtained when dividing by Sj(q)
+~

I/q to obtain the initial decay rate. For

q > f~~,
on the other hand, one probes the correlations inside one blob, and the behaviour is

that of
a

genuine Zimm non-draining chain.

Equation (24) also allows a study of the time dependence of Sj (k, t beyond the initial decay.
Following [16] we

find (for f~~ > q > R [~)

SJ(q,t) Ci S(q)exp (-21r'(q)tl~/~) (25)

where

r'(q)
=

rp~(qa)~fa~~ (26)

The crossover from the single exponential decay to the stretched exponential decay (26) takes

place for t
+~

rofq~~a~~

5. Conclusion.

We have studied the properties of polyelectrolyte gels at swelling equilibrium. When the

meshsize R of the gel is smaller than the Debye-Hfickel screening length, in the weak screening
limit,

we
have shown in agreement with the classical theory that the swelling of the gel is

driven by the osmotic pressure of the counterions. This pressure acts on
the boundary of the

gel and creates a
tension transmitted to the internal chains through the crosslinks. The chains

of the gel behave therefore as isolated chains stretched by
an

external force.

The macroscopic properties of the gel such as the q =
0 limit of the structure factor are then

dominated by the counterions. Both in the absence of added salt and at finite ionic strength,
the shear modulus of the gel is of the order of translational osmotic pressure of the free ions

that swell the gel.
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Due to the connectivity between the chains and the strong stretching of the chains we expect

strong frozen microscopic heterogeneities of the gel concentration. The structure factor of the

gel can be decomposed into a frozen component and
a component due to thermodynamic

fluctuations. The frozen component dominates in the intermediate range of wavevectors and

has
a strong peak at a wavevector of the order of the inverse of the meshsize of the gel. The

thermodynamic contribution to the structure factor dominates at low wavevectors and has a

peak at a larger wavector of the order of the inverse of the perpendicular radius of the chains.

In a static scattering experiment the total structure factor is measured, and the signal should

be dominated by the frozen component. The thermodynamic component relaxes with time

and could be observed in a dynamic scattering experiment. We have discussed the relaxation

in details in section 4. The low q behaviour could be probed by dynamic light scattering and

the high q behaviour using the neutron spin echo technique.
All these results

are
obtained for chains in a theta solvent where the only interactions are

Coulombic. It has been recently emphasized however that interactions of non electrostatic

origin can play an important role in polyelectrolyte problems. In a good solvent the same

description in terms of stretched chains should apply. The non-linear elasticity of the chains

can
be treated using Pincus blob model [18]. The radius jjjhe chains is then given by

R
+~

Nf~/~a in the absence of salt and R
+~

N~/~~
@

with added salt where the

Flory approximation
v =

3/5 has been used for the swelling exponent. The results for the

structure factor and the cooperative diffusion constant can be used in a good solvent whenever

qf < I, the blob size being equal to f
+~

f~~/~ in the absence of salt and f
+~

N~/~~(n/ f~)~/~~
at higher ionic strength. The case of

a poor solvent is
more

subtle and deserves
a more

detailed analysis since the competition between the repulsive electrostatic interactions and the

attrations can lead to a structuration of the solution [19, 20].
Finally, our

model is limited to the weak screening limit and to gels at swelling equilibrium.
In the strong screening regime, KR > I, the swelling is driven by direct electrostatic interactions

and the gel behaves
as a

semidilute polyelectrolyte solution. If the gel is not at swelling
equilibrium but at a higher concentration c, the osmotic pressure of the free ions still dominates

as soon as the radius R
=

(N/c)~/~ is larger than the radius of an isolated chain given R
+~

N f~/~(£~a~)~/~ and the physics remain the
same as for equilibrium gels; if the concentration

is large enough so that the meshsize is smaller than this isolated chain value, electrostatic

interactions become dominant and the gel also behaves as a semidilute solution.
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Appendix.

In this appendix, we present a
numerical solution of the Poisson-Boltzmann equation for a

system made up of
a

negative charge -Qe uniforndy spread in a sphere of radius L (the " gel"
and of Q monovalent positive counterions enclosed in

a
spherical cell of radius d > L. We are

interested in checking the assumption made in section 2.I that the counterions are confined to



N°8 ON THE SCATTERING PROPERTIES OF POLYELECTROLYTE GELS 1543

the region r < L, with
a

uniform density inside this region. Introducing the scaled variables:

~
~ j E%~

~,
Ci>PR~ Al)

R' kBT' "~ Q

where ~l is the electrostatic potential and ci, cp are the charge densities of the ions and of the

" gel" respectively, the Poisson Boltzmann equation can be written:

$
(~i(Z))

"
~(" (EP(Z) ?i(Z))

exp
(-j(z)) (A2)

~_ ~~~
'

4~ fll~ dz' z'2exp (-I(~'))

and the boundary conditions are:

Zi(Z)(z=0
"

0

~~~~~
~~~~~~~z=0 ~

o-a

0.6

0.4

o-z

0
0 1 ~/~ 2 3

Fig. 3. Numerical solution of the Poisson Boltzmann equation for a gel sample of radius L inside

a cell of radius lo0L. Qt~ /R
=

1000. Full line: normalized ionic concentration. Dotted line: electric

field normalized by its maximum value.

For a given value of the two dimensionless parameters Q£~ IL and d/L, the problem de-

fined by equations (A2) and (A3) can easily be solved iteratively, starting for example with

JOURNAL DE PHYS>QUE >t T 2, N' 8, AUGUST >992 57
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a Gaussian distribution of counterions. We are interested here in the limit of a macroscopic

sample, which means that the parameter Q£~ IL is large, of order Nl/~f~/~ if we accept the

result of equation (I). The second parameter d/L is the ratio of the container size to the gel
size. In figure 3, we present the numerical results obtained for 2;(z) when Q£~ IL

=
5000 and

d/R
=

100. The results for d/R
=

1000 or
d/R

=
10 would be essentially undistinguishable

from those presented here. As expected, we find that the counterions are localized inside the

gel (99.8 ill of them are found for
r < L)

,

and that the electrostatic field inside the gel is 0

except at the boundary.
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