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Abstract. We develop a continuum theory for the statistical mechanics of thermally
ac-

tivated point defects in the nematic and hexagonal phases of polymer liquid crystals. In the

nematic phase, there are elementary splay defects (chain ends and hairpins), and in the hexag-
onal phase, there are

both splay defects and twist defects. In the nematic phase, splay defects

are free in the limit oflarge separation; I-e-, their binding energy is finite. By contrast, in the

hexagonal phase, both types of defects are bound in +- pairs. We derive expressions for two

correlation functions, the structure factor and the director fluctuation spectrum, in the presence

of defects, and we use these correlation functions to define macroscopic Frank constants and

elastic moduli. In the nematic phase, the presence of ionized splay defects causes the
macro-

scopic splay constant ki to be finite. It is large and strongly temperature-dependent in the

low-temperature regime, but smaller and temperature-independent in the higher-temperature,
Debye-Hilckel regime. By contrast, in the hexagonal phase, the macroscopic splay and twist

constants ki and k2
are infinite, just as in harmonic theory. These effects should be observable

in x-ray and light~scattering experiments
on

polymer liquid crystals.

1 Introduction.

Nematic liquid crystals support a variety of fascinating defects in their texture, such as discli-

nation lines and noyaux. Because the cost in free energy to create these defects is normally
large compared to kBT, they do not play a significant role in the thermodynamic properties
of ordinary nematics (at least not in three dimensions). Foe example, the director fluctuation

spectrum-important for light scattering-can be satisfactorily computed within harmonic

theory [Ii, which explicitly neglects defects.

It was first pointed out by de Gennes [2] that the harmonic theory of polymer nematics has

strange anomalies in the long-chain limit. In long-chain polymer nematics, there is
an

intrinsic

coupling between orientational and density fluctuations. This coupling leads to a
divergence

of the macroscopic Frank constant RI which describes the elastic energy cost of
a

splay in the

director field. In a recent paper [3], we
extended this result and found that the x-ray structure

factor is anomalous as well: it resembles
a

"butterfly" pattern as opposed to the structure factor

of conventional nematics, which is more like that of isotropic liquids [Ii. We also found that,
in a number of ways, polymer nematics

are
similar to smectic liquid crystals. For example,

a
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splay deformation can
only penetrate a

finite distance into
a

defect-free polymer nematic. This

"screening" of splay in polymer nematics is the analogue of the screening of twist and bend in

smectics.

Meyer [4] has noted that defects do play an important role in the thermodynamics of polymer
nematics. Polymer nematics support point-like defects that

are
unique to polymer liquid

crystals and whose energy cost can be of order kBT. The purpose of this paper is to investigate
how these defects modify the anomalous predictions of the harmonic theory for the macroscopic
Frank constant RI the structure factor, and the screening of splay deformations.

Topological defects in aligned chain systems have been classified by Bouligand [5] and Kld-

man et al. [6]. Topological defects that
are not point-like, such

as
disclination lines, have little

chance of thermal excitation,
so we can restrict ourselves to point-like defects. In particular,

we will consider point-like "splay" defects, which
are

believed to play
an important role in

both dielectric and elastic properties [7]. Polymer nematics have two types of splay defects,
which are illustrated in figure I. We may either cut a polymer ("scission") and separate the

endpoints, or we may fold
a

polymer over 180° ("hairpin") [7]. We will call the endpoint of

a
polymer attached to the top sample boundary (z

=
L/2)

a "+" defect and an endpoint
connected to the bottom sample boundary (z

=
-L/2)

a "-" defect. Since hairpins can be

treated as two combined endpoint defects, we simply give them a double "charge" : ++ or

++

c) d)

Fig. 1. Side views of splay defects in polymer liquid crystals: (a), (b). Endpoint defects. (c), (d).
Hairpin defects. In D

=
2, the endpoint defects shown here are

isomorphic to dislocations in smectic

liquid crystals.

If we now assume
that the energy cost of nucleating and ionizing a pair of endpoint defects

is finite, then there must be
a

finite concentration of free defects. In figure 2, we show why I<i

is expected to be finite if there are indeed free endpoint defects. Hairpin defects have
a

similar
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Fig. 2. A splay in the nematic director field, in the presence of free endpoint defects.

effect,
so even for polymer nematics that cannot be scissioned,

we
still expect RI to be finite.

The simplest description of polymer nematics with free splay defects would be to borrow

the Flory-Huggins theory for "living" polymers [8]. Living polymers
are

materials consisting
of rods that

can be thermally scissioned (e, g., cylindrical micelles). Flory-Huggins theory
completely neglects interaction between endpoints, with the result that the endpoints form

an

ideal gas. The length distribution of the rods is then found to be exponential. It is easy to show

that under those conditions I<I « I In, where n is the density of endpoints [7]. The weakness

of Flory-Huggins theory is that the endpoints
or

hairpins induce elastic deformations in the

surrounding medium, which lead to an interaction among the defects. For that reason~ the

splay defects do not constitute an ideal gas, as was noted already by Meyer [4]. Interactions

among defects increase the defect ionization energy and therefore increase RI

The importance of topological defects for chain-like liquid crystals is not limited to the

nematic phase. If the density or the stiffness of the chains is increased, a polymer nematic

can undergo a
phase transition to a hexagonal lattice of positionally ordered chains. In refer-

ence [9] we
developed

a
density-functional theory for the nematic-hexagonal transition, and in

reference [3] we
constructed

a
harmonic theory for the hexagonal phase, with the following

re-

sults: (I) the macroscopic splay and twist constants I<i and 1<2 are now
both infinite, (it) there

are sharp Bragg spots in the structure factor (I.e., there is long-range positional order), and

(iii) the mean square of the chain displacement field ((u(~) is finite above the lower critical

dimension DL
"

2.5. The divergence of1<2 is due to coupling between director twist and shear

deformation of the hexagonal lattice. The fact that the lower critical dimension exceeds that

of conventional crystals (DL
"

2) indicates that the hexagonal phase is not a true solid, and

indeed the1<3 bending constant remains finite.

Like the nematic phase, the hexagonal phase
can support splay defects. In addition, there

is a second class of defects associated with director twist instead of splay. These defects are

constructed by a ring exchange of two or more chains, as shown in figure 3. We will assign a

+ sign to a
counterclockwise twist and a sign to a

clockwise twist.

