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Abstract. We show that excess surfactant, or salt, in the bulk phase of an
oil in water

ionic emulsion had strong consequences on the thermodynamical behavior of the dispersion.
Static light scattering experiments have been performed to investigate the attractive interaction

induced by micelles according to a depletion mechanism. This interaction
can be largely reduced

by adding salt. This depletion interaction leads to a
phase transition which is characterized

as

a
fluid-solid transition. The long range ordering of the droplets dense phase is characterized

by visible fight diffraction. The experimental phase diagram is quantitatively analysed
as a

transition between
a

perfect gaz and a harmonic solid. An analytical model is worked out from

which we analyze the general phase diagram in terms of the volume inaction of the droplets,
of the depth of their interaction potential and of the ratio (b/«), where b is the range of the

interaction and « the droplet diameter. Cuts of the phase diagram at constant (bla) feature
a

liquid-gas
or a

liquid-solid transition.

1. Introduction.

Emulsions are three-component mixtures of oil, water, and surfactant. Their structure can be

described as spherical droplets covered with surfactant and dispersed in a continuous phase
(solvent). Both oil-in-water and water-in-oil emulsions

are
encountered [1, 2]. Emulsions

are

of considerable industrial importance in a
broad range of applications such as

cosmetology,
food industry, lubrication and paint industry. In all cases, emulsion technology is a mean to

make homogeneous a mixture of oil and water. Emulsions allow also to avoid organic solvents,
what is one of the main property which is widely used in industrial areas such

as
lubrication

or paint.
Thermodynamically speaking, the emulsions are metastable systems which

means
that they

are prepared using an excess energy (mechanical in most cases). After
a period of time which

depends strongly on the preparation method, the surfactant and oil properties, the emulsion

eventually phase separates in two phases:
a water plus surfactant phase and the organic phase.

The phase separation process involves coalescence of the droplets which grow as a
filnction of
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time, this is an irreversible process. To come back to the original stage (emulsion), energy has

to be furnished to the system. The characteristic time of coalescence
can vary tremendously,

depending upon the systems. In certain cures, this time
can

be extremely long and
no coa-

lescence happens for years, making this kind of emulsions kinetically "stable". Thus,
one can

consider these emulsions
as

colloidal suspensions of spheres without worrying much about the

coalescence process. However, due to the non-equilibrium nature of the phase, the average
droplet size is not only

a
function of the system studied but also of the preparation way. Usu-

ally the polydispersity is large and depends also on the preparation scheme. In the following,

we
will restrict ourselves to systems which do n~t exhibit coalescence and consequen~ly

can be

considered
as

regular colloidal suspensions.
Besides the coalescence process, emulsions often exhibit an other type of destabilization. In

certain cases, flocculation may occur as for regular colloidal systems and depending upon the

respective density of the solvent and the droplets, sedimentation
or creaming occurs. Indeed,

the droplets aggregate, without coalescing, and the aggregates separate from the bulk. Cream-

ing happens when the droplets density is lower than the solvent density (oil-in-water systenw)
and sedimentation happens in the opposite case

(water-in-oil)~ The role of the emulsifier (sur-
factant) in causing flocculation has been first recognized by Cockbain [3] in 1952 but neither

his nor other work following his pioneering remarks offered
a plausible explanation [4]. It is

quite recently that an
explanation has been proposed to account for the flocculat.ion: indeed

Fairhurst et al. [51 and Aronson [6] have proposed that flocculation arises from depletion of

non adsorbed surfictant making micelles. This is similar to the well known destabilization of

colloids by non-adsorbing polyi-ners [7,11]. The same mechanism was also proposed to account

for flocculation of polystyrene latex by surfactant [12].
Depletion interactions arise in

a
colloidal system of interacting spheres when the solvent

contains a characteristic length (f) which is excluded from the volume comprised between

two approaching spheres at distance d (d < f). This mechanism leads to attractive effective

interaction between the sphe:es and is in certain cases responsible for flocculation. The first

theoretical description of such a mechanism
was

proposed by Asakura et al. [7] for a bimodal

distribuf.ion of hard spheres.
This mechanhn1has also been applied by Vrij [8] and Joanny et al. [9] to colloidal suspensions

in a
polymer solution le~ding to analytical expressions for the depletion pair potential between

colloidal particles. More recent.ly, De Gennes et al. [13] have proposed that a similar interaction

can occur between colloidal particles imbedded in a
binary critical fluid. A Percus Yevick

calculation leads also to effective attractive interactions when two sizes of part.icles are taken

into account [141. This phenomenon exists also in non isotropic liquid [16]. Let us point out

that it is a very general process that is entropic in origin. This comes from the fact that the

bulk entropy is increased when two colloidal particles approachas long
as

the distance between

the two surfaces of the particle is smaller than the correlation length of the fluctuations. Up

to now
besides

a
large amount of theoretical work there are

only a few experimental evidence

for the depletion mechanism [16, 17].
We present in this paper an experimental study of the effect of excess surfactant to the

thermodynarnical behavior of non coalescing emulsions (made of silicone oil, Sodium Dodecyl

Sulfate and water). Due to the extreme slowing down of the coalescence process we can
consider

the emulsion studied
as

being at equilibrium and thermodynamical treatment can be applied

to understand its behavior. Taking advantage of the creaming effect,
we were able to prepare

monodisperse emuloions [18]. This is the key point for a clean comparison with theories.

The paper is organizeA as follows. In part 2 the emulsion droplets-SDS-water-Nacl qua-

ternary phase diagram is presented and evidences for a liquid solid phase transition are given

using direct phase contrast microscofic-observations.
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In part 3, we introduce the light scattering experiments and we comment on the ability of

the Rayleigh-Gans approximation to describe the angular dependence of the light scattered by

emulsions like systems.

