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Rksumk. Pour la premidre fois h note connaissance, nous avons mis en Evidence des non-

lin6aritds optiques dans une suspension de v6sicules phospholipidiques unilamellaires. Ces

particules h int6rdt biologique offrent la possibilit6 d'utiliser l'approximation de Bom pour
analyser les non-lin6aritds d'origine 61ectrostricfive observdes dans une expdrience de conjugaison

de phase (m61ange d6g6n6r6 h quatre ondes), utilisant un laser continu h argon ionis6.

Abstract. For the first time to our knowledge, we report on optical nonlinearities of unilamellar

phospholipid vesicle suspensions. These particles of biological interest allow the Bom approxi-
mation to be used to analyse the nonlinearities of electrostrictive origin evidenced by a phase
conjugation experiment (Degenerate-Four-Wave-Mixing), using a c-w- argon laser.

L'interaction laser-suspension colloidale peut prendre plusieurs aspects suivant l'dchelle h

laquelle on choisit d'adapter les parambtres du faisceau lumineux gaussien issu d'un laser

continu. Lorsque la dimension transversale du faisceau est trbs supdrieure h la taille des

particules en suspension, cette demibre se comporte comme un milieu caractdrisd par un

indice de rdfraction non lin£aire dlevd, ainsi que l'avait prdvu Palmer [Ii. Lorsque cette

dimension est de l'ordre de grandeur d'une particule, le laser permet de la pidger [2]. Cette

demibre qualitd de vdritable pincette optique a fait l'objet d'applications spectaculaires dans

le domaine biologique avec le pi£geage de bactdries, de virus ou d'organites cellulaires [3],

applications dont on commence h peine h exploiter l'extraordinaire richesse. Le travail

prdsentd dans cet article conceme l'indice de rdfraction non lin£aire d'une suspension de

particules h int£rfit biologique dans le r£gime oh leur taille est trbs inf£rieure au beam-waist

du faisceau laser utilis£. Nous montrons qu'une suspension de v£sicules phospholipidiques
unilamellaires (VPU) pr£sente de fortes non-lin£aritds optiques par une exp6rience de

conjugaison de phase (mdlange ddgdndrd h quatre ondes). Ces structures h intdrfit biologique
offrent ainsi dgalement un int6rfit pour l'optique non lindaire.

Une VPU peut fitre considdrde comme un modble simple de membrane cellulaire, form6e

uniquement de moldcules phospholipidiques. A cause de leur caractbre amphiphile, ces
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mol£cules s'organisent en milieu aqueux spontan£ment en bicouches. Une telle v£sicule est

reprdsentde schdmatiquement en figure I. La pr£paration des suspensions a £t£ rdalisde avec

un appareil de type EXTRUDER LIPEX 1,5 ml. Le passage d'une suspension aqueuse de

phosphadidylcholine d'oauf (EPC en tampon Tris. 20 mM, EDTA I mM, pH 7,5) h travers

une membrane de polycarbonate poreuse, sous une pression adapt£e d'azote, conduit h une

suspension de vdsicules calibrdes suivant la porositd de la membrane de polycarbonate choisie

[4]. Dans nos expdriences, nous avons pr£pard des suspensions de vdsicules de 50 urn de rayon

pour une dpaisseur de la bicouche de 5 nm, et dont les fractions volumiques se situaient entre

3 fb et 8 fb suivant le dosage initial des phospholipides (5 mg ou 10 mg d'EPC par ml de

tempon). Ces suspensions sont stables h l'dchelle de la joumde de travail.

Les VPU seront assimildes h de fines coquilles didlectriques sphdriques dont l'indice de

rdfraction de la membrane dans son ensemble est dvalud h 1,46 [5]. De telles VPU, quoique
l'dpaisseur de la membrane soit relativement petite par rapport h leur taille, possbdent

ndanmoins une polarisabilitd positive non ndgligeable :

~ a
3

~ ~~2 ~i~~~ ~2 ~ ~l~ $
~

a
3

(2 s~ + si)(2 si + s~) 2 (si s~)~
b

valeur de la polarisabilitd dans la limite Rayleigh, b et a repr£sentant les rayons exteme et

inteme de la coquille sph£rique, si et s~ respectivement les constantes di£lectriques du milieu

continu et de la membrane.

Soit donc
a =

2,93 x10~~~m~
pour les dimensions des VPU d£crites plus haut et en

prenant l'indice de r£fraction du milieu continu £gal h 1,33.

En cons£quence, une suspension aqueuse de VPU pourra fitre considdr£e comme un gaz

(parfait en premibre approximation), gaz responsable de non-lin£aritds d'origine dlectrostric-

tive ddcrites par Palmer [I]. Les particules, par couplage du champ dlectrique excitateur avec

les moments dipolaires induits, et quoique toujours soumises h l'agitation thermique (h la

H~O n z1.33

n zl,46

H~O

Fig. I. Coupe d'une v6sicule phospholipidique unilamellake.

[Sketch of a unilarnellar phospholipid vesicle.]
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diffdrence avec un pidgeage individuel), se concentreront aux maxima de champ. Si N est leur

concentration en l'absence de champ, la variation dN de cette concentration dans un champ
d'amplitude E, est telle que :

dN I aE~ dN

$ 2 kT
~~

N
~

off k est la constante de Boltzman, et T la tempdrature du milieu.

L'indice de r£fraction non lin6aire n~ est donn6 h vecteur d'onde q nul, c'est-h-dire pour une

diffusion de la lumibre strictement vers l'avant, par l'expression [Ii :

~
2 ~

n~ =
(MKSA )

Ei 2 kTC

off c reprdsente la vitesse de la lumibre dans le vide. Soit pour une pr£paration dont la fraction

volumique est de 3fb (N=0,5x10~~VPU/ml), l'indice non lin£aire attendu est:

ii~ =
0,25 x 10~ ~~ cm~/lV.

Le montage exp£rimental est repr£sent£ en figure 2. Ce montage conduit h faire intent£rer

les beam-waists de trois faisceaux (125~Lm) issus d'un laser Ar+ (longueur d'onde

A
=

514,5 nm) au niveau de l'6chantillon que l'on veut studier [6]. Deux des faisceaux, dits

pompe et d'intensit£ £gale (I~), se propagent exactement en sens inverse. Ils inter&rent avec

le troisibme, dit sonde (I~), de moindre intensit£ que les deux premiers, et qui fait un angle &

avec eux. L'intersection des faisceaux a lieu au niveau d'un capillaire rectangulaire en verre

(0,3 x 4 mm~), afin de limiter les effets convectifs dans la cellule de quartz Hellma (2 mm

d'£paisseur) oh ce capillaire est plac6. Dans une exp£rience de conjugaison de phase par
mdlange ddgdndr6 h quatre ondes l'onde conjugude (I~) qui est engendrde au niveau de cette

intersection a la propri£t£ de suivre exactement le trajet inverse du faisceau sonde, trajet sur

lequel une lame semitransparente permet de l'extraire. Ce faisceau est r£gulibrement ouvert

et ferm£ h l'aide d'un systbme m£canique. Ce dispositif permet d'£tudier la dynamique et la

statique du signal conjugud. Un photomultiplicateur qui recueille le signal, est coupld h un

analyseur multicanal qui assure son enregistrement. La sommation d'une centaine de ces

enregistrements aboutit h l'obtention d'un signal moyennd exploitable, dont un exemple est

donna en figure 3. La dynamique de ce signal montre, aussi bien pour sa constitution que

pour sa relaxation, l'existence de deux constantes de temps tr~s diff£rentes.

Ic
I

c i

i
B~

85
(50 %)

BS

(T
=

60%) AR+ LASER BEAM

f=1m

Fig. 2. Reprdsentation sch6matique du dispositif exp6rimental. BS lame s6paratrice C : cellule.

[Schematic diagram of the experimental set-up. BS : beam splitter C cell.]
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Fig. 3. Enregistrement d'un signal conjugud typique (&
=

6,7°). L'dvaluation des trois paramdtres

X, Y, Z permet de comparer les contributions des deux rdseaux cr66s.

[Typical D-F-W-M- signal in a VPU suspension (& 6.7°). The three parameters, X, Y, Z allows us to

compare the contributions of the two gratings.]

La gdndration d'une onde conjugude dans le milieu colloidal, se fait par la crdation de deux

rdseaux perpendiculaires d'interfdrences lumineuses entre le faisceau sonde et chaque
faisceau pompe. A ces deux r£seaux correspondent deux vecteurs d'onde d'excitation du

milieu perpendiculaires qi qi =

~ "
et q~ q~

=

~
"

non nuls et de pas Aj et
~'l ~'2

A~ trbs diffdrents (Aj « A~), si l'angle Best petit. Sur ces deux rdseaux se mettent en place (et

relaxent h la coupure du faisceau sonde) deux rdseaux de concentration en particules
inddpendants. L'onde conjugude a donc deux contributions distinctes, correspondant aux

rdflexions dans la mfime direction et en condition de Bragg de chacun des faisceaux pompe sur

le rdseau de particules h la crdation duquel il n'a pas participd. Les temps caractdristiques des

dynamiques respectives aux deux rdseaux (Dq))~ «
(Dqj)~ sont trbs diffdrents puisque

Aim A~, ce qui explique l'allure du signal de la figure 3. D est le coefficient de diffusion

massique des particules : D
=

~~
off r et

Y~
sont le rayon des particules et la viscositd

(6 ar r. Y~
)

du solvant. Les variations de concentration en particules aux extrema de champ peuvent se

constituer sous l'effet de deux processus : le processus dlectrostrictif d£jh mentionn£, mais

aussi un processus thermodiffusif (effet Soret) comme l'ont prouvd diffdrentes expdriences
mendes avec des mdlanges moldculaires [7] et avec une microdmulsion critique [8]. Une

expdrience de conjugaison de phase sur un tel milieu [6] a confirrnd l'intervention d'un effet
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Soret dans la constitution du rdseau de grand pas uniquement. En effet, si d'une part

l'absorption du milieu est suffisante et que d'autre part le pas du rdseau est suffisamment

large, alors se crdent des gradients de temp£rature entre les maxima de champ. Cette

contribution est non locale, car la temp£rature du milieu en un point d£pend du profil du

champ autour du point consid£r£. Elle se traduit quantitativement par une variation de la

rdflectivitd du rdseau en question qui est fonction du carrd du pas de ce rdseau [6]. Concemant

notre milieu, l'existence d'un effet Soret est inconnue. Cependant, selon Lhuillier [9], la taille

des VPU est un parambtre important qui indique que l'effet thermodiffusif est ndgligeable.
Ainsi le processus dlectrostrictif local, car la variation de concentration en particules en un

point ne ddpend que de la valeur du champ en ce point, est-il le seul effet attendu.

