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Abstract. We consider a random wave description of bicontinuous microemulsions, where the

structure is specified by a correlation length f and a preferred wave vector ko. The entropy of the

system is calculated as the information content of a random field with an experimentally
determined spectral distribution. Together with the elastic energy which has been previously

derived by Teubner, we can minimise the free energy of the system and thus estimate the value of

the elastic modulus
«

of the film. For example, in water toluene SDS/butanol

microemulsions the parameters f and ko obtained from fits to the neutron scattering data lead to

values for
«

of about two units of kT.

1. Introduction.

Bicontinuous disordered phases of oil surfactant (and cosurfactant) water mixtures can

be conveniently studied on a phenomenological level, where an elastic surfactant film divides

the system volume into two distinct phases. A particularly useful model of such systems is

provided by the formal adaptation of Cahn's random wave model of spinodal decomposition
[1, 2]. As shown by Teubner [3], the superposition of random waves results in a random

Gaussian field with a given spectral density, which allows the calculation of statistical averages

over the film sudace.

In the following we wish to expand the random wave model to calculate the system entropy,
free energy and bending modulus.

The physical system consisting of the sudactant film dividing the volume into two phases is

defined as a level crossing of the generating random Gaussian field. Under specific conditions

there are theorems which indicate that the information content of a two dimensional sudace

obtained by level crossing is equivalent to the information content of the generating three

dimensional field [4]. The information content of a random process with a given spectral
density was evaluated in a classical work of Shannon [5], and this can consequently be applied
to disordered bicontinuous phases.

The evaluation of the entropy is dependent on the unique correspondence between each

spatial configuration of the sudactant film and the corresponding realisation of the random

Gaussian field with a known spectral density. Away from the isometric composition, the

assumption of a random sudace geometry becomes progressively less accurate. But even if
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this problem is disregarded, homogeneous regions of oil or water become larger and the

reconstruction of the corresponding random field from such a configuration may require
unph)sically high accuracy in specifying the position of the sudactant film.

The class of random fields under consideration, which is associated with random

bicontinuous structures, is specified by two physical parameters, the preferred wave vector

ko and the correlation length f. As an example for such a field we will adopt in the following

section a particular localised random wave model [6] and apply it to a SDS based

microemulsions system studied by Auvray et al. [7, 8]. Having obtained f and ko from the

experimental bulk neutron scattering data and having checked those values by means of the

film scattering data, we will evaluate the free energy of the model as a function of f and

ko. The free energy must be minimal for the measured values of Sand ko, and this provides a

route for the calculation of the bending elasticity modulus of the film from the scattering data.

2. Geometry : correlation functions, spectral densities, scattering curves.

The original model of Berk [2] bases the spatial distribution of two phase media on a

superposition of random waves in R~ with uniformly distributed phases and wave vector

directions and a certain probability distribution for the magnitude of the wave vector

j ~

~~~~~S,~ii~~~~~~~~~~~'~' ~~~

In order to obtain realistic small angle neutron and X-ray scattering (SANS, SAXS)
intensities, Berk assumed for the magnitudes of k~ a Gaussian distribution around some

preferred value ko. Other authors [3, 9] used differently broadened distributions f(k).
An altemative to a priori assumptions about the probability density f(k) is a natural

probability spread in k-space obtained as a consequence of physical localisation of the

constituent waves in real space [6]. The form of the localisation is given by an envelope
u(r) with a characteristic decay length f.

The modified random field S has the form

S(r f, ko)
=

(
u( r r, ; f cos (k~(r r~ ))

,

with ~
=

ko. e~ (2)fi,
=1

The directions of k~ and the positions r, are again uniformly distributed. We emphasise the

fact that the class of random fields discussed throughout this paper is the class dependent on

two length scales given by f and ko which have obvious experimental meaning in bicontinuous

microemulsion systems [10, 11]. The particular functional form in which the two parameters

are later introduced is only an illustrative example and is of no importance for the major
results.

Equation (2) is, as pointed out by Teubner [3], in the limit of an infinite number of

constituent waves a Gaussian process. This opens a relatively simple access to the statistical

properties of the system, using the well-known fact [3] that a Gaussian field is completely
determined by its mean and covariance functions, m(r)= (S(r)) and g(r,,r~)=

(S(rj) S(r~)), in either real or Fourier space. Further simplification arises from the fact that

S is homogeneous and isotropic [12]. The covariance function simplifies then to g(r)
=

(S (0 S (r ) with momentum representation f (k ).

It is a physical constraint that only modes down to a certain wavelength A~ are to be

represented by the random waveletts of the model [I1, 13]. The shortest possible wavelength
is determined by the film oil film water sequence, at least about four monolayer
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thicknesses. Our estimate of A~ can be refined, by exploiting the fact [2, 14] that the

experimental sudace to volume fraction S/V is proportional to the square root of the second

moment (k~) of the spectral density f(k), and (k~) is in tum dependent on the cut-off

k~
=

2 ar/A~. This relation delivers an upper limit for A~ we will retum to this point when

treating a specific example of a localised field in Appendix A.

2.I CORRELATION FUNCTION AFTER LEVELLING. In describing SANS or SAKS experi-

ments the original three phase system oil sudactant water is usually represented as a two

phase system, by either
«

black-white coloring
»

of the two bulk partitions (where the

sudactant layer is normally split and assigned to the two bulk partitions) or, altematively, by
contrasting the entire bulk with the film, when experimental water and oil scattering length
densities are matched.

If a, p, are the cutting levels specifying the layer system, the clipped correlation function

r~fl...(r)
can be gained from the knowledge of g(r) and the Gaussian bivariate by

representation of the clipping process as a product of the appropriate linear combinations of

Heaviside step functions. The number of steps is identical to the number of levelling

parameters.
For two phase contrasts we use &~p, where &~p

=

I for
a wx w p and zero otherwise.

Although a two phase contrast modelling meets experimental situations, three and higher
phase terms may have some minor impact on the behaviour of scattering curves due to slight,
involuntary mismatches. Those corrections can be easily included, but two phase terms will be

sufficient to demonstrate the general idea.

The clipped correlation function

~ ~ ~ ~

x~
+

y~- 2 g(r)xy

r~~ (r)
#

~
~~~ ~~~~~~ Map (X Map (Y ) dX dY