In this paper, we present a
continuum description of the statistical mechanics of point defects

in both the nematic and hexagonal phases [10]. The basis of the calculation is the observation

that two-dimensional (2D) polymer nematics
are

isomorphic to 2D smectic liquid crystals; the

similarity in D
=

3 becomes an identity in D
=

2. As is clear from figure I, an endpoint defect of

a
2D polymer nematic is equivalent to a

dislocation in a 2D smectic. Furthermore, the statistical

mechanics of point defects in 2D smectics is well understood through the continuum theory
of Toner and Nelson [11]. In section 2, we discuss the Toner-Nelson method and generalize
it to 3D polymer nematics. In section 3, we apply the same method to the hexagonal phase.
Our model applies to polymer systems in which splay defects (either endpoints or

hairpins)
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a)

c) d)

Fig. 3. Twist defects in polymer liquid crystals: (a), (b). Side views of chain exchanges, which
are

+- and -+ dipoles of twist defects. (c), (d). Top views of + and twist defects.

and twist defects are in thermal equilibrium. It also applies to analogous systems of long,
semiflexible aggregates, such as

worm-like micelles and columns of discotic liquid crystals, in

which the analogous defects
can

be thermally excited.

Our principal results are as follows:

Polymer nematics must be grouped into two classes: those with defect
core energy Es

large compared to the thermal energy kBT ("low-temperature regime") and those with Es
comparable to or less than kBT ("Debye-Hiickel regime"). In the low-temperature regime,
polymer nematics support an

exponentially low concentration of ionized splay defects, which

are
well described by the ideal gas picture. The defect pair ionization energy is not divergent, so

the macroscopic splay constant Ill is largw-but finite-and strongly temperature dependent.
The wavevector-dependent splay constant III (q), with Iii

"
Ri(q

"
0), is found to be

~_~ if q~ » f~
~'~~~,~ ~~~ ~

~)l/ f(F~~nd/kBT,
if qz < f

'

with Iii the "bare" splay constant, I the bulk modulus, f a
length of order the mean spacing

between free defects, and a
the microscopic length scale. The defect binding energy Fbind is,

as discussed in the text, in excess of 2Es due to defect-defect elastic interaction. The structure

factor of polymer nematics in this regime still contains the "butterfly pattern" of harmonic

theory, except that the extinction line at q1 =
0 is erased.

For polymer nematics in the Debye-Hiickel regime, with Es ~ kBT, an ideal gas picture

would be seriously in error. In this regime, the nematic phase is a dense plasma of defects.

One of the consequences is that
now

Ill is smaller and
no

longer temperature-dependent,

1[1 m

~~

,

(l.2)
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and has
no

relation at all with the bare splay constant. The structure factor
no

longer resembles

a butterfly pattern but instead is similar to that of an ordinary uniaxial liquid. In fact, in many

respects the properties of
a

polymer nematic in the Debye-Hfickel regime resemble those of
a

short-chain nematic. In particular, we should not expect to encounter the peculiar duality with

smectic-like properties predicted by harmonic theory.
The change from the low-temperature regime to the Debye-Hfickel regime could be a gradual

crossover or a
first-order phase transition. In the latter case, it would be characterized by a

very sharp increase in l/i accompanied by a dramatic reorganization of the structure factor.

In the hexagonal phase we find, beside the splay defects discussed above,
a

second type
of point defects associated with a twist in the bundle of polymers. The exchange of two

neighboring chains in the hexagonal lattice corresponds to a +- dipole of twist defects. Unlike

the nematic phase, in the hexagonal phase we find that both splay and twist defects are confined

by a linear restoring force: the hexagonal phase can support neither free splay nor free twist

defects. Chain exchanges are closely localized.

The confinement of defects can be traced to the existence of a finite shear coefficient ~. As

we increase the twist defect concentration, the shear coefficient is reduced and eventually goes

to zero: the hexagonal phase cannot support large concentrations of twist defect pairs.
A consequence of the confinement is that the prediction of the harmonic theory that Iii and

1[2
are

infinite remains valid. The gas of defect dipoles renormalizes the Lamd coefficients I and

~ but does not affect the basic description of the harmonic theory. The connection between the

confinement potential and the shear coefficients suggest that
a

(hypothetical) hexatic phase,
with fi

=
0, would have finite values of III and 1[2, but this goes beyond the scope of this

paper.

2. Nematic phase.

In
a

continuum description of a condensed phase such as a nematic, we must begin by iden-

tifying the hydrodynamic variables that describe the low-energy excitations. The next step is

to construct a
fluctuation free energy for these variables consistent with the symmetry of the

nematic phase. For a nematic, the position-dependent order parameter-the director i1(r)-
provides one of these hydrodynamic variables. The other one is the fluctuation p(r) around the

average density po. For polymer nematics, p(r) and pa are really area densities of the chains in

a
plane perpendicular to i1. If both i1(r) and p(r) vary slowly with position, the the fluctuation

free energy is the sum of the Frank free energy and the energy cost of density fluctuations:

H
=

f
d~r I<1(i7 i1)~ + K2(i1 (i7 x i1))~ + I<3(i1 x (i7 x i1))~ + l (~ ~°

j
(2.I)

Po

The stiffness constants I<i, 1<2, and K3 are the Frank constants for, respectively, splay, twist,
and bend of the director texture, while I is the isothermal bulk modulus of the chains. We will

assume that the fluid of chains plus solvent is incompressible, so an increase in p is accompanied
by

a
reduction in solvent density, and vice versa.

Both the stiffness constants and I are "bare" parameters; I-e-, they are to be computed by

a
local cell average over a

volume small compared to the system size but large compared to

microscopic length scales. For the case of polymers with purely steric repulsion, it has been

shown [3 12] that:

1<3 *
kBTPa~~, (2.2a)

1<1 * 1<2 *
kBTP~/~(a b)~/~a~~, (2.2b)

1 m
kBTP~~/~(a b)~~/~a~~ (2.2c)
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Here, a is the inter-chain spacing (with po "

2/(via~)), and b is the chain diameter (b < a).
The persistence length P is the distance over which

a
free polymer maintains its orientation.

2.I HARMONIC APPROXIMATION. In the harmonic approximation one treats fi(r) and

p(r)
as

smoothly varying, singularity-free fields. This assumption implies neglect of defects.

We may identify the director i1 with the tangent to the chains averaged over a small volume.

As first shown by de Gennes [2], this leads to a
coupling between the density and the director

fields,
i1. i7p

=
-poi7 i1. (2.3)

Equation (2.3)
can be regarded

as a continuity equation. It expresses the fact that the number

of chains entering
a

small region equals the number of chains leaving that region. In other

words, in this approximation there are no chain ends.