En raison de la faible dpaisseur de la bicouche phospholipidique, les modifications de la

constante di£lectrique du milieu associ£es h un r£seau, A ~ (q,, t), sont supposdes faibles.

L'approximation de Bom permet alors d'exprimer le champ dlectrique diffusd, E~(t), dans la

direction caractdrisde par le vecteur d'onde q,, de la fagon suivante

E~(t) cc E A ~ (qj, t)

oh E est l'amplitude de l'onde pompe incidente sur le rdseau considdrd. A ~ (q~, t) peut fitre

explicitd h l'aide de la fonction de forme associde aux vdsicules

f (qi) cc exP(I (qi r )) dr

off V est le volume de la particule prdsentant un contraste d'indice avec le solvant. Ainsi, si h

t
=

0 on ouvre le faisceau sonde, et qu'h t
=

T on l'obture aprbs que le rdseau ait atteint son

dtat stationnaire, alors la dynamique de la contribution au signal conjugud de ce demier au

cours de ce cycle s'£crit h l'aide de A ~ (qi, t) :

0
< t

<
T A e (q~, t)

=

A
a

~ P f(qj) (~ (l exp(- Dq/t))

t >
T A ~ (q~, t)

=

A
a

~ P f(qi) (~ exp (- Dq)(t T))

oh A est une constante et P est la puissance h la sortie du laser.

Nous avons d'abord vdrifid que l'dvolution de l'intensitd du signal conjugud dtait bien

compatible avec une loi en puissance troisi~me de l'intensitd du laser pour les valeurs utilisdes

dans nos enregistrements qui se situent entre 1,5 et 2 W h la sortie du laser (Fig. 4).
Nous avons alors £tudi£ le rapport R, h I'£tat stationnaire, des modifications de la constante

didlectrique relatives aux deux rdseaux crd£s : soit R
=

As (q~, T)/As(qi, T)
=

f(q~)/f(qi)(~ thdoriquement. L'accbs h ce rapport thdorique est immddiat dbs lors que l'on

connait l'expression du facteur de forme [10]

f(q) cc
~

/
~

[sin qb qb cos qb sin qa + qa cos qa
q (b a )

Nous avons recherchd expdrimentalement ce rapport en faisant largement varier l'angle 8.

Pour dix valeurs de cet angle situdes entre 9,5° et 4,2°, Ai reste pratiquement constant

(Ai ~

~

m

0,19
Lm)

alors que A~ £volue de 3,1 h 7 ~Lm. R peut Atre dvalud h partir
2 x 1,33

d'un signal enregistr£ (voir Fig. 3) h l'aide des trois parambtres X, Y, Z, qui sont en relation

avec les dtats stationnaires des rdseaux :

X
= p [As (qj, T)]~

+ Bruit

Y
= p [As (qj, T) + As (q~, T)]~

+ Bruit

Z
=

p [As (q~, T)]~
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i~
U-A

watt

Fig. 4. Evolution de la racine cubique de l'intensitd du signal conjugud en fonction de la puissance du

laser (o
=

6,8°).

[Evolution of the cubic root of the signal versus the laser power (o
=

6.8° j-J

p est une constante, et R est alors donna par l'expression :

~
22

Y-X-Z

Si les deux premiers param~tres sent imm£diatement ddterminds ~ partir de l'enregistre-
ment, Z ndcessite une exploitation informatique de la d£croissance exponentielle de

l'amplitude du r£seau de grand pas. Cette demi~re nous foumit l'amplitude initiale, donc Z,

et la constante de temps de relaxation de ce r£seau, (Dqj)~~, et par 16 le rayon

hydrodynamique des v£sicules puisque D
= ~~~ La variation exp£rimentale de R en

arrY~

fonction de Al est donnde en figure 5. Malgrd la forte dispersion de deux points, on constate

que cette variation ne prdsente pas de pente rdvdlatrice d'un processus thermodiffusif pour les

vecteurs d'onde explords. Un tel processus faisant intervenir dans l'expression du rapport R

un terme additif en ~( [6], oh k~ est le rapport thermodiffusif, de signe et de valeur inconnus

Q2

pour notre suspension. Ayant par ailleurs reportd les valeurs thdoriques attendues en prenant

pour valeur du rayon exteme des vdsicules r=49nm (±14nm) obtenue h partir de

l'exploitation des dix d6croissances exponentielles, nous constatons que les valeurs exp6ri-
mentales de R sont le plus souvent supdrieures aux valeurs thdoriques. Ce constat a dtd

syst£matiquement retrouv6 sur toutes les autres sdries d'enregistrement rdalis£es avec des

pr£parations de vdsicules diff£rentes. Ceci s'explique par le fait que les pr£parations ne sont

pas strictement monodisperses [4]. En effet d'une part, la simulation num£rique h l'aide d'une

monoexponentielle appliqude sur le d£but de la relaxation du r£seau de grand pas, dvalue le

rayon des particules les plus petites qui diffusent de ce fait le plus rapidement : nous sous-

estimons donc systdmatiquement r. D'autre part, parce que la valeur th£orique de R, pour r

supposd estimd correctement, est infdrieure h la valeur thdorique moyenne de R pour
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Fig. 5. Evolution du rapport R des deux contributions en fonction du carts du pas du r6seau de grand

pas. Les 6toiles sont les valeurs exp6rimentales et les carr6s les valeurs th60riques attendues.

[Evolution of the ratio R of the two contributions as a function of the square of the coarse grating

period. Stars are experimental data, squares are theoretical expected values.]

l'ensemble des tailles des particules : en effet R(8, r) >R(8, f), comme l'indiquent les

valeurs de R pour diff£rents rayons dans le tableau suivant, valeurs qui ne croissent pas
lin£airement.

I (nm 30 40 50 60 70

R 1,17 1,33 1.60 2,02 2,72

Nous avons aussi compar£ pour des situations exp£rimentales identiques (P
=

3 W), et

pour une mfime fraction volumique, l'amplitude du signal conjugud obtenue avec une

suspension de VPU par rapport h celle obtenue avec une suspension aqueuse de billes de latex

de 40 nm de rayon, suspension souvent utilis6e comme milieu de r£f£rence pour ce type de

non-lin£aritds [I I]. Si la premibre £tait de l'ordre de 0,5 ~LW, la seconde atteignait 6 ~LW. Ceci

confirme tout d'abord les valeurs importantes attendues pour l'indice de r£fraction non

lin£aire n~ de suspensions de VPU (en supposant un processus £lectrostrictif dtre seul h

l'origine des non-lin£arit6s). D'autre part on notera que le rapport h la puissance quatre des

polarisabilit£s des deux types de particules se r£vble bien, en premi~re approximation, de

l'ordre de grandeur du rapport des amplitudes des signaux conjugu6s, et ce en accord avec

notre approche th60rique. Par ailleurs encore, bien que les billes pleines de latex offrent des

non-lin£arit£s d'amplitude sup6rieure h celle des coquilles phospholipidiques, on remarquera

qu'une augmentation de leur rayon les fait sortir du cadre de l'approximation de Bom, ce qui
n'est pas le cas pour les secondes tout en augmentant leur polarisabilit£ et donc les non-

JOURNAL DE PHYStQUE It T 2, N' 5, MAY IW2 40
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lin£arit6s attendues. Enfin la possibilit£ de doper la bicouche phospholipidique, soit pour
modifier la partie r6elle de son indice de rdfraction soit pour modifier sa partie imaginaire

(colorants hydrophobes), pr£sente un int6rfit original que nous 6tudions actuellement.

En conclusion, pour la premi~re fois h notre connaissance, nous avons mis en £vidence des

non-lin£arit6s optiques dans une suspension de v£sicules phospholipidiques unilamellaires.

Les non-lin6arit6s analysdes par une expdrience de conjugaison de phase sont importantes et

sont d'origine £lectrostrictive. L'absence d'une intervention significative d'un effet thermodif-

fusif Soret, pour la taille choisie des vdsicules et pour les conditions de notre exp£rience, est

en accord avec l'approche thdorique de cet effet faite par D. Lhuillier [9]. Ces v6sicules

phospholipidiques unilamellaires sont id6ales pour la validit£ d'un traitement thdorique fondd

sur l'approximation de Bom afin de quantifier l'amplitude des non-lin6arit£s.
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Rdsumk. On d6veloppe une approche th60rique pour determiner la forme quasi sph6rique des

vdsicules phospholipidiques. La m6thode est g6n6rale, dans le sens qu elle ne d6pend pas d'une

quelconque restriction de sym6trie. On suppose que la forme h l'6quilibre correspond au

minimum d'6nergie de tension de courbure de la membrane pour une valeur constante de la

surface de la membrane, du volume des v6sicules et de la diff6rence de surface des doubles

feuillets phospholipidiques de la membrane. L'6nergie de courbure et les contraintes sont

d6velopp6es h l'ordre 4 en tenure de la d6viation de la forme par rapport h une sphdre. Tous les

tenures jusqu'au troisidme ordre sont inclus dans les calculs suivants. La d6viation est exprim6e en

series d'harrnoniques sph6riques. On montre que la stabilit6 des solutions peut )he test6e en

regardant les valeurs propres de la matrice des d6riv6es secondes de l'6nergie de courbure par

rapport aux amplitudes ind6pendantes du d6veloppement en harrnoniques sph6riques. La

m6thode est appliqu6e aux calculs des formes h sym6trie axiale ou non, et les influences des

diff6rentes approximations sont 6tud16es. On montre que pour des variations de la difference

dans l'aire des feuillets, on peut transformer de manidre continue une forme stable aplatie en une

forme stable allong£e et, r6ciproquement.

Abstract A theoretical approach to determine nearly spherical shapes of phospholipid vesicles

is developed. The method is general in the sense that it does not depend on any symmetry
restrictions. Equilibrium shapes are assumed to correspond to the minimum of the membrane

bending elastic energy at constant values of the membrane area, the vesicle volume and the

difference of areas of the two leaflets of the phospholipid bilayer. The bending energy and the

constraints are expanded up to fourth order terms in the deviation from a sphere, and in the

subsequent calculations all terms up to the third order are included. The deviation is expressed as

a series of spherical harmonics. It is shown that the stability of the solutions can be tested by
inspecting the eigenvalues of the matrix of second derivatives of the bending energy with respect

to independent amplitudes of spherical harmonics expansion. The method is applied to the
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calculation of axisymmetric and nonaxisymmetric shapes, and the influences of different

approximations are discussed. It is shown that at variations of the leaflet area difference stable

oblate and stable prolate shapes are transformed into each other in a continuous manner.

