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Abstract The dynamics of a
driven interface in

a
disordered medium close to the depinning

threshold is analyzed. By
a functional renormalization group scheme exponents characterizing

the depinning transition are obtained to the first order in
e =

4 D > 0, where D is the

interface dimension. At the transition, the dynamics is superdifusive with a dynamical exponent

z =
2 2e/9 + O(e~), and the interface height difference

over a distance L grows as
Ll with

(
=

e/3 + O(e~). The interface velocity in the moving phase vanishes as (F Fc)~ with

8
=

1 e/9 + O(e~) when the driving force F approaches its threshold value PC-

The driven viscous motion of an interface in
a

medium with random pinning forces is one

of the paradigms of condensed matter physics. This problem arises, e,g., in the domain-wall

motion of
a

magnetically or structurally ordered system with random-bond
or random-field

disorder ill,
or when an interface between two immiscible fluids is pushed through a porous

medium [2]. Closely related problems include impurity pinning in type-II superconductors [3]
and in charge-density-wave (CDW) systems [4]. Despite its importance this problem is largely
unsolved although

a number of attempts have been made in the past (see e.g. [5-10]).
In this paper we focus

on a
simple realization of the problem, the motion of a D-dimensional

interface profile z(x, t) obeying the following equation [5-8],

Here I is the friction (or inverse mobility) coefficient, y is the stiffness constant, and F is the

driving force. The random force q(x, z) is Gaussian distributed with (n)
=

0 and

In(xo> zo)nlxo + x> zo + z)1 =
6~(x)Alz). (2)

We will be mainly concerned with the random-field case where the correlator A(z)
=

A(-z)
is a monotonically decreasing function of

z
for z > 0 and decays rapidly to zero over a

finite
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distance
a.

Unless otherwise specified, the width of the correlator (2) along the interface is

taken to be much smaller than any other characteristic length of the problem.
As pointed out by Bruinsma and Aeppli [6], an important length of this model is Lc

=

[y~a~/A(0)]~/~, where e =
4 D. For D < Dc

=
4, the interface is kept smooth (I.e.,

fluctuations in z is limited to a or
smaller)

on length scales L < Lc, but is able to explore the

inhomogeneous force field on larger length scales. It follows that the maximum pinning force

on a piece of interface of linear dimension L > Lc is of the order of (L/Lc)D [A(0)Lfl]~/~, which

leads to the estimate Fc ci [A(0)/Lfl]~/~
-J

A(0)~/~ for the critical driving force of
a

depinning
transition 16, 6]. For F > Fc we expect a steady-state moving solution to (I) while for F < Fc

the interface at long times is pinned at one of the presumably infinitely many locally stable

configurations. The nature of the depinning transition at F
=

Fc has not been studied in detail

analytically. [The situation is different for D > 4, where pinning is essentially
a

small length
scale phenomenon where mean-field theory is expected to be valid. This conclusion, which can

be drawn by assessing the relative importance of the elastic and random force terrns in (I),
sets the critical dimension at Dc

=
4 for weak disorder [6].]

Our main purpose here is to develop
a

renormalization group approach to the critical dynam-
ics near the depinning threshold for D < 4. A straightforward extension of the perturbation
theory of Efetov and Larkin [4] yields a vanishing mobility l~~

=
0 at Lc, thereby freezes

dynamics on larger length scales. However, as we demonstrate below, this difficulty can be

overcome by considering the functional renormalization of A(z) which becomes singular at the

origin, thus opening the door to a systematic expansion in D
=

4 e dimensions. We present
the first results so obtained for the critical exponents characterizing the depinning transition.

Details of our
calculation will be presented elsewhere.

The usual perturbation theory consists of expanding n(x, z) at a flat interface (or, for that

matter, any other reference configuration), and solving the resulting equation order by order

in the strength of the disorder [4, 5, 7]. Such
a

procedure is justified when deviations from the

reference interface position are of order
a or smaller. This is indeed the case for

a
fast moving

interface with D > 2 which is the starting point of our discussion. (For D < 2 the related

Edwards-Wilkinson equation ill] yields a rough interface. We believe that this is the origin
for the break down of perturbation theory as

observed by Koplik and Levine [7].)
For a moving interface, we

write z(x, t)
=

vi + h(x, t), where
u

is determined self consistently
from the condition (h(x, t))

=
0. Equation (I)

now takes the form

l~
=

yT7~h + F Au + n(x, vi + h(x,t)). (3)

Due to the coupling among different Fourier modes through the random force term, the

system's response to a long-wavelength, slow-varying external perturbation is described by a

diffusion equation with modified parameters few
=

I + bl and 7e~ = y + b?. At large
u

the

lowest order corrections can be easily found from the perturbation theory,

b7(~)
=

7gjL[
,

bl(~)
=

-lg~L[
,

(4)

where Lv
=

(7a/ul)"~ is the diffusion length over a time period a/v and g =
cA"(0) + O(e)

is the coupling constant, with
c =

1/(8x~7~). Here and below
e > 0. Result for bl(~) in (4) is

identical to a previous one by Feigel'man who considered the correction to the velocity
u =