The constraint of equation (2.3) can be conveniently incorporated by considering the two-

component chain displacement field u(r), which gives the (z, y) displacement of the chains (see
Ref. [3]). In the harmonic approximation, u(r) is related to fi(r) and bp(r) % p(r) po by:

iii(r)
=

~) (2.4a)

bp(r)
=

-poi71 u, (2.4b)

where the subscript I denotes the
z

and y components of
a vector and I is the average chain

direction. Inserting equations (2.4) into (2.I) gives an effective Hamiltonian for the
u

field:

HH
"

f
d~r I<1 i71 ~~

~

+ It2 i71 x ~~
~

+ K3 ~~(
~

+ l iv
i

(~j
(2.5)

z z z

(The subscript H will always indicate that we restrict ourselves to a harmonic theory.) Assum-

ing u(r) to be
a

smooth function, we can expand it in a Fourier series:

u(q)
=

Q~~/~ f d~re"l'~u(r), (2.6)

with Q the system volume. In terms of u(q), the effective Hamiltonian becomes

HH
"

~
(Kiq~ (qi u(q)(~ + K2q~ (qi x u(q)

(~ + I<3ql (u(q)(~ + l (qi u(q)(~j (2.7)
2

q

To analyze HH> it is convenient to decompose
u into a

longitudinal and a transverse part:

uL "

~~ ~~) ~~, (2.8a)
q i

uT = u

~~ ~~) ~~ (2.8b)
qi

In tent of uL(q) and uT(q)>

HH
=

~
[eL(q) IUL(q)i~ + 6T(q) TUT(q)

~j (2.9)

where

eL(q)
"

lq ( + q) (I<iq( + K3q~) (2.10a)

eT(q)
= q~ (1(2q( +1(3q~) (2.10b)

The harmonic mode spectrum thus consists of two branches. The transverse branch involves

only the Frank elastic constants and is purely orientational in nature. It is unaffected by
the director-density coupling. The longitudinal branch is

a
mixed density-orientational mode,

called the "peristaltic mode" in reference [3].
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2.2 POINT DEFECTS: SPLAY. We argued in the introduction that in the nematic phase
only point defects such

as
endpoint and hairpin defects need to be considered, at least

as
far

as
the thermodynamic properties are concerned. We will now develop the 3D analogue of the

Toner-Nelson theory [I Ii for 2D smectics and apply it to the case of polymer nematics. The

energy cost associated with adding or removing chains is partly due to a
"core" energy-either

the energy cost of scissioning
a

chain or the energy cost of
a

180° bend-and partly due to a

deformation energy in the surrounding medium. One can use
continuum theory to compute

the latter contribution and treat core energies as adjustable microscopic parameters. Note

that the addition of a new chain does not lead to an energy cost proportional to the chain

length. The fluid simply adjusts its density to the equilibrium value in the neighborhood of the

new chain. Except near the endpoint, there is no energy cost associated with this adjustment.
However,

a new chain added to the sample does in fact introduce a mathematical singularity
in the displacement u(r).

Assume we
introduce

a new chain at ri =
0 in the interval

z > 0, as shown in figure la. At

r =
0, we have a "+" endpoint defect. The displacement field is then given by

Vi u =
pi ~b(r

i
)f(z) + (non-singular terms). (2. II

(The
same expression would hold with

a
sign for a "-" endpoint defect, and with a factor

of ~ 2 for
a

"++" or "--" hairpin defect.) The resulting splay in the director field is given
by equation (2Aa), which leads to

i71 hi
=

pi ~b(r) + (non-singular terms). (2.12)

However, the density of chains is not given by equation (2.4b) anymore, because equation (2.4b)
describes the reduction in density of the surrounding chains but does not include the central

chain that has been added. Rather, fluctuations in the density of chains are now described by

bP(r)
=

-Po?i u + b(ri)f(z) + Pd(r). (2.13)

The first term on the right-hand side of this equation represents the reduction in density of

the chains surrounding the central chain due to their outward splay. The second term gives
the density of the central chain itself. Note that this term cancels the singular part of the first

term, giving no singularity in the density field. The third term, pd(r), represents the local

changes in the density near
the endpoint defect. It is assumed to be a short-range function

centered at r =
0.

From equation (2. II),
we can identify pofiz Vi u as the defect charge density. The volume

integral of this quantity gives the topological quantum number Qs, which is the total splay
charge of the sample. This volume integral can be converted into the surface integral

~
z=L/2

QS
" PO d s (i7

I
u) (2,14)

z=-L/2

Thus, the topological quantum number Qs of a sample associated with splay defects is simply
the difference between the number of chains attached to the top surface (z

=
L/2) and to the

bottom surface (z
=

-L/2).
To find the displacement field away from the singularity at r1 =

0, z > 0, we minimize the

induced elastic deformation energy

' lfi2~ 2

~~ "
2

I
~~~ ~~

fiz2
~ ~ ~~~ ~~~ ~~'~~~
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In this equation, the RI term is omitted because it is small compared to the I term for a slowly
varying field u (I.e., for RI qj « I). The K2 term is omitted because by symmetry there is

no

twist. The K3 term must, however, be included because it is always dominant if u depends on

z
only. The prime

on
the integral sign indicates that

we
exclude

a thin tube around ri =
0,

z > 0, from the integration interval to avoid the (unphysical) singularity in
u at r1 =

0, z > 0.

Minimizing HD with respect to u
gives

where As
"

@/. We use
the notation Gs instead of u because Gs will play the role of

a

Green's function for the defects. The source term in equation (2.16)
was chosen such that Gs

obeys equation (2,ll).
Assuming that we have solved equation (2.16), we can now construct the displacement field

for a
whole collection of splay defects. For that purpose, we divide the sample into cells of

volume a~, taking the inter-chain spacing a as
the microscopic length of the problem. Define

a~ms(r) to be the topological charge of
a

cell located at r, allowing only a~ms(r)
=

0, ~ l.

The full displacement field due to the defects is then

u(r)
=

d~r'ms (r')Gs(r r'). (2.17)~'

The energy cost of the defects is found by inserting equation (2.17) into equation (2.15):

HD
"

f d~r f d~r' f d~r"ms(r')ms(r")' ' '

ill ~~~j)2 ~'~ ~~~j)2 ~"~
~ vi GS (~ ~')) (vi GS (r r"))j (2.18)

+ Esa~ f d~rm((r).

Here we have added
a

microscopic energy cost Es associated with each endpoint defect. It

describes-in
a

phenomenological way-the contribution to the defect energy from the core

region where continuum theory fails. If hairpins
are

less costly than chain scissioning,
we

should instead interpret 4Es as
the microscopic energy cost of

a
hairpin defect and restrict

a~ms
"

0, ~ 2.

The subsequent calculation of HD can be simplified by defining
a conjugate Green's function

©s by the equation
fi2G~

As ~ "
Vi Gs. (2.19)

Away from the defects, the conjugate Green's function also satisfies

As ~j~
=

Vi Gs. (2.20)

In general, ©s obeys the equation

-~~j ~ ~iGs
=

-b(ri)b'(z). (2.21)
~~~ ~
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After performing
a