1. Introduction.

Phospholipid vesicles in flaccid conditions, I,e, when their volume is Smaller than the volume

of a sphere of the same membrane area, are known to exhibit a broad variety of different

shapes. Several phenomena connected with shape transformations of vesicles as well as

corresponding experimental and theoretical investigations were recently reviewed by
Lipowsky [Ii.

In general, theoretical concepts on vesicle shapes are based on the assumption that

equilibrium states correspond to the minimum of the membrane bending energy. Introducing
the spontaneous curvature Helfrich [2] formulated an expression for the bending energy
which has been widely used to determine equilibrium shapes of vesicles at given values of the

vesicle volume and the membrane area [3, 4]. Svetina and 2ek§ [5, 6] worked out a slightly
different concept of calculating vesicle shapes. In this concept the constraint of constant

membrane area of the vesicle was extended in such a way that it was applied to both leaflets of

the phospholipid bilayer, I.e, it was assumed that under equilibrium conditions the areas of

both monolayers are fixed. Since this theoretical concept can explain shape changes in

accordance with the bilayer couple hypothesis [7] it is called the bilayer couple model.

Both models, the spontaneous curvature concept as well as the bilayer couple model, have

been widely studied by applying an Euler-Lagrange ansatz to the resulting variational

problem [2-6]. Recently, the results of both approaches were compared on the basis of a

detailed investigation of the corresponding phase diagrams [8]. Up to now, the computations
using this ansatz have been restricted to axisymmetric shapes, and a complete stability
analysis of the resulting shapes has not been performed.

The investigation of the bilayer couple model by the use of an Euler-Lagrange ansatz

revealed that the axisymmetric shapes obtained can be assigned to different classes [9]. A

given class comprises all shapes of the same symmetry which can be continuously transformed

into each other changing the model parameters. The axisymmetric shapes have been

characterized in more detail for the sake of some specific studies: the bilayer couple
interpretation of shape transformations of red blood cells [6], the investigation of cell polarity

[9, 10], and the interpretation of temperature induced shape transformations of giant vesicles

[I Il. In the latter work as well as in [12] a good agreement of experimental and theoretical

results was found.

In order to extend the theoretical investigation by including also nonaxisymmetric shapes,
in the present paper another method is studied which is based on a Taylor expansion of the

membrane bending energy with respect to the deviation from the spherical shape.
Subsequently, the deviation is expressed as a series of spherical harmonics. Using a Ritz

procedure (cf. [16]) those amplitudes of spherical harmonics are calculated which minimize

the bending energy taking into account the various constraints. A necessary condition to

obtain equilibrium states is that the first derivatives of the corresponding functional with

respect to amplitudes of spherical harmonics vanish. In addition, the method enables the

stability analysis of a given solution by deciding whether the bending energy has a minimum

with respect to variations of the amplitudes. For that one has to inspect the eigenvalues of the

matrix of second derivatives of the bending energy with respect to independent amplitudes. A

shape is stable if all eigenvalues of this matrix are positive.
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Due to the expansion in terms of the displacement from a sphere the method requires to

restrict the calculations to nearly spherical shapes. Such a Taylor expansion has been worked

out by Helfrich [13] up to the second order terms, and the results have been widely used in the

analysis of thermal fluctuations of vesicle shapes [14, 15]. In the present work the bending

energy as well as the constraints are expanded up to the fourth order terms. Into the

subsequent computations all terms of the deviation up to the third order are included. Third

order calculations have been carried out before using the spontaneous curvature concept
[17, 18]. However, in these works only special questions were considered by applying the

general equations obtained. Third order terms have been analysed also in [19] but without

calculation of equilibrium shapes since the volume was assumed to change due to extemal

pressure changes. Hitherto, the bilayer couple model has not been analysed in this way.
Various nonaxisymmetric vesicle shapes were discussed in [17, 19] as well as in [20, 21].

However, a systematic and explicit determination of equilibrium shapes of any symmetry
including a complete analysis of their stability is still lacking.

In the following, vesicle shapes will be considered within the bilayer couple model.

Accordingly, for the membrane bending energy the expression given in [6] is used.

Equilibrium shapes are calculated by minimizing the bending energy at constant areas of both

leaflets of the phospholipid bilayer or, more conveniently, at a constant area of the inner

monolayer (Al and at a constant difference between the areas of the two layers
(AA). Furthermore, the volume V of the vesicle is assumed to be constant because water

transport through phospholipid membranes is known to be very slow during the relevant

times of observing equilibrium shapes.
The paper is organized as follows. In sections 2-4 the general equations for the calculation

of nearly spherical shapes of any symmetry are derived. In section 5 a method for the stability
analysis is developed. In section 6 the general model equations are specified for axisymmetric
shapes. The results of this special case are compared with those of an Euler,Lagrange ansatz

in section 7. In section 8 the effects of different approximations of the present method are

studied. Subsequently, the model is applied in its general form and nonaxisymmetric shapes

are calculated including the analysis of their stability (Sect. 9). In the numerical computations
the maximal I value used in the series of spherical harmonics Yy~ is so high that the

inclusion of functions Yy~ with higher I would not significantly change the results. Conceming
the determination of stable equilibrium shapes the method is, therefore, more general than

those used in previous works [17, 18] where only I
=

2 deformations of the sphere have been

considered.

2. The model.

Equilibrium shapes of phospholipid vesicles are assumed to be characterized by the minimal

value of the membrane bending energy

W~
=

k~ I(cj + c~)~ dA (1)
2

where k~ is the membrane bending elastic constant, cj and c~ are the two principal curvatures,

and integration is performed over the closed surface of the inner monolayer. The shapes have

to fulfil the conditions

A
=

Ao (2)

V
=

Vo (3)

AA
=

AA
o

(4)
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I,e. the membrane area (A), cell volume (V) and the difference between the areas of the two

membrane leaflets (AA) are considered to be fixed at values Ao, Vo, and AAo, respectively.
The difference in leaflet areas is given by the formula

AA
=

h I(ci + c~) dA (5)

where h is the distance between the two leaflets (cf. [22]). In equation (5) a second order term

with respect to h is neglected since the distance between the two monolayers is very small in

the relevant length scale.

The closed surface representing the vesicle shape can be described by 7
=

7(d, p using
the spherical angles d and p as independent coordinates. 7 is the distance between the origin
of the coordinate system and the surface of the vesicle. It must be required that

7
=

F(d, p) is a unique function of d and p.

For the following derivations dimensionless quantities are introduced. The bending energy
(W~) and the constraints (A, V and AA) are normalized relative to those values they would

attain if, at the given surface area A~ the shape were spherical with radius R~
=

(Ao/4 ar)~'~

This normalization procedure is the same as used in [6]. The dimensionless model quantifies

are identified by small letters w~, a, v and Aa, respectively. Correspondingly, the shape
function 7(d, p) has to be normalized relative to R~ which yields the dimensionless shape
function r(d, p =

7(d, p )/R~. Obviously, conditions (2)-(4) then read in a dimensionless

form as follows : a = ao =

I, u
=

uo and Aa
=

Aao, respectively.
Taking into account the relations between Cartesian and spherical coordinates as well as

the definitions of the coefficients of the first and the second fundamental form of the surface it

is possible to express the bending energy, the membrane area, the cell volume as well as the

difference between the areas of the two membrane leaflets in terms of r, d and

p. The resulting equations read in a dimensionless form :

v= jr~dfl (8)
"

~~
i

~ ~~ ~

~~~~~~ ~([Vr(~~ ~~~~~~

~" ~~~

Integration is performed over the full solid angle dfl
=

sin d do dp. The differential

operators V and A are adopted, respectively, as

~
~i

'
si~ d a~ ~~~~

a~ cosd a
~

l 3~
(II)~ ao2~

sin d ad sin~ if ap~



N° 5 VESICLE SHAPES AND THEIR STABILITY 1085

The function r =

r(d, p ) can be written as the sum of a certain constant ro and a function

U(o, pi
~(o, w )

m ~0 + U(o, w (12j

ro is the radius of a sphere which is called the corresponding sphere. Consequently,

u(d, p) is the deviation from this sphere. For nearly spherical shapes the radius of the

corresponding sphere ro can always be chosen in such a way that for any values of

if and p the displacement u(if, p) is much smaller than ro. Using relation (12) in

equations (6-9) and expanding the resulting expressions up to the fourth order in the relative

displacement u/rn one obtains :

w~ =
+ 4 r/ Au + 4 r(

u Au +
r((Au )~ + 2 r~[Vu ]~

16

rr(~

4 ro
u~ Au 2 ro u (Au )~ 4 ro u [Vu ]~ + 2 ro Vu V ( [Vu ]~) +

+ 4 u~ Au + 3 u~(Au )~ + 6 u~[Vu ]~ 6 u Vu V [Vu ]~)

(Au )~ivu i~ Au vu v ( ivu i~) ivu14) dn (13)

a =

r(
+

~

l[2 r/
u +

r( u~
+

r([Vu ]~ + ~- [Vu
~)

dfl (14)
4 arro

v=r(+ ~ lr(u+rou~+~u~ dfl (15)
4ar 3

~~ ~° ~
~ )~/ l~~ ~

~ ~~ ~~ ~ ~~~~~ ~~ ~° ~ ~~~ ~~ ~ ~~ ~~ ~ ~~~~~~ ~

+ (u~[Vu]~ u Vu V ( [Vu ]~) [Vu ]~ da (16)

The further treatment of fourth order terms (marked by the ( )-brackets) tumed out to be a

very complex and extensive procedure. Therefore, the present model is restricted to terms up

to the third order in u, I.e. all fourth order terms are neglected. Note that in the following any

quotation of equations (13-16) refers to the third order versions of these equations not ulking
into account the terms enclosed by curved brackets.

The integrals needed in equations (13-16) can be calculated by expressing the displacement

u as a series of spherical harmonics :

~
i

u(o, w)
=

z z vim Yim(o, w) (17)

The inclusion of the term Uoo Yoo permits to fix the radius ro of the corresponding sphere
without loosing the dependence of the solutions on a certain constant part of r(if, p ). Here,

ro is chosen in such a way that the corresponding sphere has the same volume as the vesicle,

I.e. in normalized quantities ro =
(uo)~'~

Since the displacement u is real the amplitudes have to obey the relation

UiL
=

(- 1)~ Ui,
-m

(18)

The spherical harmonics Yy~(if, p) are expressed by the associated Legendre polynomials
Py~(cos if) as

Yy~ (O, pi
=

j~ ~ ~~ ~ ~~ Py~ (cos O) e~~* (19)
4

" + ~l )~
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After introducing expansion (17) into equations (13-16) the corresponding integrals over

the closed surface may be calculated. Basic properties of spherical harmonics, types of

integrals as well as details of the calculations are given in the Appendix. As a final result the

expressions for the bending energy, membrane area, volume and difference between areas of

the two membrane leaflets, respectively, attain the following form

~~ ~
6~grrji~o