F/I
due to the pinning force [5]. The width of the interface to this order is given by

l~~l
"

~~
(D

(4«)D/2 II ~~ + °~~~ l~~
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From equation (4) we see that both corrections are related to the second derivative of A(z)
at the origin, and that b7/7 is by

a
factor e/D smaller than bl/I. Extending the above

calculation to the next order yields

l~fl
=

I (I + bl(~l/1+ 2(bl(~l /1)~ + ), (6)

where bl(~l is given in (4). Only leading order terms in e in each order are shown in (6). It is

apparent that the series obtained from perturbation theory, while valid for large u, cannot be

used directly near the pinning threshold, where u -
0.

The usual e-expansion scheme allows one to sum up the series via renormalization group
flow equations. Specifically, we consider 1, 7, F Au, and A to be renormalizable quantities
which depend on the upper cut-off length, L

=
Lv. The flow equations can be immediately

read off from (4) and (6),

d In 7/d In L
=

O(e~), (7a)

d In I Id In L
=

-gL~, (7b)

dg/dln L
=

-3g~L~. (7c)

The last equation can also be obtained directly from the diagrammatic technique of Larkin

and Efetov [4], and is in fact only one of the set of flow equations one of us [12] obtained for

the coefficients in
a

Taylor expansion for A(z). This set of equations can be expressed in the

functional form
~ ~(Z)

~
~~e

~~ ~
~2(~) ~(~)

(~)j
(~~)

~ ~~ ~ ~~2 2

Interestingly, equation (7d) appears also in the treatment of
an

equilibrium interface in
a

random system by Daniel Fisher [13], and in his recent work with Narayan
on

sliding charge-
density-waves in a random medium [14].