partial integration in equation (2.18) and using equation (2.21),
we find

HD
"

f d~r f d~r'ms (r)ms(r') Us (r r') + Es a~
f d~rm( (r). (2.22)

The function Us(r) is given by

According to equation (2.22),
we can treat the collection of endpoint defects

as
constituting

a two-component plasma-if
we

restrict a~ms
"

0, ~ l-with an effective Hamiltonian RD.
The function Us(r)

can be interpreted
as

the pair potential between the charges. If Us(r) > 0,
it provides an attractive potential between charges of opposite sign and a repulsive interaction

between charges of the same sign. The core energy Es Plays the role of a (microscopic) chemical

potential. This form for the defect Hamiltonian is completely analogous to corresponding defect

Hamiltonians found in the theory of 2D melting, 2D smectics, and 2D superfluidity. As we

shall see, computing the macroscopic correlation functions reduces to a calculation of the pair
correlation function of this plasma.

The free energy cost of scissioning a chain and separating the two resulting chain endpoints
to infinity is now

Fbind
=

2Es + Us(0) Us (oo). (2.24)

To determine whether free endpoints
are

indeed possible,
we must find the asymptotic behavior

of Us(r). To compute this function, we first perform
a Fourier transform in equation (2.21)

and then use equation (2.23) to obtain

~~~~~ "
a"pi >iq]( qi ~~.~~~

The inverse Fourier transform then gives

~-> l~
~

~~~~~ 25/~~l(/~ ~~~~~~ ~° ~~~~~ ~~~

~~
~°~

~
~~~

~~
(2.26)

Note that we let a~l be
an

ultraviolet cutoff on qi. In the limit
r -

0,
we

obtain

US~r
-

°) S~

~pi~lla~~/~
~~.~~~

while for r - oo, the function Us(r)
-

0. From equations (2.27) and (2.24),
we conclude that

Fbind is finite. As a consequence, the chemical potential for free endpoints is finite, and hence

the nematic phase will always contain free endpoints (provided that Es is finite). A similar

argument applies to hairpin defects.

The asymptotic form of Us (r) depends on the direction of r. For (z( « @~, Us (r) decays

as

~~~~~ ~ ~~~~~ p((l~)3/2' ~~'~~~
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while for (z( » @t, Us (r) passes through 0 around (z( m
fi and then vanishes

as

Us (r) m

~~.
(2.29)

~po z

As a consequence, two charges of opposite sign with approximately the same r i
value will repel

each other for
z ~$

hand will attract each other for
z < fi. This is a surprising result

because in D
=

2, Us(ri # 0,z) is always positive and Us(ri
=

0,z)
=

0 [iii. It implies
that if

we create a
collection of splay defects (for example, by applying a splay to the sample

boundaries), then these defects would tend to organize themselves into strings parallel to the

z-axis-

2.3 CORRELATION FUNCTIONS. We claimed in the introduction that point defects should

play an important role in the thermodynamic properties of polymer nematics. To investigate
this role, we will now

discuss experimentally accessible correlation functions. The first correla-

tion function of interest is the structure factor S(q) e ((p(q)(~), which describes fluctuations in

the density field. Second, there
are

the orientational correlation functions IL(q) + ((nL(q)(~)
and IT(q) + ((nT(q)(~)> which describe fluctuations in the nematic director field. The defini-

tion of the longitudinal and transverse components nL and nT of i1(r) is analogous to equa-
tions (2.8). The structure factor can be measured by x-ray scattering and the orientational

correlation functions by depolarized light scattering.
The harmonic contribution to S(q) and IL,T(q) is discussed in detail in reference [3]. It

is found by using equations (2.4) to relate p(q) and iii(q) to u(q), and then applying the

equipartition theorem to HH to obtain

(luL,T(q)l~)~ = ~)])~ (2.30)

The resulting structure factor is

~~~~~
" >q j +

(])I$~+ i<3ql' ~~'~~~

Thus, in the harmonic approximation, contours of constant intensity of S(q)H in q-space exhibit

a set of paraboloids (q i(
«

q) in the limit q -
0. These paraboloids of revolution form the

center of
a

butterfly-like pattern at larger q values. This should be contrasted with the S(q)
of short-chain nematic liquid crystals, for which S(q

-
0) is always finite. Furthermore, in the

harmonic theory for chains, the director fluctuation spectrum is

kBT
(2 32a)IL(q)H

" ~~~2~j + Ij~qj + Ij~qj'
kBT

(2.32b)~~~~~~ It2q( +1(3ql

In this approximation, there is a relationship between the correlation functions:

IL(q)H
=

)S(q)H. (2.33)
o~i
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This relation between IL(q)H and S(q)H results from the continuity equation (2.3). It is

certainly not valid for short-chain liquid crystals, and it will turn out not to be valid beyond
the harmonic approximation for polymer liquid crystals.

We can now define the macroscopic Frank constants and bulk modulus. To define the

macroscopic Frank constants Ill, 1[2> and 1[3,
we

will fit long-wavelength expressions for

IL,T(q) by the expressions for a conventional nematic phase of short-chain molecules:

kBT
~~~~~~°~~ Iiiq( + I13qj

~~ ~~~~

~~~~~~°~~ I/2q/~Ii3ql ~~ ~~~~

The resulting macroscopic Frank constants for splay and twist are