~~~ ~ ~~ ~~~~ ~ ~~ ~~ ~~~~ ~

+
~

£ z z ii (ii
+ 1)

~~ ~
+ l U)~~y y

(20)
8 arro ii i~ i~

2 ~'~' ~

~ ~~ ~

~l
~°° ~

~ar ~~ ~~i ~ ~~~~ ~~~~

v
-

r'
+

I
Uo

o +

A
~( Ui~~ +

~ i i i U<~i~ i~
~22)

+ £ z £ ii (ii + 1)
~~ ~~~ ~

+ i~(i~ + I I U)~~y (23)
16 viii

i~ i~
2 ~' ~' ~

where

u12)
=

z uy~ uj (24j

m
i

11 12

~(~12,13
~

i I ~(
m~ ~12m2 ~~,

m~ + m2
~ (~l ~2 ~3

,

~ll1 ~ll2) (25)

mi ii m2= -12

Coefficients A (ii i~ i~ ; m i
m~) are given by equation (A2) in the Appendix. Summations in

equations (20-25) have to be performed under the following conditions :

Iii
121 <13

<
ii

+ 12 (26)

jmij
w

i~, I
=

1, 2 (27)

mi + m~ w
i~ (28)

Obviously, the relations (27) and (28) include the conditions 0 w i~ (I
=

1, 2, 3) whereas there

is no upper limit for the I,.

3. Position of the coordinate system.

There is no interest in calculating the same equilibrium shape in different reference frames

where the various states can be transformed into each other by translation or rotation.

Therefore, one has to choose a suitable position for the origin of the coordinate system as well

as for the directions of the coordinate axes. This is done here by introducing the following
additional requirements :

(I) The mass centre of the vesicle (i~, f~, i~) is the origin of the coordinate system.

(iii The z-axis (d
=

0) of the Cartesian coordinate system has the same direction as the

surface normal at the point r(0, p).
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(iii) The x-axis (d
=

gr/2, p =

0) is chosen in such a way that for p =

0 the function

r(gr/2, p) has an extremum with respect to varying values of p.

The first requirement yields three conditions which have to be satisfied while minimizing

the bending energy :

~~
6~aruo

~~° ~ ~~~ "~ ~ ~" ~ ~~ ~ ~~~~

~~
6~iuo

l~~° ~ ~~~ ~~~ ~ ~~~ ~ ~~ ~ ~~~~

z~ =

~ i(ro + u)~
cos d dfl

=

0. (31)
16 "Vu

Equations (29-31) were transformed into a dimensionless form by the above mentioned

normalization procedure. Correspondingly, the dimensionless coordinates of the mass centre

of the vesicle are defined as follows : x~
=

l~/R~, y~ =

f~/R~ and z~ =

f~/R~. Taking into

account only terms up to the third order in the deviation u the various integrals in

equations (29,31) are calculated after the introduction of spherical harmonics (Eq. (17)). The

results are also given in the Appendix (Eqs. (Al 8-A27)).

The second requirement is identical with the condition

~~~~i
~

~ o

~~
~~i ~

~ o

~ ~~~~

which must be fulfilled at the surface point r( d
=

0, p ) for any value of p. After introducing

the expansion (17) as well as the definition (19) the derivatives of the associated Legendre
polynomials with respect to d have to be calculated for d

=

0. It can easily be proved that

these derivatives assume the following values :

if m =

I

aPy~(cos d) ((f
+ i )

ad
~ o

2
~~ '~~ ~~~~

0 else.

Using this property together with relation (18) and considering the real and the imaginary

part of the resulting expression separately one obtains from equation (32) the following two

constraints :

si =

( ~( j i(I
+ ii (u~i + u~j>

=
o (34>

t j

s~ =

( ~ + i(I
+ ii (uyi uyji

=

o. (35)

i~j
4 «

The third requirement yields the condition

~~~~' ~~

~
=

~~~~' ~~

~
=

0. (36)
3W w =y, w =o 3W w =y, w =o

Using equations (17) and (19) and taking into account the relations between Py~ and

Pi
_~

as well as equation (18) one obtains the constraint :

s~=I
f (

m j~()~.)~j))(Py~(0)(Uy~-Uy[)=0. (37)

1=im=1
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4. Calculation of equilibrium shapes.

The shape of a vesicle can be determined by minimizing the following function containing the

bending energy and all constraints in a dimensionless form

g
=

w~+ A~(a- I)+A~(v-uo)+ Aa(Aa-Aao)+

+ A~ x~ + A~ y~ + A~ z~ + A~~ si + A~~ s~ + A~ s~. (38)

The A's are Lagrange multipliers associated with the nine quantities which are fixed by the

constraints. Replacing w~, a, v, Aa, x~, y~, z~, si, s~ and s~ in equation (38) by the

corresponding expressions given in equations (20-25), (29-31) (together with (Al 8-A27), cf.

Appendix, and neglecting the u~-term), (34), (35) and (37), g may be written as a function of

the amplitudes Uy~ as well as of the nine Lagrange multipliers. According to Ritz' procedure,
at equilibrium partial derivatives of g with respect to these unknown variables must vanish.

This yields a system of equations from which the amplitudes and the values of Lagrange
multipliers can be obtained. Since this equation system is nonlinear its solutions can not be

calculated explicitely but may be obtained numerically, for example, by the use of Newton's

method.

For numerical computations it is more convenient to use real amplitudes of spherical
halmonics instead of the complex ones. This is possible because all quantities necessary to

determine the equilibrium shapes are real. In this work real amplitudes Xi~ and

X)~ are introduced by the following substitution :

Taking into account equation (18) one obtains for m # 0 the following relations between the

real amplitudes :

X I,
~

=
l )~ X i~ (40 )

Xi
_~

=
(- l)~ X)~. (41)

It can easily be proved that using equation (39) all expressions containing complex amplitudes

Uy~ may be rewritten in such a way that only real amplitudes appear and the imaginary parts
of all expressions vanish.

After all, the method to describe nearly spherical vesicle shapes is complete. Numerical

computations require a restriction to a finite number of spherical harmonics which means that

the infinite series of spherical harmonics has to be cut at an appropriately chosen maximal

value i~~. The numerical problem is then to determine the values of (i~~~ +1)~ unknown

amplitudes together with nine unknown Lagrange multipliers.

5. Stability analysis.

A shape obtained as described above is stable if the extremum of the bending energy is a

minimum with respect to variations of the amplitudes of spherical harmonics. Since this

extremum was calculated in the presence of constraints it is necessary to distinguish between

dependent and independent variables. From the whole set of amplitudes the dependent ones

can be chosen arbitrarily but taking into account that their number is fixed by the number of
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constraints, and that the matrix of derivatives of the constraints with respect to dependent

variables must be regular. Let n denote the total number of amplitudes and m (0 w m ~ n ) the

number of dependent ones. Then independent and dependent amplitudes may be represented

by the components x~ (I
=

I,
...,

n m and y~ (k
=

I,
...,

m ) of vectors x and y, respec-

tively. The functional dependence of the bending energy on amplitudes shall be denoted by

f(x, y). Taking into consideration the relations given by the constraints one may write

f*(x) =f(x, Y(x)) (42)

An extremum of f* is a minimum if all eigenvalues of the matrix of second derivatives of

f* with respect to independent variables, a~f*taxi axj (I, j
=

I,
...,

n m), are positive. The

elements of this matrix may be determined in the following way. First and second derivatives

of f* with respect to independent variables x~ and x~ (I, j
=

I,
,

n m) read

~f*
=

z ~f ~~~
+

~f (43)
ax~

~

ay~ ax~ axi

a~f*
~

jj af ~~Yk
~

jj jj a~f ~Yk, ~Yi
~

ax~ axj
~~

ay~ ax~ axj
~~

ay~ ayy ax~ ax~

~ ~( asx Ii
~ asx~ II

~

fi
~~~~

First and second derivatives of dependent variables with respect to independent ones are still

unknown since the nonlinearities of the constraints (Eqs. (21-23) and (29-31)) do not allow an

explicit formulation of the dependences y~(x~). Their values can be obtained, however, by
implicit differentiation of the equations of the constraints with respect to independent

variables. From that one obtains in a first step for each xi (I
=

I,
...,

n ml a system of linear

equations to determine the values of ay~lax~ (k
=

I,
...,

ml. Repeated implicit differentiation

of the corresponding equations yields systems of linear equations for the calculation of the

values of all derivatives a~y~lax~ ax~ which then may be used in equation (44). A vesicle shape

is stable if the extremum of f* is a minimum, I,e, if all eigenvalues of the matrix

a~f*lax; ax~ are positive.

6. Specification of the model for the axisymmetric case.

The numerical treatment of the general method developed above is rather extensive and by

far not trivial. Corresponding computations are much simpler for axisymmetric shapes than

for shapes of arbitrary symmetry. The main reason is that axisymmetric shapes may be

characterized by a relatively low number of amplitudes of spherical harmonics. If the maximal

I-value used in the computations is denoted by i~~~, one has to calculate in the general case

(i~~~ + 1)~ unknown amplitudes whereas for axisymmetric shapes this number is reduced to

i~~
+ I. Since in the axisymmetric case the coordinate system is fixed by preventing its shift

along the symmetry axis the number of corresponding constraints is also reduced. Therefore,

the restriction to axisymmetric vesicle shapes provides a relatively simple opportunity to study

the method described above. An even more compelling argument for testing this model first

by considering only axisymmetric shapes is that in this case the results can be compared with

those obtained before by solving a system of Euler differential equations [6, 8]. The latter

method permits to calculate axisymmetric vesicle shapes without the approximations used by
the former approach. Consequently, it is possible to evaluate the effects of the approximations
of the method presented here and, therefore, its validity by comparing both methods in the
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special case of axisymmetric shapes. In this section the general expressions derived above are

written for this special case.