Equation (7c) can be integrated to give

~~~~ =
i + (31e)(]~~e ~j~>

(8)

where go "
g(Lo). A negative go, which appears to be

a
natural choice if an analytic A(z) is

assumed at Lo, leads to a diverging g(L) and hence A"(0) at a finite length L m
(e/3(go()"~

t

Lc. Inserting (8) into (7b) then yields an infinite I at L ci Lc, beyond which
no dynamics is

possible. On the face of it~ this result is clearly unphysical.
Such a diverging behavior has actually been noted earlier in the study of impurity pinning

of charge-density-waves by Efetov and Larkin [4], and in other related problems, and its im-

plication remains controversial. One opinion is to dub the pole an artifact of the one-loop
approximation bearing no real physical significance. The second and much more interesting
proposal is to accept the divergence as a real phenomenon associated with the nonanalytic
behavior of A(z) at the origin, and try to continue the renormalization procedure [13]. In the

remaining part of the paper we explore consequences of the latter approach and show that it

indeed leads to a
consistent renormalization scheme and to fruitful results.

The divergence of g corresponds to a
singularity of A(z) at the origin. Nevertheless, equation

(7d) is still well defined away from z =
0 and can thus be followed. To look for a fixed point

solution,
we

make the scaling ansatz

A(L, z)
=

c~~A~/~L~~A)(zA~~/~L~l), (9)
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where limi-co A)(y)
=

A*(y),
a = e 2c, and A is chosen such that A*(0)

=
1. As for A, A*

is an even function of its argument. Inserting (9) into (7d) and taking the limit L
- oo

yields,

(e 2()A* (v) + (vA*~(v) lA*'(v)l~ A*"(v)lA* (v) II
=

0. (lo)

Examining the behavior of (10) at small y shows that two types of singular behavior are

possible. In the first case we have A*(y)
=

I + al (v("~ + O((y(). This form yields
a diverging

second derivative as y -
0, thus is not a way out of the difficulty. The second possibility is

A*(v)
=

i + ai (v( + ja~y2 + (lo

with al
= e 2( and a2 =

(e ()/3. Here A*"(0+)
= a2 is finite. Using an expansion of the

type (II) for A(z),
we find that equations (7a) and (7b) lbut not (7c)] remain valid to the first

order in e, with the understanding that g =
cA"(0+). The singular term (z(, however, yields

a
reduction of the driving force, F

-
f

=
F Fc. Here Fc "

-(16x~7)~~Af~~A'(Lo,0+)
depends on the lower cutoff Ao Ci

x/Lo of the momentum space integration. Using the scaling
form (9) for A and identifying Lo with Lc yields an Fc in agreement with the estimate given
in references [5] and [6].

Integrating (7b) using (9) and (II) yields

>(L)
=

>o(L/Lo)-~~-<i/~> (12)

where lo
"

>(Lo)- As before, 7 has no scale dependence to the first order in e. Performing
the scale transformation x -

bx, t
-

b~t, and h
-

blh, equation (3) can be rewritten as

lb~~~
(

=
7T7~h + b~~t f Au) + b~~tn(bx, vb~t + blh). (13)

Here z is the dynamical exponent to be distinguished from the interface coordinate z(x,t).
It follows from equations (2), (9), and (12) that (13) becomes scale invariant at u =

f
=

0 upon

the choice z =
2 (e ()/3. A finite u, however, changes the character of the noise correlator

above a length scale Lv
-J

v~~/(~~l),
as can be seen by comparing the two terms in the second

argument of n in (13). Physically, Lv serves as the correlation length of the net pinning (or
driving) force along the interface. Stop the renormalization at Lv yields f

=
I(Lv)u which in

turn gives

~ '~
~~' "~~~~ ~ ~' ~~~~~

Lv
-J

f~", with v =
1/(2 (), (14b)

where we have used (12) and the relation between z and (. [The condition Lv ci
u~~/(~~l)

alone yields the scaling relation 0
=

v(z () which is satisfied in the present case.]
Our final task is to determine the exponent ( from (10). For this purpose it is useful to

consider the integrals IA
" I~$~ A(L, z)dz, which is an invariant of the flow equation (7d), and

I*
=

fZ~ A*(y)dy. For IA > 0, which is true for random-field disorder, we have I) ( < e/3,

1*
= oo; it) (

=
e/3, 1*

=
CA~~IA; and iii) ( > e/3, 1*

=
0; Case I) is inconsistent with

(10) if we demand A*(y) to be bounded for all y and vanish at infinity. One can also show

from the flow equation (7d) that, if A(L, z) is initially positive everywhere and decays to zero
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sufficiently fast at large z, the limiting form A* has no negative parts thus excluding iii). In

case it) there is actually a unique solution with exponential tails given implicitly by [13]

A* exp(-A°)
=

exp(-I jy~). (IS)

Inserting (
=

e/3 in equations (14) and in the expression for z we have the following results

for the exponents to the first order in e,

(ce ~e,
zci2-~e,

b~l- ~e, uci)+~e. (16)

Note that for randoli~bond disorder, where q can be written as the derivative of
a

random

potential with short-range correlations, IA
=

0 and hence the exponents can be quite different

from those given in (16).
Let us conclude by recapturing the main steps that led to a successful renormalization scheme

for the interface dynamics at and above the depinning transition. We have shown that
a

simple
extension of the perturbation theory carried out to the lowest order runs into difficulty on the

length scale Lc where pining efsects become significant. When the renormalization procedure
is extended to the whole function A(z) (random force correlator in the moving direction), the

divergent behavior of the coupling constant can be attributed to the nonanalyticity of A(z)
at the origin. By isolating the singular term the divergence can

be formally removed and a

consistent renormalization scheme is found at the transition F
=

Fc. The interface roughness
exponent (

=
e/3 + O(e2) so obtained difsers, to the first order in e, from the value e/2 from

perturbation theory [4, 8], but coincides with that of the equilibrium random-field problem,
though we see no a pliori reason here for

an Iinry-Ma type argument ii] to exclude higher order

corrections. A finite interface velocity v m~
(F Fc)' interrupts the renormalization process at

a
length scale Lv

m~
(F Fc)~~, above which one crosses over to the regime where the random

forces act independently on the moving interface
as

in the Edwards-Wilkinson equation. It is

interesting to note that, using our expressions (16) at D
=

I yields the temporal roughness
exponent fl

=
(/z

=
3/4, in surprisingly good agreement with simulation results of Parisi [8]

on a lattice version of (I). We mention here that a seT-consistency argument similar to the

one given by Harris for equilibrium disordered systems lib] yields
an inequality

1Iv < (D + () /2, ii)

if a sharp threshold is to be assumed. In our case
(17) is fulfilled as an equality to the first

order in
e.

On the dynamical side, the efsect of random forces on the interface motion is qualitatively
difserent below and above Lc. For L < Lc the interface is slowed down but not "pinned",

I.e., it responds to an arbitrarily weak driving force with an increased A. In contrast, the case

L > Lc is characterized by
a

threshold dynamics, I-e-, only
a

sufficiently large driving force

F > Fc yields a response. As our calculation shows, Fc is formally related to the amplitude
of the singular part of the correlator A(z) at the origin. It is believed that (e.g. Ref. [9]),
at F

=
Fc, the system becomes critical in the sense that

a
small perturbation on a length

scale L > Lc may provoke an arbitrarily large response, as in the sandpile model of Bak, Tang
and Wiesenfeld [16]. Our finding of a dynamical exponent z =

2 2e/9 < 2 suggests that

the dynamics at the depinning transition is indeed superdifsusive. It would be interesting to

explore the use of functional renormalization group approach to other systems characterized

by a threshold dynamics.
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Note added in proof:

Following similar arguments as in the random-field case, we found that the roughness

exponent of the interface for random-bond disorder is given by f
=

0.2083 e, same as in the

equilibrium problem discussed previously by Fisher [13]. Other critical exponents follow from

equations (14) and the relation z =
2 (e ( )/3, which are valid for different choices of the

function A,