In part 4, we
study the correlations between the oil droplets in the fluid phase using static

fight scattering experiments. Attractive interactions are
measured originating in the presence

of SDS micelles via a depletion mechanism.

In part 5, we investigate the structure of the dense phase. A colloidal crystal structure is

demonstrated by visible light Bragg diffractions. Consequently we
conclude that attractive

forces drive a fluid-solid transition.

In part 6, we model the fluid-solid phase transition as a transition between a perfect gas

and a harmonic solid. This very simple view is able to fit quantitatively experimental phase
diagrams and predicts a universal logarithmic shape for any fluid-solid transition far from

appearance conditions of
a

triple point.
Finally in part 7, the competition between fluid solid and liquid gas transition is discussed

in terms of particles diameters compared to the range of the attractive potential. Then it is

demonstrated that emulsions give only
a

fluid solid phase transition which has been considered

up to now as flocculation because polydispersity masks the cristalline nature of aggregates.

2. Direct observations by optical microscopy and phase diagrams.

The stock emulsion studied has been prepared at Rh6ne-Poulenc Company Laboratory [19].
The technique used to make the stock emulsion is the classical inversion method [2]. The first

step is to mix slowly during IS mn aqueous emulsifier solution (5 g SDS, 10 g water) in 100 g
silicone oil (SDS surfactant

comes
from Prolabo and silicone oil comes from Rh6ne-Poulenc).

This first step leads to a water-in-oil emulsion with very large droplets (>10pm). This emulsion

is then inverted to-an oil-in-water emulsion using a
colloidal mixer (Moritz BF 50). Finally

this emulsion is diluted with pure water under mixing during a few minutes. The average
droplets size may range from 0.2 to a few microns. Let first consider the behavior of

a typical
polydisperse emulsion (oil volume fraction 4l

=
10il) upon SDS concentration changes. For

low values of the SDS concentration (close to the cmc, cmc =
8 x

10~~ mol,l~~ ), the emulsion is

homogeneous (see Fig. la) whereas for higher surfactant concentration, roughly 0.05mol,l~~,
oil droplets aggregate into clusters which coexist with free droplets (see Fig. lb). With time

these flocs separate from the dilute phase and form a cream on the top of the sample (silicone oil

density is 0.94). Before the separation occurs due to gravity effect, the microscope observation

clearly reveals
a

dynamical exchange between the free droplets and the ones trapped in the

clusters. Moreover, if the cream which is the droplet rich phase, is diluted with water, one

gets instantaneously an homogeneous emulsion showing that the transition is reversible. Note

that during this process, as mentioned by Aronson [6] for diRerent emulsions, there is no

coalescence processes. This flocculation phenomenon can be used to produce monodisperse
samples. Indeed, a

careful observation indicates that very close to the transition threshold, the

dense phase contains a majority of big droplets of the polydisperse emulsion. Therefore, the

cream
obtained after separation is richer in big droplets and the dilute phase is richer in small

ones. Repeating this operation is a very efficient way of separating droplets of differents sizes

[18]. A typical sample of
a

monodisperse emulsion (diameter
« =0.7 pm) extracted from the

polydisperse one
la) is shown in figure 2a. With such monodisperse systems, we will examine

again the effect of adding surfactant. As previously described, adding surfactant leads to the

formation of aggregates coexisting with free droplets (see Fig. 2b). Likewise, the two coexisting
phases (dense: aggregates and dilute: free droplets) exchange continuously particles

as
it

can
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be observed under microscope. This strongly suggests the existence of a true thermodynamical
equilibrium. Moreover the pure dense phase looks solid-like (see Fig. 3). Since we expect a

true thermodynarnical equilibrium, one can draw
a

phase diagram for various droplet sizes

(«
=

0.46 pm « =
0.60 pm « =

0.93 pm). First,
we present phase diagrams in the surfactant

concentration /oil volime fraction plane Fig. 4a). The surfactant concentration is expressed
as

the volume fraction of SDS micelles (critical micellar concentration (cmc)
=

8 x
10~~ mol~~

micellar diameter («m)
=

401 agregation number (v) =70). The limits between the one

phase region where only free droplets are observed and the twc-phase region where aggregated
and free droplets coexist have been determined by observations under microscope. The sc-

called creaming effect is systematically observed at the macroscopic level when the surfactant

concentration threshold is reached.

lo pm lo jtm

a) b)

Fig. I. Pictures taken with an
optical microscope using the differential interferential technique of

Nomarsky: each droplet is delimited by a black and white crescent. Picture la shows a homogeneous
polydisperse emulsion made of bee droplets for an oil volume fraction equal to 109l and a bulk

surfactant concentration equal to the cmc
(cmc

=
8 x

10~~ mol,l~~ ). The 16 picture shows the effect

of adding surfactant for the same oil volume inaction (c
=

5 x
10~~ mol.l~~)

:
flocs separate from a

coexisting fluid phase.

Owing to the ionic nature of the surfactant (SDS), the effect of salt has also been investi-

gated. Figure 4b presents phase diagrams for three selected samples. They are reported in

the surfactant/salt concentration plane for two distinct fixed values of the oil volume fraction

(4l
=

1il, 4l
m

10il). There are two different regimes :
for low salt concentration (Csait<0.2

mol.l~~), there is
a reentrant fluid phase: the solid melts when salt is added. This bffect

is opposite to what is expected, since the salt is likely to decrease the electrostatic repulsion
part of the pair potential and consequently should lead to a more attractive system stabi-

lizing the solid phase. For higher values of the salt concentration (0.3mol,l~~) flocculation

is observed, whatever the surfactant concentration. This transition is also reversible, but
no
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lo jtm lo ~m
- _

a) b)

Fig. 2. Picture 2a shows a monodisperse purified emulsion (~
=

lo Sl, c
=

cmc), the oil droplet
diameter is 0.7 pm. This emulsion was extracted nom the polydisperse one