For axisymmetric shapes the deviation u from the corresponding sphere depends only on

the azimuthal angle d and can be expressed by the Legendre polynomials Py(cos d) as

fm»

u(if )
=

z Xi Pi (cos if ) (45)

1=o

where the notation Xi has been introduced for the amplitudes Xio defined in (39). Amplitudes
describing nonaxisymmetric features of the vesicle shapes must vanish

Uy~
=

0 if m # 0. (46)

The following expressions used in equations (20-23) read in the axisymmetric case (cf.
Eqs. (24) and (25)) :

Uoo
=

/~ Xo (47)

~~~~
2 l

~~ ~~~~

ul]~y~,
y~ = ~

~ ) c (i
i

i~ i~ ; o o12x~~ x~~ x~~ (49)

The C (ii i~i~
; 00) are Clebsch,Gordan coefficients (cf. [23]). For the summation indices

condition (26) must hold, whereas the relations (27) and (28) yield the condition

OS i~ w i~~~ (I
=

1, 2, 3). (50)

The requirement that the mass centre of an axisymmetric vesicle is the origin of the

coordinate system is satisfied if z~ defined in equation (31) becomes zero. Introducing the

amplitudes Xi the integrals needed in equation (31) (cf. (A20), (A23) and (A26)) can be

rewritten, so that one obtains :

ro
l~m" f X

y~
X

y~
X

~~~vo ~~~~~~~°~i~ (2i-1)(2i+1)~~~~~~~~~j~j~jfii~
2 3

x ~j~
' c(iii~i~+ i;oo)2+/~c(iii~i~-i;oo)2)j. (51)

2 3+3 2 3-1

The summation indices i~ (I
=

1, 2, 3) have to fulfil the condition (50). Furthermore, the

Clebsch-Gordan coefficients C (ij i~ I 0 0) with I
=

i~ I or
I

=

i~
+ I are zero if one of

the relations

iii i~j
w

I
«

ii
+ i~ (52)

0 w
I (53)

is not satisfied.

Obviously, for axisymmetric shapes the three conditions introduced in order to prevent a

rotation of the coordinate system (Eqs. (34), (35) and (37)) are always fulfilled.

Corresponding to equation(38) axisymmetric shapes are calculated minimizing the

function

g =w~+A~(a- I)+A~(v-vo) +Aa(Aa-Aao)+A~z~. (54)
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After substituting w~, a, u, ha and z~ in equation (54) by the corresponding expressions

extrema of g are determined for vanishing values of the first derivatives of g with respect to

the amplitudes Xo, Xi,. ,Xy~~ as well as to the Lagrange multipliers A~, A~, Aa and

A~. The resulting system of nonlinear equations for the calculation of amplitudes and

Lagrange multipliers is solved by the use of Newton's method. The stability of the shapes is

determined as described in section 5.

7. Results of the axisymmetric case.

In the following the results of the calculation of axisymmetric vesicle shapes by the use of the

model equations specified in the previous section will be presented. In order to evaluate the

accuracy of the model, these results are compared with those obtained before by another

method described in [6]. By the latter method axisymmetric equilibrium shapes are

determined on the basis of an Euler-Lagrange ansatz, I,e, without the approximations used in

the model presented here. In order to distinguish between these two different approaches
they are called in the following the third order method and the Euler method, respectively.
The aim of this paper is to investigate in detail the third order method. Therefore, it is of

special interest whether this method can reproduce the main features of the axisymmetric
shapes obtained by the Euler method (cf. [6, 8]).

First, several results obtained by the Euler method shall be shortly repeated and explained.
Figure I shows the membrane bending energy of equilibrium shapes for various normalized

values of the difference of monolayer areas Aao at the relative volume vo
=

0.95. (Note that

the same normalization procedure was used in both approaches, I,e. in the Euler method as

well as in the third order method. ) Each point of the curves of figure I corresponds to a shape
of extremal bending energy determined by the Euler method. Obviously, all these shapes can

be assigned to various classes. Shapes are considered to belong to the same class if they can be

transformed into each other by continuous transitions through equilibrium shapes, and if they

are characterized by the same symmetry properties. Five different classes of shapes are shown

in figure I where they are denoted by Roman numbers.

ii

w~

1.3

1.2

u

i-i

1.00 1.01 1.02 103 1.0(

Aoo

Fig. I. -Relative membrane bending energies w~ of various axisymmetric equilibrium shapes
calculated by the Euler method as functions of the relative leaflet area difference Aao for

vo
=

0.95. I-V : different classes of shapes. Mj and M~ : minima of w~ belonging to the classes II and IV,
respectively, of mirror symmetric shapes. Sj and S~ : symmetry breaking points. Points a-g correspond to

the shapes shown in figure 2A.
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Shapes of the oblate class II as well as of the prolate class IV are characterized by a mirror

symmetry with respect to their equatorial plane (cf. Fig. 2A b, c, e and f~. As shown in

figure I these two classes contain the shapes for which, at the given volume, the energy
w~(Aao) attains one of the local minima denoted by Mi and M~, respectively. At the points
Si and S~ of the classes II and IV new branches appear which correspond to non-mirror

symmetric shapes belonging to the classes I and V, respectively (cf. Fig. 2A, a and g).
Accordingly, Si and S~ are called symmetry breaking points. Obviously, at the same

Aao-values the shapes of the classes I and V have lower energies than the corresponding
shapes of the classes II and IV, respectively. Shapes of classes I and II as well as of classes IV

and V are continuously transformed into each other passing the symmetry breaking points
Si and S~, respectively. The shapes of the intermediate class III are non-mirror symmetric (cf.
Fig. 2A, d). They involve on the left-hand side of the corresponding curve (Fig. I) the

characteristics of oblate shapes and on the right-hand side the characteristics of prolate ones.

The behaviour of the w~ (Aao)-curve of class III at its ends is still unclear because of numerical

difficulties.

A~j /g fi ) ~j ~j [
u c e f

g
~~ ~ ~ ~ ~

a c e f

Fig. 2. Examples of axisymmetric equilibrium shapes calculated by the Euler method (A) and the

related shapes obtained by the third order method (B) for points a-g in figures I and 3, respectively. The

shapes b and f of (B) have been shown by the third order method to be unstable.

Let us compare the results of the Euler method with those of the third order method where

in the computations the expansion in spherical harmonics is cut at i~~
=

lo. For that the

results of the latter method are depicted in figure 3 using the analogous w~(Aao)-plot as in

figure I. The values of amplitudes as well as of Lagrange multipliers of several solutions

belonging to different classes in figure 3 are listed in table I. The corresponding shapes and

the related shapes obtained by the Euler method are shown in figures 28 and 2A,

respectively.
Obviously, the results obtained by the two methods are almost identical. The comparison of

figures I and 3 shows that at the relative volume vo
=

0.95 these two approaches yield
principally the same w~(Aao)-dependence of an axisymmetric vesicle. Both approaches
classify the calculated shapes in the same way, and the corresponding classes of shapes have

the same symmetry properties. The mirror symmetry of the shapes of the classes II and IV (cf.
Fig. 28 b, c, e and f~ is reflected in the zero values of the coefficients Xi with odd numbers of

I (Tab. I). In addition, for these shapes the Lagrange multiplier A~ is zero since the

requirement that the mass centre of the vesicle is the origin of the coordinate system is

identically fulfilled.
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ii
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Fig. 3. Relative membrane bending energies w~ of axisymmetric equilibrium shapes calculated by the

third order method (i~~~
=

lo) as functions of the relative leaflet area difference Aao for vo
=

0.95.

Broken lines indicate unstable shapes. Points a-g correspond to the shapes shown in figure 28. For all

other notations cf. figure1.

Table I. Relative differences of monolayer areas Aao, relative bending energies w~,
amplitudes Xi and Lagrange multipliers for the solutions corresponding to points a-g in

figure 3. The corresponding shapes are shown in figure 28.

a b c d e f g

Aao 1.0120 1.0135 1.0176 1.0244 1.0300 1.030()

w~ I-I 1.1581 1.1057 1.2052 1.0892 1.l14[ 1.1004

Xo 0.0141 0.0147 0.0160 0.0069 0.0174 0.0140 0.0146

Xi 0.0000 0.0000 0.0037 0.0000 0.0000 0.0157

X~ 0.2565 0.2720 0.2825 0.0441 0.2844 0.2452 0.2483

X~ 0.0898 0.0000 0.0000 0.211 0.0000 0.0000 0.0668

X4 0.0137 0.0499 0.0280 0.0223 0.0460 0.0870 0.0617

X5' 0.0000 0.0000 0.0024 0.0000 0.0000 0.0322

X~ 0.0017 0.0041 0.0045 0.0151 0.0121 0.0397 0.0248

X~ 0.0000 0.0000 0.0043 0.0000 0.0000 0.0153

X8 0.0002 0.0002 0.0009 0.0001 0.0038 0.0187 0.011

X~ 0.0001 0.0000 0.0000 0.0017 0.0000 0.0000 0.0065

X
io

0.0000 0.0000 0.0002 0.0008 0.001 0.0080 0.0047

A~ 24.3902 33.9840 3.1097 5.9977 2,1675 8.8526 2.3619

A
~

8.3268 II.0796 2.1846 4.2186 1.5623 3.6600 0.6300

A
a

24.9017 36,1541 0.0000 0.0000 0.0000 6.5357 2.4747

A
~

0. 2706 0.0000 0. 0000 0. 03 10 0. 0000 0. 0000 0. 2673
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The points c, d and e (Fig. 3) are located at extrema of the w~(Aao)-curves of classes II, III

and IV, respectively. Therefore, the Lagrange multiplier Aa vanishes for the corresponding
solutions (Tab. I ; c, d and e). In general, all shapes of the different classes are characterized

by X~ as the amplitude with the greatest absolute value. The only exception is the middle

region of the class of intermediate shapes (III) where X~ dominates.

The calculated Xi-values may be used for a rough evaluation of the influence of the limited

number of spherical harmonics on the results of the method. If for higher I the values of

(Xy become very small it may be expected that the error resulting from the use of a finite

number of spherical harmonics is sufficiently small. This is in fact the case for most points of

the curves in figure 3. (Moreover, calculations performed with i~~~
=

6 show that a moderate

reduction of the i~~~-value has only a minor influence on the results. On the other hand, high
values of (Xy at higher I indicate that in this case the use of spherical harmonics meets with

difficulties.