~~~ i
~~ ~~~~~

(~ ~$'l ~qil~~oq~f~o kBT' ~

~~ ~ qf~o /~f~o
~~~/~' ~~'~~~~

while 1[3 will always equal K3 in the following. Thus, in the harmonic theory for polymer
nematics, Iii diverges as

I/q), while k2 is not renormalized from its bare value. Similarly, we

will define the macroscopic bulk modulus I by fitting a long-wavelength expression for S(q)
in the presence of defects to the harmonic approximation (2.31) for a polymer nematic phase.

The resulting macroscopic bulk modulus I is thus:

j-i j~ j~~
S(q)

(~ ~~)
qi -

o q~- o kB Tp(

To compute S(q) and IL,T(q) in the presence of defects,
we

first decompose u(r) into
a

harmonic part and a defect contribution,

u(r)
=

u(r)H + d~r'Gs(r r')ms(r'). (2.37)

In this expression, u(r)H and ms(r')
are independent random variables. The resulting director

field is
,

fir(r)
= ~~)~~ + fd~r'~~~~~ ~ ~ms(r'). (2.38)

Because Gs is purely longitudinal, IT(q) is not affected by the defects, while IL(q) becomes

IL(q)
=

IL(q)H + liar lGs(q)l~ Es(q). (2.39)

In this equation,
~~~~~~~

ll~/~Poqz I(ql + q( ~~ ~~~

is the Fourier-transformed Green's function. The quantity Es (q) + ((ms(q)(~) is the structure

factor of the many-body system of splay defects
as

controlled by the Hamiltonian RD. It is

the Fourier transform of the pair-correlation function

~j ~~(~)~~(~)~-Ho/kBT

~~~~~~~~~~~~
~~~~

~j ~-Ho/kBT
~~'~~~

(~'sl
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From equation (2.35a), the macroscopic Frank constant for splay becomes

~~l
B~p(

qi~o/$i~o~~~~~' ~~'~~~

To derive S(q),
we

follow
a

similar argument. Applying equation (2.13) for the density field

to the set of defects described by ms(r) gives

bp(r)
=

poi71 u(r)H+

+
f d~r' [-poi71 Gs(r r') + b(r

i
r[)b(z z') + pd(r r')]

ms
(r').

~~'~~~

The structure factor therefore becomes

2

S(q)
=

S(q)H + Q iPoqi Gs (q) + ~i)~~ + Pd(q) Es (q). (2.44)

From equation (2.36), the macroscopic bulk modulus I is given by

~ ~
B~p( ~~~~~~~~ ~'~

qfl~~o)f$~~~~~' ~~'~~~

To compute Es(q) explicitly in the nematic phase,
we

will first
use

Debye-Hiickel theory [I Ii.
In the Debye-Hfickel approximation, one treats ms(r)

as an
unrestricted, continuous field,

which should be a
good approximation if

we
have

a
high defect density, I-e-, if Es ~ kBT. We

begin by rewriting the splay defect Hamiltonian (2.22) as

where Us (q) is given by equation (2.25). We then apply the equipartition theorem to obtain

~~~~~
ES a~~~~~~~~~)~~3ql ~~ ~~~

Hence,
kBT

(2,48)llm llm ES(~)
" @'

qi~0qz-0 S~

We conclude that
~Iii

=
Esa~p(

m
~ (2.49)

a

and
~

i~~
=

l~~ +
~

~

f ~rpd(r)j
(2.50)

Esa po

Furthermore, for q -
0 and lsqj < q i, we obtain

~~~~~ Iii
~~I(3ql

~~ ~~~
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Thus, the long-wavelength director fluctuation spectrum reduces to that of
a

conventional

nematic phase, with the renormalized value of Iii and the bare value of1<3. The anomalous

behavior of IL(q) for small qz is cancelled by the effects of splay defects.

The structure factor described by equation (2.44) has very different constant intensity con-

tours than those predicted by harmonic theory. In particular, for qi =
0 and qz small, the

harmonic theory gives S(0, qz =
0 while equation (2.44) gives S(0, qz m

kBTp(1( /K3. In the

opposite order of limits, for qz =
0 and q i

small, equation (2.44) gives S(q1, 0) m
kBTp( Ii. In

general, the constant intensity contours resemble those of
a

liquid with
a

uniaxially anisotropic
compressibility, such as a short-chain nematic. Thus, in the Debye-Hiickel approximation,
large defect concentrations modify the correlation functions IL(q) and S(q) into forms similar

to those of ordinary nematics.

We now
consider the limit of Es » kBT. In this regime, the defect density is very low,

and hence ms(r) cannot be regarded as a continuous field. For that reason, the Debye-Hiickel
approximation is

no
longer valid. The limiting value of Es(q)

can now
be written as

(Q2j
~iirf~ ~'iln~

Es (q)
=

@> (2.52)

which is simply the concentration of unbound defects. Because each finite chain is associated

with two endpoint defects, this concentration is

~

jm~ ~jm~
Es (q)

= ~j°
,

(2.53)

where I is the average length of
a

chain. The defect concentration is then

lim lim Es(q) * a~~e~~b"nd/~B~, (2.54)
q,-0q~-0

where Fbind
"

2Es + AU is the binding free energy of equation (2.24). As a result, the

macroscopic splay constant becomes

kBTpol kBT
F~;»d/k~T (2.55)Ki

=
~

S~ t~
'

and the macroscopic bulk modulus becomes

i~~
m

l~~ +
~

/
~ ~

f ~rpd(r)j~ e~~b""d/~B~ (2.56)
B Poa

Note that this result for I[i is equivalent to the result of Meyer [4], which
was

derived by
considering the entropy of packing rigid chains. This relation between Ill and I has been

confirmed experimentally by Lee and Meyer [13].
We should make several remarks about

our results in the Debye-Hiickel (Es ~ kBT) and

low-temperature (Es » kBT) regimes. First, in the Debye-Hfickel regime the results for RI
and I

are independent of temperature, while in the low-temperature regime RI and I depend
exponentially on temperature. Indeed, this difference in temperature dependence would be

the clearest experimental signature of the distinction between the two regimes. Second, in

both regimes the renormalized splay constant Iii is independent of the bare value of RI In

the Debye-Hfickel regime Iii is determined only by the microscopic energy cost Es associated
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with each splay defect, while in the low-temperature regime RI is determined by the tem-

perature and by the binding free energy. For that reason, measurements of RI do not give

any information about the value of I<i that appears in the microscopic harmonic Hamiltonian,
and this microscopic I<i is not proportional to I. Third, in both regimes the renormalization

of I is determined only by the local density changes pd(r)
near the endpoints and hairpins,

not by the rest of the chains. Because these density changes are short-ranged, the integral in

equations (2.50) and (2.56) is convergent. Hence, the local density changes give only
a

finite

reduction in I. Finally, in both regimes the defect contributions to S(q) and IL,T(q) dom-

inate the harmonic contributions to these correlation functions in the long-wavelength limit,
for q) < lsEs(0)/kBTp(. However, in the low-temperature regime Zs(0) is exponentially

small, for
that reason, the harmonic theory for the correlation functions applies down to an

exponentially small
crossover value of qz, at which point the defect contribution begins to dom-

inate. The structure factor thus remains very close to that predicted by the harmonic theory,
with its characteristic butterfly pattern. By contrast, in the Debye-Hfickel regime the defect

contribution begins to dominate at a much larger value of qz.