(Fig. la). Picture 2b shows

again for the same monodisperse sample the effect of added surfactant: flocs and coexisting fluid are

clearly visible (c
=

4 x
10~~ mol,l~~).

lo /tm

Fig. 3. Picture sho~ving th~
structure of the dense phase for

« =
0.93 pm. The long range ordering

of this phase is clearly visible.

solid-like structure of aggregates is observed due to a too fast kinetic phase transition driven

by Van der Waals attractives forces [20].
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(see text below)
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: 10
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respectively to a =0.93 pm; 0.6 pm
and

0.46 pm and the
upper

two

egion
om

the
bottom fluid

phase
Note the ability of salt to

extend
the fluid phase region.
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Fig. 5. Kinetic approach for the depletion mechanism proposed by Vrij: when two large particles

are
close enough to each other, the region between them becomes inaccessible to the small ones. The

osmotic pressure of the small particles drives the bigger ones closer together. Following Vrij, this

osmotic pressure is taken to be the ideal gas one
(nmkT).

Attractive interactions must be evoked to explain consistently the phase diagram: indeed,
the phase transition occurs at low volume fractions, which is possible only with attractive

interactions in the absence of long range repulsive interaction (Debye length is of the order of
501) [21].

One plausible attractive mechanism, already proposed [5,6] is a depletion interaction induced

by surfactant micelles. The ideal gas approach developped by Vrij [8] is appropriate to describe

the depletion mechanism: micelles are very small objects compared to oil droplets, and are

always very dilute (micelle volume fraction am " I %). In other connections, resolutions of

triplet correlation functions using Percus Yevik closure approximation [14] show
a very good

agreement with the Vrij assumption, as long as
the volume fraction of small particles (micelles

in our
case) is less than 5 % and the dissymmetry in sizes remains of the order of ten. Let

us recall the Vrij approach based on ideal gas kinetic theory (see Fig. 5): when two droplets

come
closer to each other than the micellar diameter (am)

,

the inter droplet spacing becomes

an
excluded volume for micelles. This results in an attraction between colloids due to the non

compensated pressure. Indeed, the pressure exerted is nmkT outside the excluded volume,
where nm is the micelle concentration, and is zero inside.

The Vrij assumption leads to the equation:

u(r)
=

~~
n~

kT~3 l~
3 j

~
l jr 3~

~ 4 a 16 I (2.1)

where a is defined
as a

=

'~'~
r is the center to center separation distance between the

particles.

Since the ratio
'~, in our case, is very small (10~2), we can expand the Vrij equation with

«

respect to the quantity z =

'~ and truncating the expansion at the third order, we get for
«

the contact value potential:

u(«)
=

~
kT am ' (2.2)

2 am

This equation provides a
simple linear dependance of the contact potential with the micelle

volume fraction am and the ratio ' The range is always equal to am. Qualitatively the
am
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depletion mechanism described by equation (2.I) is consistent with phase diagrams shown in

figure 4a. Indeed, higher 4lm value are required as the droplet diameter is decreased to get
the phase separation, what is suggested by equation (2.2).

Finally, note that our
experimental phase diagram (Fig. 4a) compares qualitatively well with

the one
found by Vincent et al. [22] in

a
completely different system where depletion hypothesis

is applied to account for flocculation induced by polymers in a non aqueous solvent. We will

discuss further (Sect. 3) the salt effect responsible for the reentrant fluid phase appearance.

At this stage, we need the relationship between phase diagrams variables (surfactant
con-

centration and salt concentration) and pair interactions between droplets. These informations

have been obtained using the light scattering technique.

3. Static fight scattering experiments and Rayleigh-Gans approximation for emul-

sion like systems.

We used light scattering (and diffraction) to investigate the correlations between the big
droplets in the fluid phase, and the structure of the dense phase. Light scattering data

are

known to be easily interpretable only in the sc-called "single-scattering regime". In this regime,
each particle essentially senses the bare incident plane wave radiated by the light source. Sec-

ondary sources originating from the light scattered by the other particles are
negligible.

We suppose that the sample is illuminated by a source of wave vector ko and that the

observation is made in the direction parallel to a vector ks, with ks ("( ko (. The source

is polarized perpendicularly to the plane defined by ko and ks. In
a

medium composed of

spheres, and in the single scattering regime, the intensity of the scattered light takes on the

simple form:

I(q)
=

P(q) S(q) (3.1)

with

q =
ks ko (3.2)

S(q), the sc-called "structure factor", reflects the correlations between particles centers of mass

and is given by [23]:

S(~J
"

L
(~~~~~'~~~~) (3.3J

t,m

where rt and rm are the positions of the centers of particles £ and m, respectively.
P(q) is the "form factor". It depends on the size of the particle and

on
the refractive indices

of both the particle (np) and of the solvant (ns) around it.

Because the particles are
spherical and the medium is isotropic on a macroscopic scale, I(q),

P(q) and S(q) depend only on the modulus of q, which is given by:

is the wavelength of the light source in vacuum and b is the angle betrween ko and ks.

If the particle radius (a)
or

the difference An
= ns np are small enough, then P(q) is

just the squared modulus of the Fourier transform of a
ball of radius a [24]

P(~)
=

lb
(Sin ~a ~a CCS

a)1~
(3.5)
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Equation (3.5) is known as
the Rayleigh-Gans (RG) approximation for the form factor of a

sphere.
If the particles are large and if the contrast An is high, the RG approximation is expected to

fail and the single scattering approximation as well. In practice, in definitely multiple scattering
regimes, the way in which I(q) varies

as a
function of q is known to be influenced by the

sample and illuminated volume geometries. We used very small sample thicknesses, namely
in the range 10-40 pm, and we checked that the shape of I(q)

versus q was constant in this

range. This, we
think, rules out the possibility of a strong multiple scattering contribution to

the measured intensities. A rough criterion for the applicability of the RG approximation is

« [An [< (3.6)

The experimental orders of magnitude, An m 0.I and « -~ are neither definitely consistent

nor definitely unconsistent with inequality (3.6). The only way to decide is to calculate the

exact form factor directly from the Lorentz-Mie (LM) theory [25] and to compare with equation
(3.5). Figure 6 shows the LM and RG form factors for « =

0.93 pm, =
0.633 pm, ns "

1.34

and np =
lAl. In appendix A, we recall the results of the Lorentz-Mie calculation, and give

a few details about the way in which the LM form factor was computed. Clearly the two form

factors do not differ appreciably in the range of scattering angles where they take on significant
values. The RG form factor severely deviates from the exact one at large angles, in

a
region

of very low experimental signal to noise ratio. A short description of the experimental set up
is given in the next section.