For a given solution the accuracy of the third order method can be evaluated as follows. On

the one hand, the amplitudes Xi of this solution have been calculated by the third order

method for input values ao =

I, vo and Aao in such a way that they fulfil equations (21-23). On

the other hand, the initial equations (6-9) do not involve the approximations of the third order

method. Thus, if the function r =
r(if

= ro + IX Pi (cos if) (I
=

0., i~~) with the same

coefficients Xi is used in the axisymmetric versions of these initial equations, and if the values

of the constraints are recalculated by a numerical integration of the resulting expressions (e.g.
by Simpsons rule) these values will, in general, be different from the input values, and the

corresponding differences will globally represent the effect of the approximations of the third

order method. The latter values of the constraints are denoted by a~~, v~~~
and Aaj~~,

respectively. It is worth mentioning that the values of vo and
v~~~ must be the same since no

terms have been neglected to obtain equation (15). On the other hand, the differences

between the input values ao =

I and Aao and the values a~i and Aa~~~, respectively, can be used

for each solution as a criterion of the accuracy of the method. In addition to that, one may

calculate the difference w~ wi~~ by the same procedure. The resulting relative differences

were calculated as functions of the volume vo for those two characteristic points of the

w~ =

w~(Aao)-curve where w~ attains a local minimum (cf, points Mi and M~ in Fig. 3). The

results are given in figures 4a and 4b, respectively. As expected, the accuracy of the third

order method decreases with decreasing values of vo. For uo
=

0.95 the degree of inconsistency
of the model is of the order 10-3 to 10-~. Compwing figures 4a and 4b it can be seen that at

the first local minimum of w~(Aao) characterized by low Aao,values the accuracy of the third

order method is higher than at the second local minimum characterized by higher
Aao,values.

The third order method should be regarded as an improvement of the analogous method

which involves only the terms up to the second order in the deviation from a sphere.
Neglecting also the cubic terms in equations (14-16) it can easily be proved that these three

constraints are not independent anymore. Within the second order approximation the

following equation holds at equilibrium :

r(-3r(Aao+3ro-uo=0. (55)

Since ro is fixed by the relation ro =
(uo)~'~ it follows that for a given relative volume

uo all classes are condensed into one point characterized by the relative difference of

monolayer areas Aao
=

(uo)- ~'~ For uo =
0.95 this point is at Aao

=
1.0172. It follows that this

second order approximation can not reproduce the results of the Euler method presented in

figure I. There are two other reasons for taking into account at least the cubic terms of the

deviation from a sphere in the Taylor expansion. First, within the second order approximation
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Fig. 4. Relative differences e~, e~ and e~ between the values of model quantities of the third order

method and the integrated values calculated by the exact equations (6), (7) and (9) as functions of the

relative volume vo e~ =

(ao a~i)loo, Ed =
(Aao Aa~i)/Aao and e~ =

(w~ w~i)/w~, a) For the

wb-minimum of class II (cf. M~ in Fig. 3), b) For the w~-minimum of class IV (cf. M~ in Fig. 3).

one gets for axisymmetric shapes U)~~
=

(Uyo)~. Consequently, this approximation does not

distinguish between positive and negative values of Uyo. Different signs of Uyo, however, may

correspond to completely different shapes [3, 17, 18]. Second, within the second order the

bending energy and the constraints are degenerated with respect to the coefficients of those

spherical harmonics which characterize the nonaxisymmetric features of the solutions, I.e.

they depend only on the sums U)~~ but not on the amplitudes Uy~ (cf. Eqs. (20-24). Thus, the

third order approximation is the lowest order in the Taylor expansion which enables also the

determination of nonaxisymmetric shapes of phospholipid vesicles.

Using the third order method the stability of the resulting shapes can be determined by the

relatively simple procedure described in section 5. A solution is stable if all eigenvalues of the
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matrix of second derivatives of the bending energy with respect to independent amplitudes of

spherical harmonics are positive. As the result of this stability analysis within the

axisymmetric case it has been shown that the mirror symmetric shapes of both classes II and

IV become unstable at the symmetry breaking points Si and S~, respectively.
Accordingly, curves in figure 3 which correspond to unstable shapes are drawn as broken

lines. One may conclude that these unstable mirror symmetric shapes actually cannot be

observed. For the corresponding Aao-values the vesicle can assume only the non-mirror

symmetric shapes belonging to the classes I and V.

8. Discussion of the axisymmetric case.

As shown in the previous section the third order method and the Euler method yield
qualitatively the same results. On the other hand, there are considerable differences between

the values of the model quantities obtained by the two methods. In the following, the origins
of these differences are studied in more detail.

The third order method involves approximations in connection with the Taylor expansion in

the deviation from a sphere as well as with the use of a finite number of spherical harmonics

within the Ritz procedure. Although the proof of the convergence of the Ritz procedure is

problematic for the given variational problem it can be expected that for sufficiently high
values of i~~~ the accuracy of the third order method is mainly limited by the third order

expansion. This statement can be proved by another way of calculating axisymmetric vesicle

shapes which is called here the modified Euler method. By this method shapes are determined

on the basis of the third order expansion in the displacement from a sphere but without

expansion in spherical harmonics which allows to estimate the effects of these two different

approximations. The basic idea of the modified Euler method is to apply an Euler-Lagrange

ansatz to the axisymmetric (third order) versions of equations (13,16) and (31). Partial

derivatives with respect to the polar angle p must vanish, so that the resulting Lagrange
function can be used in the corresponding Euler equation with the azimuthal angle

if being the only independent variable. The resulting system of differential equations is solved

in an analogous way as within the Euler method (cf. [6, 8]), I,e, without further

approximations. Note that the primary purpose of this modified Euler method is not the

determination of equilibrium shapes but just the evaluation of the error resulting from the use

of a third order Taylor expansion.
Figure 5 shows the results of the modified Euler method under the same conditions as used

to obtain figures I and 3. The lines belonging to classes II and V in figure 5 could not be

prolonged in direction of higher values of Aao because of numerical difficulties. As expected
the modified Euler method yields globally the same results as the Euler method (Fig. I) and

the third order method (Fig. 3).
The influence of the use of a finite number of spherical harmonics on the accuracy of the

solutions of the third order method can be estimated by comparing the results of this method

(for i~~
=

lo, Fig. 3) with those of the modified Euler method (Fig. 5). For lower

Aao-values (Aaow1.025) the results of these two methods are almost identical. This is in

accordance with the above-mentioned minor effect of amplitudes Xi at higher I due to their

small absolute values for almost all solutions shown in figure 3. This effect can also be proved
by calculating vesicle shapes for varying values of i~~ and comparing the results with those of

the modified Euler method. Such calculations are performed for i~~
=

5 to 15 at the two

Aao-values corresponding to points a and g in figure 3, respectively. The relative differences

between the bending energies w)~~ obtained in this way and the corresponding values

w)"~ calculated by the modified Euler method are depicted in figures 6a and 6b, respectively. It

can be seen that with increasing i~~~-values the results of the third order method approach
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Fig. 5. -Relative membrane bending energies w~ of various axisymmetric equilibrium shapes
calculated by the modified Euler method as functions of the relative leaflet area difference

Aao for vo
=

0.95. For notations cf. figure 1.

ei si

o.oi

0.00
5 6 7 8 9 lc 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15

'mar 'mar
a) b)

Fig. 6. -Relative differences et between the bending energies w)~~ calculated for various values of

i~~ by the third order method and the corresponding value w)"~ obtained by the modified Euler method

in dependence on
i~~.

et =

(w)~~-w)"~)/w)"~, a) For Aao =1.012 (cf, point a in Fig. 3). b) For

Aao
=

1.03 (cf, point g in Fig. 3).

those of the modified Euler method. The differences between the results of these two methods

are already for i~~
=

6 smaller than the differences between the results of the modified Euler

method and the Euler method. The latter differences represent the error which is caused by
the third order expansion. It is evident, therefore, that the increase of i~~~ up to very high
values is not necessary since it would not improve the results of the third order method.

It can be concluded that the main error of the third order method is caused by the third

order Taylor approximation. This error can be estimated by comparing the results of the

Euler method (Fig, I) and the modified Euler method (Fig. 5). The differences between these

two methods become considerable especially for higher values of the relative leaflet area

difference Aao (cf, classes IV and V in Figs, I and 5). Obviously, the term «
nearly spherical
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shape
»

does not comprise simply all shapes of a volume vo close enough to vo
=

I but for

every given volume only those shapes whose Aao,values are within a certain limited region.
The differences in the w~(Aao)-curves shown in figures I and 5 may be explained by the fact

that for the shapes belonging to the classes IV and V the deviation u becomes quite large at

the poles of these shapes ((u(
=

ro/2, cf. Fig. 2, f and g) so that the requirement that the

shapes must be nearly spherical is hardly fulfilled. It follows, that in general the accuracy of

the third order method depends on the degree to which the calculated shape is nearly
spherical.

Within the Euler method all calculations are independent of the origin of the chosen

coordinate system (cf. [6]). It is evident that this independence is lost within the methods

using a third order approximation. In these methods the model quantities are expressed in

terms of the deviation from a corresponding sphere whose centre is the origin of the

coordinate system. Consequently, these deviations are different for different positions of the

reference frame. In particular, the contributions of neglected terms of higher orders in

u are changing for varying positions of the corresponding sphere, so that the variational

procedure yields new values of the model quantities as well as new shapes. In figure 7 the

bending energy determined by the modified Euler method for a vesicle shape of class I

(vo
=

0.95, Aao
=

1.013) is shown as a function of z~, I.e, of the distance between the mass

centre of the vesicle and the origin of the coordinate system. The dot at z~ =

0 corresponds to

the case where origin and mass centre are identical, I,e. the point used above to fix the

coordinate system in the third order method as well as in the modified Euler method. If the

coordinate system were not fixed the minimization of the bending energy would be performed

also with respect to z~, I.e, along the curve shown in figure 7. Obviously, for increasing values

of z~ the bending energy would decrease. However, a large shift of the corresponding sphere

relative to a given shape increases the average absolute deviation of this shape from the

corresponding sphere and, therefore, also the error of the third order expansion. In fact, the

error of the method becomes with increasing z~-values so large that the corresponding results

must be considered to have no meaning within the present model. This behaviour was also

tested for the relative volume vo
=

0.999 and it was observed that an artificial dependence of

the bending energy on z~ can also be found for almost spherical vesicle shapes.

ii

w~

i io

i off

i off

i oi

102
-01 00 01 02 03 01 05 0fi

Zm

Fig. 7. -Bending energy wb of axisymmetric shapes calculated by the modified Euler method as

function of the distance between the origin of the coordinate system and the mass centre of the vesicle.

Parameters : vo
=

0.95, Aao
=

1.013.
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It follows that leaving the origin of the coordinate system free would cause a completely

wrong behaviour of the model. In this work the mass centre of the vesicle was chosen as the

centre of the corresponding sphere, I,e, the origin of the coordinate system. Of course, there

are also other possibilities for choosing the position of the reference frame. For example, one

could require that the average absolute deviation of the vesicle shape from the corresponding

sphere attains a minimum. The present choice was made mostly for practical reasons.

Conceming the stability of the calculated vesicle shapes the third order method represents

an improvement compared with the Euler method since it enables the stability analysis by a

relatively simple procedure. It is important to note that the results of the stability analysis

performed within the third order method should be carefully applied for a generalization.
Results conceming the stability of shapes are valid only within the frame given by the finite

number of spherical harmonics used. In other words, the stability analysis of a given solution

is as general as the method used to calculate the corresponding shape. Taking into account the

good correspondence of the results of the Euler method and the third order method one may

expect, however, that the results of the stability analysis are also valid for nearly spherical
vesicle shapes calculated by the Euler method.