3. Continuum theory: hexagonal phase.

In the hexagonal phase, the chains maintain long-range positional order in addition to the

orientational order. In the continuum free energy of such an ordered array, we must include
a

new term associated with the restoring force against a shear deformation. If p is the isothermal

shear coefficient of the hexagonal lattice, then the continuum free energy is

H
=

f d~r I<1(i7 fi)~ + I<2(i1 (i7 x fi))~ + K3(i1 x (i7 x fi))~

+ > l~ ~P° ~

+
i iii + iii j ~~ ~~

with a,fl
= z,y. For the case of chains with purely steric repulsion, the shear coefficient

~ =
l/3 [3]. The existence of long-range positional order and a nonzero shear modulus have

far-reaching effects. As before, we
will begin with a review of the harmonic theory.

3.I HARMONIC APPROXIMATION. If we proceed along the same steps as in section 2.I,

we
find the following harmonic mode spectrum:

HH
=

~
(6L(q) IUL(q)l~ + 6T(q) UT(q)l~j (3.2)

where

6L(q)
"

(~ + 2~)q~ + q~ (Kiq~ + K3q~) (3.3a)

eT(q)
"

~q~ + q~ (1<2q~ +1<3q~) (3.3b)

Thus, the longitudinal branch remains a
mixed splay-density mode but the transverse branch

is now a
mixed shear-twist mode. The combination of Lamd coefficients (1+ 2~)

can
be called

the longitudinal modulus.
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3.2 POINT DEFECTS: SPLAY. We define splay defects in the same way as
for a nematic.

Proceeding
as

in section 2.2, we find the defect energy

HD
"

d~r d~r'ms(r)ms(r')U#(r r') + Esa~ d~rm((r), (3A)
2

I I I

~~~~~

Ufl(r r')
=

Us(~ ~') + ~S '~ II' ~~ ~~

In equation (3.5), Us(r) is given by equation (2.26) with I replaced by (1+2~) in the definition

of As The mathematical origin of the linear term in equation (3.5) is the surface contribution

to the partial integration of equation (2.18). For ~ =
0, the surface term vanishes, but for

~ # 0, the surfaces of the thin tubes surrounding the added or removed chains contribute a

term which is proportional to the length of the excluded tubes. Thus, for ~ # 0 we must choose

the location of the tubes to minimize the free energy. If the tube originating from a + defect

at r coincides with
a

tube originating from a defect at r', then the terms cancel. However,

as shown in figure 4, there is always a tube of length jr r'( left, which cannot be cancelled.

-+
ii
ij

11

,
+ ',_"

(
~

',

(7-7~(§~

Fig. 4. Defect line connecting + and splay defects at r and r' in the hexagonal phase.

The physical origin of rs is readily understood. In the hexagonal phase, an added chain

corresponds to a column of interstitials of the hexagonal lattice, while
a removed chain corre-

sponds to a column of nacancies [14]. Vacancies and interstitials are both stable defects. We

cannot remove them by a density adjustment as we did in the case of the nematic phase [15].
The mathematical singulaHty in the displacement field u(r)

now corresponds to a physical sin-

gularity. This physical singularity is equivalent to the lock-in fault line discussed by Prost [16].
We thus can interpret rs as

the energy cost per unit length (line tension) of an interstitial or

vacancy column. This line tension may depend
on

the direction of r
r', but we will neglect

this anisotropy here. Since rs is, like Es, a microscopic quantity, it should be treated as an

adjustable parameter. However, in the Appendix
we estimate rs using continuum elastic the-

ory, which gives rs *
~a~. We will use this value

as a rough estimate in the rest of this paper.
In particular, rs "

0 when ~ =
0.

It could be questioned whether rs should not be negatine for
a vacancy column if the

interaction between chains is purely repulsive. However, if we remove a section of a
chain to

create a -+ pair, we must insert this chain elsewhere in the sample, creating
a +- pair, to

conserve mass. We thus will interpret 2rs as the cost per unit length of creating both the

interstitial and the vacancy column. Under this construction, Ts is always positive.
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We can immediately conclude from equation (3.5) that, unlike the nematic phase, the splay
defect ionization energy in the hexagonal phase is infinite. The existence of free splay defects

is inconsistent with long-range hexagonal order. Consequently, we should expect from the

preceding sections that splay defects necessarily come in +- pairs and RI
- oo. Because of

the linear attractive potential between +- pairs, we could call the hexagonal phase
a

"confined"

phase.

3.3 POINT DEFECTS: TWIST. We noted in the introduction that the hexagonal phase

supports a second class of defects, which are related to the positional ordering of the chains. In

the simplest case, two chains may exchange positions by either
a

right-handed
or a

left-handed

twist, as
shown in figures 3a and 3b. More generally,

we can cut out a tube containing two or

more chains and rotate it over a
lattice constant.

Consider
a

right-handed exchange of two chains around z =
0, r1 =

0, as
shown in figure 3a.

Let #(z) be the twist rotation angle of the pair of chains being exchanged. We have 0 < #(z) <

~, with #(-oo)
=

0 and #(oo)
= ~. In the lower part of the chain exchange, where #(z)

~$
0, the

surrounding chains feel a
right-handed torque, as shown in figure 3c. If u(r) is the displacement

field of the neighboring chains, then I i7 x u > 0 in this region. By contrast, in the upper

part of the chain exchange, where #(z) < ~, the two chains have almost switched places,
so we

have once more a
nearly perfect hexagonal lattice. In this region, the neighboring chains feel

a

leji-handed torque, with I i7 x u < 0, as shown in figure 3d. The crossover from
a

right-handed
to a

left-handed torque on
the neighboring chains occurs, by symmetry, at #(z)

=
~/2.

To compute u(r) far away from this chain exchange,
we

define the displacement field of
a

single "twist defect" at r =
0 as

I i71 x u =
~7pp~b(r i)b(z) + (non-singular terms). (3.6)

A right-handed chain exchange now corresponds to a + twist defect followed by a twist

defect located at the same value of r i
but

a larger value of z. In other words,
a

right-handed
chain exchange is a +- dipole of twist defects. Similarly, a

left-handed chain exchange consists

of
a

twist defect followed by
a + twist defect; I-e-, it is

a -+ dipole. The constant 7 m I

depends
on

the rotation of the chains adjacent to our two exchanging chains and once again

can only be estimated from a microscopic model. This is, of course, a simplified model of the

exchange process. We would expect the ring of neighboring chains to have
a

twist that varies

more
smoothly than a pair of step functions. However, for distances large compared to the

separation of the +- pair, the error will be small.

From here on, the calculation of u(r) for twist defects is strictly analogous with the preceding
calculation for splay defects. We first define a Green's function GT(r) for + twist defects:

fi4G
~-l(j + (I x Vi (I x Vi GT)

"
7Pi~ (I x Vi b(r i)b(z), (3.7)

z

where AT
"

@$. If we define a~mT(r)
=

0, ~ l, as
the twist defect density, then

u(r)
= f'd~r'mT(r')GT(r r') (3.8)

is the displacement field due to a field of twist defects. The twist defect Hamiltonian is

HD
=

f d~r f d~r'mT(r)mT(r')U#(r r') + ETa~ f d~rm((r). (3.9)
2
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Here, the interaction potential is

U4(r r')
=

UT(r r') + Trlr r'l, (3.1°)

with

~ ~-> l~
~ ~