In conclusion, although the emulsions under study
are always very turbid,

we
think

our

experimental conditions allow us to assume everywhere a single scattering regime and the

applicability of the RG approximation.

I 2
~

y °

$
-2

2
-4

~
i -6

O 50 loo 150
SCATfERING ANGLE (degrees)

Fig. 6. Comparison between the Lorentz-Mie and Rayleigh-Gans form factors for « =
o.93 pm

=
o.633 pm ns =1.34 ; np =

I,41.

4. Fluid phase and pair potential measurement.

In order to avoid multiple scattering, one way is to focus on very diluted systems, but in

that case only the very small q vector range is sensitive to pair interactions. Unfortunately

very small angle measurements are quite critical. An other approach consists in using more

concentrated systems (a
-~

20%) in such a way that the structure factor is substantially
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Fig. 7. Experimental set up for static light scattering experiments on emulsion fluid phase.
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Fig. 8. Scattering intensities versus wave vector in the fluid phase of the « =
oA6 pm, 4l

=
0.17

emulsion for three distinct situations. Points
are

experimental results and dotted lines are
theoretical

predictions (see text below) aj c
= cmc 4lm

=
0 cs

=
0 b) c

=
0.055 mol.l~~

,

4lm
=

0.012
,

cs
=

0 c) c
=

0.055 mol.l~
,

4lm
=

0.012 ; cs
=

0.2mol.l~~

affected by interactions for larger angles. As seen above, multiple scattering can be avoided

using very thin satnples (20 pm). We used the set up shown in figure 7. The emulsion is

contained between two quartz hemicylinders (4 cm in diameter).

The relatively high volume fraction of the emulsion, and thus the strong scattering of the
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200 & 20 %
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Fig. 9. Scattered intensities
versus wave vector in the fluid phase of the « =

0.93, 4l
=

0.2 emulsion

for three distinct situations. Points
are

experimental results and dotted lines are theoretical predictions
(see text below) a) c

= c«ic
,

~m
=

0
,

cs
=

0; b) c
=

0.025 mol.l~~
,

4lm
=

0.005
,

cs
=

0 c)
c

=
0.025 mol.l~~

,

4lm
=

0.005
,

cs
=

o.2 mol.l~~. Note that the theoretical form factor goes to zero

for q close to 10 pm~~ which is not reproduced by experimental data. This can be attributed to the

residual polydispersity
or

the presence of dust.

colloidal fluid ensures to make the scattering of droplets negligible compared to the one arising
from the colloidal fluid. Notice that the small objects (micelles) responsible for the attractive

interactions give rise to a negligible scattering compared to the one arising from the much bigger
oil droplets. Up to now, direct measurements of depletion interaction using light scattering
have been already attempted [16]. But in that case, polymers (responsible for the depletion
interaction) have

a
scattering comparable with the one arising from the colloidal fluid. Such

a situation complicates a lot the analysis in contrast with our experiment. Typical scattering
data I(q)

as a function of the wave vector q are
shown in figure 8 («

=
0.46 pm, 4~ =17 To) and

in figure 9 («
=

0.93 pm, 4~ =20 %). The dots correspond to experimental data and the dotted

lines
are fits (see below). The labels (a), (b), and (c) refer to three distinct situations which

illustrate the main effects of surfactant and salt concentrations. For the detailed concentrations

see the figure captions. Let us just comment the general trends. Figure 8a and 9a correspond
to a surfactant concentration (C) equal to the cmc and

a
salt concentration (Cs) equal to

0mol.l~~ The emulsion exhibits in each case a correlation peak evoking the hard sphere
behavior. The peak position goes to small q as the droplet diameter increases when the

volume fraction is kept constant. This tendency is classical for such a
fluid. Figure 8b and

9b correspond to a
surfactant concentration just below the one corresponding to the phase

transition. The salt concentration is still kept zero. As it is expected for
a

fluid with attractive

interactions, compressibility fairly increases. This trend is still true for the three samples
whatever the droplet size is and remains quite spectacular.

Figure 8c and 9c correspond to a
surfactant concentration identical to the preceding case

but for a salt concentration equal to 0.2mol.l~~ This salt concentration corresponds to the
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maximal extension of the reentrant fluid phase (see phase diagram Fig. 4b). In each case

adding salt decreases the compressibility and changes the curvature of I(q) towards a less

attractive-like profile. This result is in accordance with the observed melting of the solid phase
for added salt.

In order to interpret quantitatively our light scattering data we followed the same scheme as

Huang et al [26]. Indeed, a quantitative study of the interaction is possible, fitting theoretical

structure factors to the experimental curves. The theoretical structure factor is obtained using
the

mean
spherical closure approximation which leads to an analytical form for S(q) if the

pair potential is taken to be
a square well potential [26]. Three parameters define the square

well potential:
«

the hard sphere diameter, e
the depth of the potential, and r which defines

the range of the potential as «(r I). The diameter « is precisely measured by analysing the

solid Bragg diffraction patterns (see below). Since informations on both the depth and the

range of the potential require very small q vector data analysis,
we

have to fix one parameter
(our experiment does not approach the small angle domain). So the range of the square well

potential is kept constant and taken to be the micellar diameter according to our depletion
mechanism hypothesis. Finally the only free parameter is the depth of the potential which is

extracted from the fit.