,

~ ~
2 ar I g(r)~

can be simplified to

~2 p2 _1 ~~2_~~p~~p2~
jmafl(~) jmafl(~) l

~
l +t ~ ~

+t ~ ~
2 J -t~

~~ (~)
~ "

g(r)
fi

A numerically useful transformation t
=

sin ~ that avoids the artificial singularity of the

integrand at the upper limit leads to

r~~(r)
=

=

r~fl o
«/2

«~ ~

2
gr

e
I + Sin ~

~ j j

"~~~~

~~~~»

+ ~ + ~~~ ~ 2
e- / la ~ 2 «P sin ~ + p~>

We can normalise with respect to the correlation at r =

0

~ap~~~
~

r"P(r) r"P(oa)
~

r"~(r) ~l
~~~

~~(i ~~) ~~(i ~~) '

where ~~ is the sudactant volume fraction.

Teubner's more specialised result for one-step levelling is immediately recovered by taking

p
- oJ lim y"fl

=

y" Berk's 21ar arcsin (g(r)) term [2] is the obvious limit of equation
p

~ ~

(4) for p
- oJ, a =

0. It was used to check the numerical stability of equation (4).
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Despite the attractive simplicity of expression (4) it should be noted that (4) is only an

approximation not valid for too small values of r (or too high values of k in momentum space).
The problem arises from the nonuniform thickness of the film created by two level cuts of a

three dimensional field. In order to obtain correct asymptotic behaviour for high k a more

tedious approach is available [3], but as we will see in the following subsection our

approximation serves well for practical purposes.
Signal clipping has long been used in communication theory and the relation between

clipped und unclipped spectral densities are well known [15]. The shape of the clipped
spectrum largely resembles the unclipped one, but decays slower it is smeared out.

2.2 FITS To FILM AND BULK SANS DATA. To our knowledge only Auvray et al. [8] have

published suitable pairs of corresponding bulk and film SANS intensity data. We used a

specific example of localised random waves described in Appendix A to fit the scattering data

of reference [8] and to obtain the experimental parameters f and ko. The fits to the bulk

scattering data easily delivered the relevant f, ko pairs and comparisons to the film scattering
were pedormed to verify those model parameters.

We were making use of the standard relation for isotropic scatterers

i (k )
=

4 «
j ~ 2j j~ y (ri r2 j~(kr) dr

,

(6)

where y(r)
=

y~(r) for two-phase scattering and y(r)
=

y"fl(r) for film scattering, and

actual evaluation of the expressions was done with the sample functions of Appendix A.

Values for (~~) (essentially the scattering length densities) and other experimental

parameters were taken from references [7, 8]. The volume fraction of the sudactant was

estimated by the weight densities and molecular weights for SDS heads and tails [7]. We

followed the advice of reference [8] to ignore the influence of cosudactant on the scattering
length profile and to count the sudactant layer in the case of bulk scattering entirely as a part
of the oil domain. We are therefore shifted by a few percent from the phase symmetry. The

cutoff wavelength was taken to be about A~ -
55 I (Appendix A).