~~~~~
25 /~~~~/2 ~~~~~~ ~~ ~~~~~ ~~~

~~ ~~ ~
~~~

~~
(3.ll)

The line energy Tr again must come from
a microscopic calculation. If

we
estimate it in

continuum elastic theory,
we

obtain Tr m ~a~. The asymptotic properties of UT(r) follow from

equations (2.27)-(2.29), replacing As by AT-

Since Ufl(r r') again diverges
as

jr r'(
~ oo, we

should expect twist defects to remain

confined in dipoles as well. The chain-exchange process discussed above does not spread out

along the z direction.

3.4 CORRELATION FUNCTIONS. To calculate the correlation functions S(q) % ((p(q)(~)
and IL,T(q) + ((nL,T(q)(~), we

follow
a procedure similar to that in section 2.3. For the

harmonic contribution, we use equations (2.4) to relate p(q) and fir(q) to u(q), and then

apply the equipartition theorem to the Hamiltonian (3.2). As
a

result, the structure factor is

~~~~~
~~ ~ ~~~~~~~~~q) + If3ql'

(3.12)

and the director fluctuation spectrum is

kBT
(3.13a)IL(q)H

(~ ~ 2~)qp2qj + 1<iq( + 1<3ql

kBT
(3,13b)~~~~~~

~q7~q( +1(2q( + I'3ql

Note that these expressions for S(q) and IL(q) satisfy the relation (2.33), which expresses the

continuity of the chains.

We can use
these correlation functions to define macroscopic Frank constants and Lamd

coefficients in the hexagonal phase. The macroscopic Frank constants can
be defined by fitting

long-wavelength expressions for IL,T(q) to the expressions (2.34) for
a

conventional, short-

chain nematic, so
Iii and I12 are still given by equation (2.35). As a result, in the harmonic

theory for the hexagonal phase, Iii diverges
as

(1+ 2~)/q) and 1[2 as
~/q). The macroscopic

longitudinal modulus (I +2fi)
can be defined by fitting

a
long-wavelength expression for S(q) in

the presence of defects to the harmonic approximation (3.12) for the hexagonal phase. Hence,
(I + 2fi) is given by

~~ ~ ~~~ ~ qi~0 /~f~ ~~~( ~~ ~~~

Finally, the macroscopic shear modulus fi can be defined by fitting
a

long-wavelength expression
for IT(q) to the expression (3.13b) in the harmonic theory for the hexagonal phase. This

procedure gives

~ ~ qi~o /$f$ ~~~~ ~~'~~~
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From equations (2.35b) and (3. IS), it follows that 1[2 and fi cannot both be finite. If fi is finite,

as
it should be for the hexagonal phase, then I12 must necessarily be infinite. Note that hi

does not, a
priori, need to be infinite.

To derive S(q) and IL,T(q) in the presence of defects, we follow the procedure of equa-
tions (2.37)-(2.45). We first decompose u(r) into

a
harmonic part and parts due to splay and

twist defects,

u(r)
=

u(r)H + d~r'Gs(r r')ms(r') + d~r'GT(r r')mT(r'). (3.16)

The director field is therefore

~i (~)
"

~j)~~ +
f

d~~'~~~(~ ~'~'~S(r') +
f d~r'~~~)~ ~'~ lllT(r'). (3.17)

As a
result, the orientational correlation functions become

IL(q)
=

IL(q)H + Qqi lGs(q)l~ Es(q), (3.18a)

IT(q)
=

IT(q)H + liqi IGT(q)l~ ET(q). (3.18b)

Here, Gs(q) and GT(q)
are the Green's functions for splay and twist, and Es(q) + ((ms(q)(~)

and ZT(q) + ((mT(q)(~)
are the structure factors for splay and twist defects, respectively.

Hence, the macroscopic Frank constants Iii and 1[2 are given by

Iip~
=

~
lim~ linjZs(q), (3.19a)

B p~ q,- q~-

Iip~
=

$
lim~ linjZT(q)> (3.19b)

B p~ q,- q~-

and the macroscopic shear modulus fi is given by

~ ~ ~
fi

q)l~~o)i~ ~z ~~~~~~' ~~'~~~

These limits will be investigated below.

Fluctuations in the density field bp(r) consist of
a

harmonic part and
a part due to splay

defects,

bp(r)
=

poi71 u(r)H+

+ d~r'[-poi7
1

Gs(r r') + (I + a)b(r
i

r[)b(z z') + pd(r r')] ms(r').