The theoretical scattering intensity is expressed by equation (3.1):

1(q)
=

«.P(q).S(q) (4.1)

assuming the Rayleigh-Gans approximation to be valid.

a is a non relevant parameter which is independent of q since we do not perform absolute

measurements the
a parameter could not have any physical meaning.

P(q) is completely defined (« is known).
S(q) is calculated according to Sharma et al.'s equation [27], (see appendix 2). Then,

following the Huang et al. improvement [26] to the Sharma et al.'s equation, the fitted square
well depth is renormalized according to the equation:

e'/kT
=

Ln (e/kT + 1) (4.2)

Where ~ is the renormalized square well depth which will be only considered further.

In figures 8 and 9, dotted lines are fits of (4,I) to the experimental data. When the micelle

volume fraction is equal to zero (I,e., surfactant concentration close to cmc)
a background

attraction is measured. The measured depth increases when the droplet diameter increases

(«
=

0A6pm
,

fle m -1 « =
0.6 pm, fle ci -2

,
« =0.93 pm, fle m

-3). When the

surfactant concentration is adjusted just below the phase transition threshold (Figs. 8b, 9b)

we get a square well depth close to 4.5 kT, whatever the sample («
=

0.46 pm fle ci -4.6

« =
0.6 pm : fle ci -4.8 « =

0.95 pm : fle ci
-4.5). As expected, the very strong modification

of I(q) when surfactant is added can be related to attractive interaction.

To support the micelles depletion mechanism hypothesis, we measured the interaction
as a

function of surfactant concentrations, (without salt) when
one

approaches the phase transition

threshold. This experiment
was

performed
on

the intermediate size sample: («
=

0.60 pm,

4~ =
17 %). The measured square well depth

e increases linearly with am (the micelle volume

fraction). This behavior confirms the depletion mechanism [28].
Concerning the salt effect, we can definitely conclude that salt decreases the depth of the

potential when the same range of the potential is assumed. We measured
a

decay of I kT

for each sample when 0.2 mole,l~~ in salt is added to the fluid phase at the phase transition

threshold (Figs. 8c, 9c). As previously noticed (Sect. 2) this result is in contradiction with
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a
DLVO picture. We suggest one plausible mechanism of such an effect on

the depletion
mechanism basis. The Debye length (~c~~) is always negligible compared to the droplet

diameter but remains of the same order of magnitude as am, the ionic micellar diameter. So,

we can expect that since the effective volume of micelles is involved, consequencies on depletion

may occur. More precisely, when salt is added, ~c~~ decreases and consequently the effective

micelle volume decreases also, then the depletion interaction should decrease. Nevertheless

quantitative estimates of this effect
are not easy. The main problem is the calculation of the

effective volume as a consequence of a screening effect. An other possible interpretation consists

in evoking the SDS micelles size and shape modification with added salt but this effect remains

quite small [29].

5. Dense phase: evidence for colloidal crystal structure.

The first indication for a
solid structure (long range order)

comes from observations under

microscope of the dense phase separated by gravity (Fig. 3). Nevertheless, it could not be

taken as a proof because a clear observation of the pure dense phase needs to constrain it

between glasses (separated by few microns) which orientates the first reticular plane parallel

to the glass plate. In order to characterise the colloidal crystal nature we collected the Bragg
reflections diRracted by the cream. The dense phase is deposited between two parallel quartz

plates kept IS pm apart. This cell is located in a large (IS cm) cylindrical container filled

up with brine which has exactly the same refractive index as the dense phase. Such a set

up (see Fig,10) allows
us to choose both the

area to be illuminated and the angle between

incident beam and plates without modifjing the scattering angles. The expected reticular

distances require to use a
48801 Ar+ laser and to cover the 10°-130° angular range, what

corresponds to 1- 30pm~~
wave vector range. For a

check, we used
a test sample

: a

calibrated bidimensional (p
=

1.8 pm + 0.05) lattice is located between glasses instead of the

true sample and the corresponding Bragg reflexions are recovered. No artefact are
disclosed:

first and second order peaks are found with less than 2 %
error compared with the predicted

angles values, which are of the same order the ones expected in our experiments.
The diffraction peaks for the three samples are shown in figure II. Two Bragg diRractions

are collected but the small angle one is much more intense than the large angle one as expected
from the form factor dependance on q. Indeed, to make visible the second peak, the incident

intensity is largely enhanced. From Bragg equation and peaks positions
we found corresponding

reticular distances (see Tab. I) di and d2 with di > d2 The value of the ratio di/d2 suggests

a
fcc structure for the coll&dal crystal. In such a case

di should correspond to the II I plane
(the dense plane) and d~ to the 220 plane. Nevertheless the actual absence of the 200 fcc line

suggests also a
random-stacked mixture of both fcc and hexagonal close-packed. This result

is similar to what found Pusey et al. [30] in
a

different system made of nearly hard spheres.
Since the droplet-droplet distance is similar in the two lattices, the diameter may be accurately
measured:

« =

/fidill (5.I)

and is taken to be the hard sphere diameter.