Summarizing the results of the application of the third order method to axisymmetric shapes

one may conclude that this method reproduces the main features of the results obtained

before by the Euler method. It is suggested, therefore, that the approach presented in this

paper is applicable to the general case of the determination of nearly spherical vesicle shapes
without symmetry restrictions.

9. Application of the third order method v4thout symmetry restrictions.

All mathematical details needed to determine equilibrium shapes without restricting the

calculations to a certain symmetry are given in sections 2-4. The corresponding computations

are performed with i~~~
=

6 at the relative volume uo
=

0.95. That means that for every shape
the values of 49 amplitudes together with those of 9 Lagrange multipliers are determined

solving the corresponding system of nonlinear equations. As the main result of this procedure
the bending energies w~ of equilibrium shapes are again calculated for varying values of the

difference of monolayer areas Aao. The results are shown in figure 8. (Note that the scales in

this figure are different from those used in Figs, 1, 3 and 5.)

It can be seen that all axisymmetric solutions are also obtained within the general

treatment. For these solutions the computation yields Xi~
=

0 and X)~
=

0 if m # 0 (for the

definition of these amplitudes cf. Eq. (39)). In figure 8 the same notation as in figure 3 was

used in order to identify the characteristics of the five classes of axisymmetric shapes.
The only new class obtained by the general treatment is denoted by VI. Shapes belonging to

this class are not axisymmetric. Nevertheless they are characterized by a high symmetry,
namely by a threefold mirror symmetry where every symmetry plane contains a pair of axes of

the Cartesian coordinate system. Figure 9 shows the cross-secfiions of a nonaxisymmetric
shape of class VI (Aao

=

1.02) with its three symmetry planes. For the shapes of class VI the

only non-zero amplitudes are those amplitudes Xi~ for which both I and m are even numbers.

The values of non-zero amplitudes as well as of Lagrange multipliers calculated for the shape
shown in figure 9 are given in table II. It is clear that for shapes of such a symmetry all six

Lagrange multipliers which correspond to the constraints fixing the coordinate system are

zero.

The nonaxisymmetric vesicle shapes of class VI can be continuously transformed into the

axisymmetric ones of the classes II and IV by passing the symmetry breaking points
53 and 54, respectively. S~ and 54 are not identical with Mi and M~ but are located at lower
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Fig. 8.- Relative membrane bending energies w~ of equilibrium shapes of different symmetries
calculated by the general third order method (i~~~

=

6) as functions of the relative leaflet area difference

Aao for v~
=

0.95. Broken lines indicate unstable shapes. I-V different classes of axisymmetric shapes.
VI : class of nonaxisymmetric shapes. Mi and M~: minima of the w~-curves of classes II and IV,

respectively. Sj-54 symmetry breaking points.
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Fig. 9.- Cross-sections of a nonaxisymmetric shape obtained by the general third order method

(i~~
=

6, v~
=

0.95, Aao
=

1.02) with its three symmetry planes (cf. Fig. 10, c).

Aao-values, respectively. The transformation of an oblate shape (class II) into a prolate one

(class IV) can easily be understood as a transformation along the curve of class VI in the

direction of increasing Aao-values. During this transformation the symmetry breaking points

S~ and 54 are passed in this order. Let us start such a transformation from an oblate shape
whose symmetry axis is the z-axis of the Cartesian coordinate system. Beyond the point

S~ this shape is more and more laterally elongated in direction of the x- or the y-axis. At

54 the resulting axisymmetric prolate shape has one of these two axes as symmetry axis. If it is

then rotated by ho
=

w/2 in such a way that the z-axis is again the symmetry axis, this prolate
shape is identical with the corresponding shape obtained within the axisymmetric case.

It shall be noted that this result conceming the existence of nonaxisymmetric shapes is in

accord with [20] where nonaxisymmetric ellipsoids with three reflection planes were supposed
to fill the gap between oblate and prolate shapes in the phase diagram.
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Table II. Values of model quantities, amplitudes and Lagrange multipliers characterizing a

nonaxisymmetric shape obtained by the general third order method. The shape is shown in

figure 9.

parameters : v~
=

o_95000

Aa~
=

1.02000

bending energy : w~ =

1.09602

non-zero amplitudes : X~O
=

0.01708

X(o
=

0.23194

X (~
=

0. I 1814

X[o
=

0.02279

X[~
=

0.01554

X~
=

0.00989

Xio
=

0.00373

X)~
=

0.00295

Xi
=

0.00194

X)~
=

0.00137

Lagrange multipliers : A~
=

4.37637

A
~

=

2.54524

Aj
=

1.51796

A~
= A~ =

A~
=

A~
=

~
=

A~
=

0.00000

stability : all signs of the 40 eigenvalues are positive

The stability analysis performed within the general case yields in the neighbourhoods of the

symmetry breaking points Si and S~ the same results as within the axisymmetric case. In

addition, it is shown that all shapes of class III are unstable with respect to nonaxisymmetric
deformations. Furthermore, the shapes of the classes fl and IV become unstable at

S~ (with increasing Aao) and 54 (with decreasing Aao), respectively. In figure 8 all curves

belonging to unstable solutions are drawn as broken lines. It is seen that only one shape is

stable for every Aao-value. In all cases the stable shape is characterized by the lowest energy

w~ at the given Aao.
In this way the minimum M~ (class IV) of the w~(Aao)-curve is found to be the global

minimum of this dependence. The corresponding prolate shape (Fig. 28, e for i~~
=

10) can

be interpreted as the most «
relaxed

»
shape at the given relative volume vo

=
0.95. That

means that the vesicle would assume this shape if Aao were allowed to change by some slow

process, for example, by a transversal movement of phospholipid molecules from one

monolayer to the other (so-called flip-flop) under quasi-equilibriurn conditions.

Summarizing the results of the third order method in the general case one can say that this

method yields a complete picture of the behaviour of the shape of a nearly spherical vesicle. It

is possible to describe the shape transformations of such a vesicle with respect to varying
differences between the areas of the two monolayers (Aao). There are no gaps left between

different stable equilibrium shapes in the w~(Aao)-diagram, I-e- a given stable shape can be
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transformed into any other stable shape in a continuous manner by changing Aao. In this way a

vesicle can attain shapes which are characterized by the following symmetry elements :

(I) one symmetry axis (classes I and V) ;

(it) one symmetry axis and one equatorial symmetry plane (classes II and IV) ;

(iii) three symmetry planes (class VI).

Figure10 shows a series of stable equilibrium shapes belonging to different classes and,

therefore, characterized by different symmetries. These shapes were obtained by the use of

the general third order method for various values of Aao (vo
=

0.95, i~~
=

6).

a)

d)

b)

~j e)

Fig. lo. Examples of stable equilibrium shapes of different classes calculated by the general third

order method (i~~~
=

6, vo =
0.95). a) Aao

=
1.01, class I b) Aao

=

1.0135, class II ; c) Aao
"

1.02,

class VI ; d) Aao
=

1.0241, class IV e) Aao
=

1.03, class V. The shapes a, b, d and e are axisymmetric

whereas shape c is nonaxisymmetric. The prolate shapes d and e were rotated by Ad
=

w/2 with respect

to those positions in which they are continuously obtained from shape c by increasing Aao. This was done

in such a way that their symmetry axis has again a vertical direction.
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10. Conclusions.

In the present paper a mathematical model to determine nearly spherical equilibrium shapes
of phospholipid vesicles and their stability is developed without restrictions to any symmetry.
It is based on the bilayer couple concept and assumes that equilibrium shapes correspond to

the minimum of the membrane bending energy at constant values of the membrane area, the

vesicle volume and the difference of areas of the two leaflets of the phospholipid bilayer.
The bending energy as well as the three constraints are expanded up to the fourth order in

terms of the deviation from a sphere. Taking into account all terms up to the third order the

resulting integrals are calculated by expressing the deviation as a series of spherical
harmonics. It was found that the coordinate system has to be fixed which was done by

choosing the mass centre of the vesicle as its origin. Furthermore, two of its axes were fixed in

order to prevent a rotation of the reference frame. This procedure to fix the coordinate

system yielded six additional constraints. For the calculation of equilibrium shapes a Ritz

procedure was applied by searching for those sets of amplitudes of spherical harmonics which

minimize the expression for the bending energy and, at the same time, fulfil the nine

constraints.

Furthermore, a procedure to determine the stability of shapes obtained by the third order

method is developed. Hitherto, a complete stability analysis has not been performed within

the Euler method. The stability analysis presented here takes into account the constraints by
distinguishing between dependent and independent amplitudes of spherical harmonics. A

vesicle shape is stable if all eigenvalues of the matrix of second derivatives of the bending

energy with respect to independent amplitudes are positive. The resulting procedure was

applied to the axisymmetric version of the third order method as well as to the method in its

general form. Since the general third order method yields many different solutions the

determination of their stability is very useful in order to decide whether the corresponding
vesicle shapes can be assumed to exist.

For the special case of axisymmetric shapes the numerical results of the third order method

were compared with those of the Euler method which does not involve the approximations of

the former method. It was shown that up to a certain precision the third order method

reproduces the results obtained by the Euler method. Since the main error of the third order

method was found to be due to the Taylor expansion in terms of the deviation from a sphere it

must be required that the shapes are nearly spherical.
Applying the general third order method, stable vesicle shapes of different classes were

calculated. It was shown that at the relative volume vo
=

0.95 the global minimum of the

membrane bending energy with respect to varying Aao-values corresponds to a prolate
axisymmetric shape which is also mirror symmetric with respect to its equatorial plane.
Starting from this shape one passes at decreasing Aao the region of nonaxisymmetric shapes
and arrives eventually at an axi- but non-mirror symmetric cupped shape. In contrast to that,

an increase of Aao leads to an axisymmetric pear-like shape. Within the present model a

further change of Aao to even lower or higher values, respectively, is problematic since the

corresponding shapes are not nearly spherical anymore, As shown by previous studies using
the Euler method the limiting shape of class I (low Aao-values) is a sphere containing another

invaginated sphere whose membrane is oriented inside out, I.e. this invaginated sphere
encloses extemal medium. On the other hand, the limiting shape of class V (high

Aao-values) consists of two spheres sitting on top of each other. In this case both spheres
contain the vesicle medium, I.e. the smaller sphere is evaginated [6, 9, 10]. Assuming that

these limiting shapes are also stable they may be taken into consideration in order to

supplement the description of the general behaviour of vesicle shapes with relative volumes

close enough to unity.
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Conceming the Taylor expansion in terms of the deviation from a sphere it was shown that

the second order of this expansion is not sufficient to calculate a w~(Aao)-dependence of

axisymmetric shapes. Taking into account also the cubic terms a good agreement of the third

order method and the Euler method was obtained for axisymmetric vesicles with relative

volumes vow 0.95. Furthermore, it was found that the third order method can describe also

nonaxisymmetric shapes which were assumed to exist in the gap of the phase diagram of

axisymmetric shapes between oblate and prolate ellipsoids [8, 20]. For nearly spherical
vesicles these nonaxisymmetric shapes are ellipsoids with three reflection planes.