(3.21)
The density field is not affected by twist defects. Equation (3.21) for the density field in the

hexagonal phase is identical to the corresponding equation (2.43) in the nematic phase except
for the term involving

a.
This term describes the change in density along the vacancy or

interstitial column that connects each pair of splay defects in the fiexagonal phase. This term

is absent in the nematic phase, because in the nematic phase there is
no

physical singularity

away from the point defects themselves. With this extra term, the structure factor for the

hexagonal phase becomes

S(q)
=

S(q)H + li iPoqi Gs(q) + ~)i()~ + Pd(q)
~

Zs(q). (3.22)
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We therefore obtain

~y2(j + 2fi)~~
=

(l + 2~)~~ + ~
lim lim qj~Zs(q) (3.23)

kBTpo qi-o q~-o

for the macroscopic longitudinal modulus. Note that the change in density along the vacancy

or
interstitial column controls the correction term.

To determine (I + 2fi) and Iii,
we must again calculate the limiting behavior of Es (q). As

a first step, note that in the hexagonal phase, splay defects only occur as bound pairs. For

that reason, the net "charge" Qs
#

f d~rms(r) is strictly zero.
If the density of pairs is not

too high, we can neglect the interaction between pairs. It is then straightforward to evaluate

(ms(0)ms(r)). For (r( » a, (ms(0)ms(r)) must be proportional to the Boltzmann distribution

exp(-U#(r)/kBT). The integral (~j~~ d~r(ms(0)ms(r)) must be minus the density of +-

~-

vortex pairs (with the negative sign because it describes dipoles). We will call this density
y]. Finally, the total integral fd~r(ms(0)ms(r)) must be zero

because, as we saw, Qs
"

0.

Combining these requirements gives

ims(0)ms(r)i
=

yl 16(r) N-~
exp

(-U?(r)/kBT)1
,

(3.24)

with N
=

f d~rexp(-U#(r)/kBT) and y( m
a~~ exp(-2Es/kBT). The defect structure factor

is then

Zs(q)
"

ill
f

d~re~'l'~ (b(r) N~~
exp

(-U#(r)/kBT)] (3.25)

We therefore obtain the limits

lim lim Zs(q)
"

0, (3.26a)
qi-oq~-o

lim lim qj~Zs(q)
=

~Y((z~)s> (3.26b)
q,-oq~-o 2

where (z~)s is the mean-square displacement between splay defects in a
bound pair. From

equations (3.19a) and (3.23),
we

conclude that

Ill
=

0, (3.27a)

(I + 2fi)-~
=

(> + 2~)-~ +
~)~)jj~

13.27b)

Because of the "confinement" of the defects, (z~)s is finite in the hexagonal phase, so the renor-

malized longitudinal modulus (I + 2fi) must be finite as
well. Furthermore, the renormalized

splay constant RI diverges as
I/q), just as in the harmonic approximation.

The mean-square displacement

can be computed to be
~

(z~)~ m 2
~~~

(3.29)
rs

for small rs. It is determined by the line tension rs, as expected.
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Our expression (3.27b) is really the first term in an expansion in y]. The small parameter
of the perturbation theory is

Using
rs *

~a~ and
o m I gives es *

/~~.
For the case of purely steric

we have

I m ~, while the smallest allowed value of ~ is of

es * with P the ingle-chain rsistence length. For es j$ I,

longitudinal

luctuations.

To determine fi

lim lim ZT(q)
"

0, (3.31a)
q,-0 q~-0

~
)f~~~~f~ qz ~~T(~)

"

lll~(~~)T>
(3.3~b)

where
now

y(
m

a~~exp(-2ET/kBT) is the concentration of "exchanges" (dipoles of twist

defects), and (z~)T is the mean-square separation between twist defects in
a

given exchange.
Equations (3.19b) and (3.20) then imply

I'i~
" °> (3.32a)

~
~ ~

~~~i~~~~
~~'~~~)

Because (z~)T m
(kBT/rT)~ m (kBT/~a~)~ is finite, the renormalized shear modulus fi is

also finite. Furthermore, the renormalized twist constant k2 diverges as
I/q), just

as
in the

harmonic approximation.
Could the hexagonal phase have

a
high density of twist dipoles? To see

why this is not

possible, note that equation (3.32b)
can

be interpreted
as a

self-consistency equation for fi.
The renormalization of the shear modulus ~ due to twist defect pairs is of order

e m
kBTy(/~.

The shear modulus is of course further reduced by other thermal fluctuations, such
as anhar-

monic phonon modes and dislocation loops,
so

equation (3.32b) is only a lower bound for this

reduction. If, however, chain exchange is the dominant reduction mechanism, then we have

approximately
fi~~ ~~~ m

kBTy(fi~~ (3.33)

On the right-hand side of equation (3.33), we have used the renormalized value fi in Tr m fia~.
If y( is too large, this self-consistency equation has

no
solution. The largest allowed value of

y( is of order ~/kBT. We conclude that

y(
<

~ (3.34)

is a
stability requirement for the hexagonal phase. Not only does the hexagonal phase not

support free splay
or

twist defects, but also the concentration of twist dipoles must remain

modest. For purely steric repulsion, this stability requirement reads

l~) e~~~~/~B~
< 1. (3.35)

a

~~~

'~

Note that there is no such restriction
on

the concentration y] ofsplay defect pairs.
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Appendix

Line tension in the hexagonal phase.

In this appendix, we use continuum elastic theory to estimate the line tension Ts of the

defect line between two oppositely charged splay defects in the hexagonal phase. Suppose that

an extra chain is added to the hexagonal lattice along the axis ri =
0 from

z =
0 to z =

Z.

Thus, there is a + endpoint defect at (0,0,0) and a
endpoint defect at (0,0, Z). If these

defects
are

widely separated, then the displacement field
u

becomes independent of
z

in the

region between them. In that region, equation (2,ll) gives

Vi u =
p[~b(r i), (Al)

which implies that

~ 2~~r( ~~~~

We now insert this expression for
u

and the corresponding expressions for the director field fi

and the density p into the Hamiltonian (3,I) for the hexagonal phase. Only the ~ term gives

an energy that scales linearly with the defect separation Z. This line energy can be written as

Eiine
"

f~ dz
f d~ri

~ ~
~~)

0 ~ par ~

For a lower cutoff on the ri integral, we use the lattice constant a, because continuum elastic

theory breaks down at that length scale. We therefore obtain

Eiine
"

~~
~

(A4)
~Poa

Thus, the line tension Ts "
Eiine/Z is approximately

Ts " ~a~. (AS)

We emphasize that this calculation gives only
a

rough estimate of rs because continuum

elastic theory breaks down at microscopic length scales. For a more precise estimate, one
would

need a microscopic model of the defect line,
as

in reference [16]. However, this calculation does

show that rs is finite in the hexagonal phase, and that it vanishes
as ~ -

0.
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