6. Fluid-solid phase transition with attractive potentials.

Fluid-solid phase transitions have been investigated by various authors. The hard sphere

system exhibits a first order F.S, transition [31] leading to a fcc structure [30]. For purely
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Fig. 10. Experimental set up for Bragg diJfraction experiments on oil droplet colloidal powder.
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Fig. Ii. Diffracted intensities versus wave vector in the solid phase. Two diffraction peaks are

found for each sample (a:
a =

0.93 pm b: a =
0.6 pm c: a =

0.46 pm) which are compatible with

a
fcc structure.

repulsive systems experimental results [32, 33] on
charged latex particles and theoretical calcu-

lations [34] indicate the possibility for both bcc and fcc structure depending on the parameters
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Table I. Reticular distances measured from Bragg peak positions and deduction of the hard

sphere diameters.

di £
1iil 1il d2 ~m~ 2

~~~~

al 0.758 0.462 1.64 0.928

«2 0.494 0.305 1.62 0.605

«3 0.377 0.231 1.63 0.461

of the screened interaction. For attractive hard sphere systems liquid-gas equilibria have been

most often reported [35, 36]. Fluid-solid equilibrium
was

only suggested [17] but never char-

acterized. However, some theoretical investigations of such transitions have been performed

[37, 38]. One of them [37], using perturbation theory and the Vrij equation [8] for the pair
potential, provides different scenari for the perturbation of the hard spheres transition. If the

small objects diameter involved in the depletion potential is less than «/3, then the liquid gas
equilibrium is replaced by

a
fluid-solid equilibrium, which means that triple point disappears.

Our aim is to propose an
analytical approach of this transition in the dilute regime part of the

phase diagram which can be considered as an extreme simplification of the work of Gast et al.

[37] or Vincent et al. [38].

6.I THERMODYNAMICS. Taking into account that the fluid phase is dilute (16 < 20ifl)
and the solid phase mostly incompressible and compact (fcc structure, 16

=
74ifl)

we worked

out the following model: The fluid free energy density is taken to be the ideal gas one, which

means that second order term involving the second virial coefficient is negligibl~ compared to

the entropic perfect gas contribution. This idea will be developped further.

The fluid partition function for a classical non ideal fluid is expressed as:

j-3N
Z

" ~ Q (6.1)

where I is the thermal wavelength defined as 1
= (~~~~)

~~~

with h the Planck constant,
mkT

kT the thermal energy and m the mass of a particle; N is the total number of particles; Q is

defined as:

Q
"

/ /
exp flU (ri rN) dri drN (6.2)

For an ideal gas the total potential energy is equal to zero. Then the equation (6.I) becomes:

j-3N
Z

= ~
V'~ (6.3)

where V is the total volume.

The free energy density f is given by:

f
=

j

with

F
=

-kT Ln Z (6.4)
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fG
"

kT (n Ln(nl~) n) (6.5)

with n =

~,
the particle density.

V

Introducing the volume &action variable defined as16
=

"~ with v, the volume of one

particle, we get:
~'

kT lj3
fG

"
4l Ln16 16 + 16 Ln

-)
(6.6)

V V

This expression can be rewritten
as:

fG
"

~~
(4lLn 4l + 4l (p$ 1)) (6.7)

where p$ is the dbnensionless reference chenfical potential for the ideal gas:

j3
P$

"
~~ p (6.8)

The solid free energy is derived &om Einstein model, H being the total energy per particle in

the lattice :
~

H
=

~
+ mw( <

z~
> +Uo (6.9)

2m 2

where P is the impulsion; wo, the Einstein frequency; < z~ >, the mean square deplacement;
Uo, the lattice energy.

For the solid phase, the partition function is:

Z
=

z'~ (6.10)

with

z =

h~~ / / e~fl~drdp (6.ll)

Solving the Gaussian integrals gives:

z =

())~ e-flu° (6.12)

The solid free energy density can be extracted:

kT
(6 13)f~

= ns kT
flUo

3 Ln q

Introducing the 4l variable and the solid reference chemical potential pi, in (6.13) gives:

is
=

~l ~bs (flue + p() (6.14)

with:

~ ~ ~
kT

(6 15)Ps " ~ $
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6. 2 PHASE DIAGRAMS. We describe a strongly first order phase transition where the two

phases in equilibrium have a very different composition, one is very dilute (liquid phase) and

the other is very concentrated and mostly incompressible (solid phase). We can assume that

the solid phase has
a constant volume fraction 4ls. Consequently,

we assume a very deep
and sharp minimum for the solid free energy density, this will drastically simplify the classical

demixtion equations. Instead of two equations (equal pressure and equal chemical potential in

each phase) [39] we are left with:

f~ + (4ls 4l)
~~~

=
is (4ls) (6.16)

This equation gives the oil volume fraction 4l in the fluid phase, in equilibrium with a solid

phase (constant volume fraction 4ls) at the freezing point.
Using the equations (6.7) and (6.14) we can solve (6.16) and get:

flUo
=

Ln 4l 4l/4ls + (p$ pi) (6.17)

with:

Pi Pi
"

~~~
~l/~fi~

(~.18)
o

Besides, the lattice energy Uo can be expressed (using Eq. (2.2))
as:

~~° ' ~ ~~'~ ~'°l(6.19)

where w is the Van der Waals contribution to the lattice energy and
z

the nearest neighbours
number for

a
fcc structure (z

=
12). The equation (6.19) is of course a

crude approximation
because the lattice energy of the dense crystal is calculated using the pair potential of equation

(2.2) which works in principle only at infinite dilution. It is clear that a more exact approach
would be to treat th% problem

as a
compressible binary fluid made of big and small spheres.

Nevertheless we propose here the simplest analytical model which will compare quite well with

experiments.
Combining (6.17) and (6.19), and neglecting the linear terms (4l/4ls),

we
obtain:

4lm
=

I (-Ln 4l + (pi p$) 6w)
,

(6.20)

which is the phase boundary equation in the (4l, 4lm) plane. This is a two parameters descrip-
tion of the phase diagram of the form:

4lm
=

A(-Ln 4l + B) (6.21)

providing
a

logarithmic behavior with A
=

'~'
and B

=
pi p$ 6w. Notice that this treat-

9«
ment leads to separate the depletion contribution (A) from the poorly unknown contributions

due to the solid entropy and lattice Van der Waals energy.
The parameters A and B are then extracted from

a
fit to the experimental phase diagram

(Fig. 4a). The results are listed in table II. It is clear th~t the logarithmic behavior provided
by our simple Ideal Gas-Harmonic Solid approach agrees very well with the experiments. In

view of the crudness of our model, the quantitative agreement of the depletion parameter A

with the theoretical value provided by the perfect gas depletion hypothesis (Eq. (2.I))
can

be
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Table II. Experimental values of the parameter A and B deduced from the fit. The param-

eter A compares quantitatively well with the theoretical prediction °~ based on a depletion
«

mechanism hypothesis.