In section 2, the equations for the bending energy (13) and the three constraints (14-16)
contain also the fourth order terms of the Taylor expansion. In principle, these terms could be

included into the calculations, and the corresponding results would be expected to be more

accurate than those of the third order method. However, taking into account the good

agreement of nearly spherical shapes obtained by the third order method and the Euler

method, respectively, it can not be expected that for these shapes the inclusion of fourth order

terms would lead to qualitatively new results. On the other hand, if the deviation

u is not small compared with ro any Taylor expansion will meet with difficulties, so that for the

calculation of the corresponding equilibrium shapes other mathematical methods have to be

envisaged.
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Appendix.

Calculation of integrals by using spherical harmonics.

To obtain equations (20-25) from equations (13-16) one has to expand the displacement
u(if, q~) in spherical harmonics (cf. Eq. (17)) and to calculate the corresponding integrals.
This can be done by using the properties of spherical harmonics, e.g. their orthonormality and

the eigenvalue equation : AYI~
=

I (I
+ I ) Yi~. In addition, for the calculation of products

of three spherical harmonics the coupling rule :

~iimj ~i~m~ " ~j2~ (~l ~2
>

Jll1Jll2) ~f,
mj + m~

(2il)
f

can be used. The coefficients A(iii~i;mim~)
are defined by the Clebsch-Gordan

coefficients C (ii i~ I
; mi m~) (cf. [23]) as follows :

1(2
ii

+ 1) (2 i~ + 1)
~ (ii12 I ml m2)

~ ~
~ ~~ ~

C (ii 12 I ml m2) C (ii12 I ° °) (A2)

Indices I and m, (I =1,2) have to fulfil the conditions (26-28) where I replaces
i~. The integral of products of three spherical harmonics can then be calculated in the

following way

iYiimj Yi~m~ Yi(m~ dD
=

A (ii ~2 ~31mi m2) 8mj
+m~, m~

(A3)
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In a first step all expressions containing the V-operator are transformed by the use of the

relation

Vui Vu~
=

A(ui u~) ui Au~ u~ Aui (A4)
2 2 2

where ui and u~ denote arbitrary scalar functions. In this way one gets

and

Vu V [Vu ]~)
=

A u A (u~) u~ Au + u A(u Au ) + u (Au )~
2 2 2 2

u A (A (u~)) j
Au A (u~) (A6)

Taking into account relations (A5) and (A6) the only differential operator appearing in the

integrals is the A-operator, so that corresponding expressions can be simplified using the

eigenvalue relation of spherical harmonics. Subsequently, all integrals needed can be

calculated by the use of the orthonormality condition as well as of equations (Al )-(A3). The

results of integration are listed below :

lu dD
=

/~
Uoo (A7)

iAu dD
=

0 (A8)

u~dD
=

f
U)~~ (A9)

t=o

iu Au dD
=

£ I(I
+ I) U)~~ (A10)~o

j
(Au )~dD

=

f i~(I +1)~ U)~~ (Al I)

t=o

jvu j2 dn
=

f
I (I

+ i ) U)2) (A12)

1=o

lu~ dn
=

£ £ £ U)))i~, i~
(Al 3)

11 12 13

lu~ Au dD
=

£ £ £ ii(i~
+ I) U))§~ i~

(A14)

11 t2 i~

lu (Au )~ dD
=

£ £ £ ii (ii
+ I ) i~(i~

+ I ) U))~i~ i~
(A15)

ii 12 13

lu [Vu ]~ dD
=

£ £ £ ii (ii
+ I U))~i~, i~

(A16)
2

ii 12 13

vu v ( jvu j2) dn
=

jj jj jj ii (I
i

+ i )
I ii (ii

+ i +
i~(i~

+ i ) u)~)i~ i~
(A17)

ii i~ i~
2 ~'
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U)~~ and U))~i~, i~ are defined in equations (24) and (25), respectively. The conditions for the

summations are given in equations (26)-(28).

The nine different integrals appearing in equations (29)-(31) may also be calculated by the

use of special properties of spherical harmonics. For that the trigonometric expressions

sin if cos q~, sin if sin q~ as well as cos if are replaced by corresponding combinations of the

I
=

I spherical harmonics (Yi ~). Then the integrals of first order terms read

iu sin ~ c°s v~ da
-

ji(Uii
+ Ut) ~A18~

iu sin ~Y sin q~ dD
=

I
~

" (Uii U() (A19)
3

iu
cos if dD

=

j~ " Uio. (A20)
3

For the integration of higher order terms it is necessary to consider in detail various

symmetry relations of the Clebsch-Gordan coefficients as well as the explicit expressions of

these coefficients for i~
=

I, I.e. of coefficients C (ii I i~ ; mi m~) (cf. [23]). The resulting

integrals may be written as follows :

iu~ sin if cos q~
dD

=

=

jj ~( j~[~j j~~j~~j
jj~jl (ut

~ ~ i
ui

1, ~
+ ui

~ ~ i
ut_

~

(A21)

1-i~--i~i

lu~sinifsinq~dD=

~~
f ~f (I+111)(I+111+1)

~~~ ~ _~ ~~ ~~~~~(2i-1)(2i+1) ~'~+~ ~~~'~ ~'~+~ ~~~'~

i~~~~~ ~ ~~
~i

~

+

i

j(2
I

~) i~
+ I)

~~~m ~f
I, m

+ ~fm Ut-
i,

m) (A23)

iU~ Sin ° CDS 42 dn
=

Z Z Z Z LB (ii 1213 m1m2) x

i~ i~ i~ ~~ ~~

x (Ufi
mi

Ui~
m~

Ui(,
mi + m~ + i + Ui(

mi
Ui(

m~ Ui~, m~ + m~ +
1) (A24)

iU~ Sin ° Sin 42 dn
=

Z Z Z it B (ii12 ~3 ; mi m2) x

i~ i~ i~ ~~ ~~

x Uij
mi Uf~m~ U(,

mi + m~ + i
Ui(

mi
U(m~ ui~,

m~ + m~ +
1) (A25)
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iu~ cos ~Y dD
=

jj jj £ £ jj (Ui~
~~

Ui~~~ Ui(
~~ +

~~) x

ii f2 f~ "j "2

x

~~~
'~~ ~ '~~~~

~~/
'~~~ ~ '~~~~

A (i~ i~ i~ I ; m i
m~) +

(2 ~-l) (2 ~+l)

+

~~~
~ '~~~ '~~~~ ~~~ ~ ~ '~~~ ~ '~~~~

A (ii i~ i~ + I ; mi m~) (A26)
(2 i~ + 1) (2 f~ + 3)

In equations (A24) and (A25) the notation B (ii i~i~; mim~) has been used for the

following expression :

Coefficients A (ii i~ i~ ; m i
m~) are defined by equation (A2). Summations in

equations (A24) and (A25) have to be performed under the conditions

[m~ ml,
,

(I
=

1, 2) ; [m~ + m~ + I w
i~ (A28)

whereas in equation (A26) the relations (27) and (28) have to be fulfilled. Furthermore, in

equations (A26) and (A27) the coefficients A (ii i~ I
; m i

m~), (I
=

i~ I, i~ + I ), are zero

if one of the conditions (26)-(28) is not fulfilled with I replacing i~ in those conditions.

References

[ii LIPOWSKY R., Nature 349 (1991) 475.

[2] HELFRtCH W., Z. Natu~orsch. 28c (1973) 693.

[3] DEULING H. J. and HELFRICH W., J. Phys. France 37 (1976) 1335.

[4] DEULING H. J. and HELFRICH W., Biophys. J. 16 (1976) 861.

[5] SVETINA S. and 2EK§ B., Biomed. Biochim. Acta 44 (1985) 979.

[6] SVETINA S. and 2EK§ B., Eur. Biophys. J. 17 (1989) 101.

[7] SHEETz M. P. and SINGER S. J., Proc. Nat. Acad. Sci. USA 71 (1974) 4457.

[8] SEIFERT U., BERNDL K. and LIPOWSKY R., Phys. Rev. A 44 (1991) l182.

[9] SVETINA S., KRALJ-IGLI~ V. and 2EK§ B., Proc. X. School Biophysics of Membrane Transport,
J. Kuczera and S. Przestalski Eds., fl (Wroclaw, 1990) p. 139.

[10] SVETINA S, and 2EK§ B., J. Theor. Biol. 146 (1990) lls.

[I Ii BERNDL K., KAS J., LIPOWSKY R., SACKMANN E. and SEIFERT U., Europhys. Lett. 13 (1990) 659.

[12] FARGE E. and DEvAux P. F., Biophys. J. 61(1992) 347.

[13] HELFRICH W., J. Phys. France 47 (1986) 321.

[14] FAUCON J. F., Mrrov M. D., MELEARD P., BIVAS I. and BOTHOREL P., J. Phys. France 50 (1989)
2389.

[15] DUWE H. P., KAS J. and SACKMANN E., J. Phys. France 51 (1990) 945.



l108 JOURNAL DE PHYSIQUE II N° 5

[16] COURANT R. and HiLBERT D., Methoden der Mathematischen Physik (Verlag von J. Springer,
Berlin, 1924).

[17] MILNER S. T. and SAmAN S. A., Phys. Rev. A 36 (1987) 4371.

[18] Ou-YANG ZHONG-CAN and HELFRICH W., Phys. Rev. A 39 (1989) 5280.

[19] PLEINER H., Phys. Rev. A 42 (1990) 6060.

[20] SEIFERT U., J. Phys. A : Math. Gen. 24 (I991) L573.

[21] SEIFERT U., Phys. Rev. Lett. 66 (I99I) 2404.

[22] SMIRNOW W.J., Lehrgang der hbheren Mathematik, Teil II (VEB Deutscher Verlag der

Wissenschaften, Berlin, 1963).
[23] ROSE M. E., Elementary theory of angular momentum (John Wiley & Sons Inc., New York and

Chapman & Hall Ltd., London, 1957).