) A exp B exp

« =
0.93 pm x

810~~ II x
510~~ 3.0

« =
0.6 pm 7 x

510~~ II x
510~~ 6.7

« =
0.46 pm 9 x 18 x

510~~ 5.2

considered as satisfying. Note that with two different methods, light scattering experiments
and phase diagram analysis, we find the same agreement with a micelle depletion mechanism.

The experimental value of the parameter B is also in agreement with what is expected. Using
Lindmann criterium for melting [40], the mean square displacement is taken to be («la)2 where

a is equal to 10. Then, combining with the classical equipartition energy theorem :

~
kT

=2

mw( 1')~, the equation (6.18) becomes:
a

l~, 3j2 ~hP~
"

P$ Pi
"

~~
~j)

p "
~ (6.~~)

Ap° is equal to 7 when a is choosen to be 10 [40]. If the Van der Waals contact energy w

is taken to be of the order of lkT, then we get B close to I which is of the same order of

magnitude than what is extracted from the fit.

7. Discussion.

Interactions have been measured by light scattering analysis, but at the same time an ideal

gas behavior is required to describe the F S phase transition,
even

for relatively high oil

volume fraction. The ideal gas behavior is demonstrated by the logarithmic shape of the

F S phase boundary. Let us now discuss the physical reasons of such a result using very
simple analytical arguments. Finally we will'be able to give a physical understanding of the

appearance conditions for a triple point.
Very early, Long et al. [41] recognized the possibility for a

colloidal dispersion to reach a

thermodynamical equilibrium state where two phases are coexisting. This equilibrium was qual-

itatively interpreted evoking a Boltzmann relationship of the type: 4l
=

4lf exp
~~°, where

kT
Uo is the depth of the attractive pair potential (originatly, the DLVO secondary minimum),
4l and 4lf are respectively the volume fractions of the particles in the fluid phase and in the

flocculated phase, fl is the average number of contacts of a surface particle in a floc. Later,
Vincent et al. [42] gave a theoretical basis to this empirical law using a lattice gas approach.

On the basis of the work of Gast et al. [37] who first introduced theoretically the Fluid-Solid

phase transition hypothesis, Fleer et al. [43] derived
a

logarithmic law for the transition of

the form 4lf
=

4ls exp
~~°

(j~~~~ very similar to ours. The C(4ls) term is an empirical
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correction for the excluded volume of the particles in the solid like (floc) phase. Recently the

validity of such an equation was tested by Vincent et al. [38] on more accurate (calculation)
basis. It was

concluded that the logarithmic behavior for the gas solid like phase boundary in

fact is valid only in the limit of very dilute dispersions (4l < 0.i Sl). We will discuss in more

details the validity of the logarithmic law and the required conditions for a
fluid-solid transition

instead of a liquid-gas transition.

Let us start with the virial expression for the fluid phase free energy:

fF
"

~~ lb
Ln 4l + 4l (p$ 1) +

~
lb~ + 4l~ +

1(7.i)
V V V

where B is the second virial coefficient defined
as:

B
=

-2x
/~

(e~~l~)'~~ i) r2 dr (7.2)
o

u(r) being the pair potential and where C is the third virial coefficient which depends mostly

on the hard sphere contribution to the pair potential. Assuming
a square well pair potential,

we obtain an analytical form for the coefficient B :

~
=

4 4 (e~fl~ I) (l~ 1) (7.3)

where fle and I are
defined as in section 4:

b
~"~+ i'

b being the range of the square well potential.
Considering the virial expansion

we
will just discuss how this function is modified when the

droplet size is increased for a given square well potential. The trivial consequence is that the

ratio
~

goes to zero, and the second virial coefficient remains equal to the hard sphere part
whichis equal to 4. Consequently the negative second order contribution disappears and a

fluid-fluid demixtion becomes bnpossible. Moreover, the free energy of such
a big droplet fluid

is ideal gas like as long as
the second order hard sphere contribution is negligible compared to

the ideal gas logarithmic term. This approximation might be still valid for
a

droplet volume

fraction equal to ten percents. In that case, the gas-solid phase boundary equation is the
one

derived in section 6 which exhibits the logarithmic behavior:

flUo
"

Ln16 + A p° (7.4)

Now
we

consider how this simple equation is modified when the second order contribution in

the virial expansion is taken into account.

Solving equation (6.16) we get a
first order correction to the logarithmic background:

flUo
=

Ln16 + 2
~

lb + A p° ~
(7.5)

v 4lS

Consequently
a

linear term is added to the logarithmic term which can be either positive
or

negative depending on the ratio b/« discussed above.



420 JOURNAL DE PHYSIQUE II N°3

Let us examine now how a critical point associated to a liquid-gas equilibrium may appear.

Using the virial expansion and assuming the third virial coefficient equal to 5 as it is
v

commonly admitted [23] we can
deduce the required values of 4l and

~
to get h L-G critical

v
point. It comes:

~C
~ _5

v
(7.6)

4l~ ~ 0.18

Again, notice that such
a

value for
~

can not be reached if the ratio b/« is very small, and
v

consequently the critical point
can

be absent. The boundary between the situation with
a

F S transition only and the critical point appearance corresponds to the superposition of

the triple point and the critical point. Such a condition is achieved if the F S demixtion

equation is satisfied for 4~ = 4~c

f(lbc) + (ibs ibc)
$

=
is (ibs) (7.7)

w~

Combining (6.14) and (6.I) with (7.7) we obtain:

fle*
=

~
[(2b~4lS 1) 4l~ + (3c4lS b~) 4l( 2c 4l( + 4lSLn 4l~ + 4ls (p$ pi) (7.8)

z4ls

with:

b~ =

~~
and c =

v v

This equation gives the minimal value of the depth of a square well potential (e*) which leads

to a
fluid-solid phase transition for 4l

= 4l~ and B
=

B~ (superposition of critical and triple
point). Solving equation (7.3) we deduce the onset value for the parameter I (I

=
I + b/«),

which is:

~
l/3

1*
=

+
~

p~. ~
(7.9)

Consequently, the parameter which governs the phase diagrams topology for a one component
fluid interacting via a square well pair potential is the ratio b/«. For small values of b/« the

fluid-solid transition is expected only, whereas for higher values the liquid-gas transition is first

preferred as it is illustrated in figure 12.

Numerical calculations [37] lead to the value b/« ct for a one component fluid interacting
3

via
a

depletion interaction (Eq. (2.I)). The same order of magnitude is found using this

analytical approach when reasonable parameters are
introduced in equation (7.8) (~~

=
-5,

v
C

=
5, Apo

=
7, 4~~ =

0.18, 4~s "
0.6).

Finally we conclude that emulsions which are big droplets colloids («
~-

I pm) feature only
a

F S transition. Since the attractive interaction is induced by a micelle depletion mechanism,

the ratio b/« (which is equal in that
case to '°~) is always very small and the logarithmic

shape for the phase transition is expected
as

lo~
as excluded volume effect in the fluid phase

can be neglected.
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Fig. 12. Phase diagrams in the flue/4l plane. For flue
=

0 the only one phase transition accessible

is the hard sphere transition (UC is the contact pair potential) If five # o two distinct scenari are

possible according to the value of the ratio b/«: (range of the pair potential b over partide diameter

«).

8. Conclusion summary.

We have demonstrated the role of surfactant dissolved in the continuous phase of an oil in wa-

ter emulsion. The interaction mechanism can be described according to the perfect gas model

proposed by Vrij on
(he basis of the Asakura and Oosawa depletion hypothesis. This resulting

attractive depletion interaction leads to a
fluid-solid phase transition only. The F S phase

boundary is logarithmic and no fluid-fluid transition occurs, due to the very small value of the

ratio '~ where am is also the range of the attractive interaction. The colloidal crystals result-

ing in
(hat phase transition have a fcc structure with an irridescent cream appearance. The

reentrant fluid phase induced by added salt can
be qualitatively interpreted on the basis of

an

effective micellar diameter which is reduced by salt. Consequently the depletion pair potential
becomes less attractive and the solid melts. Finally, the very well known creaming effect of

emulsions is a fluid-solid transition induced by surfactant micelles but the polydispersity masks

the colloidal crystal character of the aggregates in usual industrial polydisperse emulsions.
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Appendix I.

Mie scattering.

In the experimental conditions defined in paragraph 4, namely an incident field Eo perpendicular
to the scattering plane, the light scattered by a single sphere of radius a is polarized in the

same direction as Eo, and its amplitude is given by the Lorentz-Mie solution [24]:

~
~

~~0
~-ikaRs(@) ~i i)

S
J~ ~

JOURNAL DE PHYSIQUE it T 2, N'3, MARCH 1992
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R, the distance between the sphere and the detector, h supposed to be large compared to I.

S(@) is an infinite series:

S(b)
=

f (] ) ~ [an «n(CDS b) + fin Tn(C°S b)I (Al.2)

with xn and rn given by:

~n(C°S b)
"

) Pi(~°~ b) (Al .3~)

Tn(C°S b)
"

( Pl(~°~ b) (A13b)

where Pi (n)
are associated Legendre functions. The coefficients an and fin are given by:

~

i'i(Y) i'n(Z) mi'n(Y) i'i(Z)
~~ ~~

~ i'i(Y)tn(Z) mi'n(Y)ti(Z)

'~~
i'i(Y) i'n(Z) i'n(Y) i'i(Z)

~~ §~
~

'~~
i'i(Y)tn(Z) i'n(Y)ti(Z)

with the following notations:

z =
ko

a y =

"~
z

(Al.6)
np

~pn and fn are
lliccati-Bessel functions.

In practice, the S(b) expansion can be reliably restricted to the order n equal to the integer

nearest to z.
This simplification is a consequence of the 'localization principle" [24]. In the

situations of concern in this study, we have computed the LM form factors up to the sixth

order terms in (Al.2).

Appendix 2.

Equation for the structure factor.

The analytical equation obtained by Sharma [27] and Sharma for
a

fluid interacting via a

square well potential is the following one:

~~~~
l C(q)

~~~'~~

with C(q) given by:

c(q)
=

$
joy(q«)3jsin q« q« cos q«j

q«

+ fl(q«)~ [2q« sin q« (q~«~ 2) cos q« 2) A2_2)

+ 7 [(4q~ a~ 24q«) sin qa (q~«~ 12q~«~ + 24) cos q« + 24)

(e/kT)(qa)~ [sin q« I q« cos I qa + q« cos qa sin qa])
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where a, fl, 7 are given by:

~v =
I(1 + 2n)2 + n3(n 4)j /(i n)4 (A2.3)

fl
= q (18 + 20q 12q~ + n~) /(I q)~ (A2A)

7 = q
((1+ 2q)~ + n~(q 4)) /(1 q)~ (A2.5)

q is given by the equation:

q = ~ n
«~/6 (A2.6)

where n is the number density of particles and « the particle diameter. e, and I are
the

parameters defining the depth and the range of the square well potential.
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