Figures I and 2 give the results and fit parameters for the cases of SDS weight fractions of

7 fb and 10 fb respectively. (Note that the relative experimental error for weight fractions is

about 5 fb [7].) All intermediate cases can be done analogously. Taking into account that the

model is only varying the two natural scales Sand ko, and that no adjustment off and

ko was performed when fitting the film scattering, the agreement with the experimental data is

very satisfactory. The f, ko parameters obtained from the fits are close to those used for the

same system by Teubner and Strey [10], as one would expect from the conceptual similarity
(note, however, that the Teubner-Strey theory is a three parameter theory).

In the case of 10 fb SDS film scattering the
«

hump
» pattem of the scattering curve is not

reproduced. The hump may be a genuine effect or an artefact due to a slight mismatch in the

two bulk scattering length densities. As the bulk intensities are about a factor of 100 greater
than film intensities, even minute discrepancies in the scattering length densities will have a

visible effect.

Figures 3 and 4 verify correct asymptotic behaviour of the model as far as the experimental
data are given. With respect to figure 3 it should be noted that the standard k~I (k) vs. k plot

in practice cannot fully match the experimental data. Due to the different decay behaviour of

bulk (I (k) cc
k~~) and film (I (k) cc

k~~) scattering intensity, the experimental asymptotic
behaviour in the bulk case will be sensitive to a weak film component in the scattering length

profile, and is likely to be overridden by the slowly decaying film tail. This has been verified

experimentally [7]. Figure 4 is a
k~I (k vs.

k~ plot as used in reference [8] to demonstrate the
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Fig, I. Symbols SANS bulk intensity for 7 fb ((+), upper curve) and 10 fb ((D), lower curve) SDS

microemulsion systems (taken from Ref. [8]). Lines : localised random wave fit to the data. Model

parameters : for 7 fb SDS f
=

133 A, ko
=

1.87 x 10~ ~ A~ For 10 fb SDS : f
=

87 A, ko
=

2.822 x10T~A~~ For both systems the cut-off values were
r~=10A and A~=55A while

(~~) had the experimental value of 3.32 x
l~i~ cm~~. The experimental surfactant volume fractions

were #~(7 fb SDS)
=

S-S fb and ~~(10 fb SDS)
=

7.5 fb.

Fig. 2. Symbols : SANS film intensity for 7 fb (( ), upper curve) and lo fb ((D), lower curve) SDS

microemulsion systems (taken from Ref. [8]). Lines : localised random wave fit to the film scattering
data ; all parameters are the same as in figure I (with the exception of (~~)

=

2.79 x10~~ cm~~).

4

8 Da

~
D

D°D ~

j~ ~
~~~~~° ~~~~

r
D~

.

o~f 6
. . ....

£ 2
~

i ****...*
(

~

~
i

*
~

r
'~ ~d 2

0 0
1 2 3 4 5 6 0 1 2 3 4

k [10"2 Ji"~] k~ [10~ Ji"~]

Fig. 3. Fig. 4.

Fig. 3. k~l(k)
vs. k for 7 fb ( ) and lo fb (D) SDS. All parameters are the same as in figure I.

Theoretical fits are again shown as solid lines.

Fig. 4. -k~l (k) vs.
k~ for 7 fb ) and 10 fb (D) SDS. All parameters are the same as in figure 2.

Theoretical fits are again shown as solid lines.
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typical k~~ asymptotic behaviour. Quantitative agreement is good, and qualitatively the

shapes of our curves and figure 2 of reference [8] show strong resemblance. As mentioned

above the mathematical asymptotic analysis of our film scattering prediction will eventually
obey Porod's k~~ law. In an intermediate range, however, which goes far beyond the

experimentally accessible k range, the k~ ~ law is obeyed and we conclude that approximation
(4) comes close enough to reality to successfully match experiments. Nevertheless a detailed

comparison between equation (4) and the method used in [3] is a sensible task.

Finally in figure 5 we present two dimensional cuts through the spatial stntctures which

correspond to the model fits of figure I. As expected they show a higher degree of disorder

than the comparable images of references [2, 6].

A B

I I'
,

~ '~
,*

,,
'

,, ~
> e

Fig. 5. Spatial structures corresponding to the model fits in figure I. The white-black interfaces are

the sets S
=

0 of equation (2) (picture A 7 fb SDS, picture B : lo fb SDS). The image sizes are five

characteristic wavelengths of the 7 fb SDS system (w1680 A). The images were obtained from a

superposition of N
=

lo 000 localised random waves, distributed throughout a volume somewhat larger
than the actual size of the figures.

3. Entropy and free energy.

In previous work on the question of the entropy of random bicontinuous phases, e-g.

references [16, 17], a subdivision of the system was applied in order to discretise the number

of possible states and thus make them accessible to counting. Safran et al. [17] achieved this

by introducing a stntctural length scale (similar to de Gennes' persistence length [I I], or our

correlation length). To follow those lines would for our model mean estimating the order of

magnitude of the system entropy by counting the number of «degrees of freedom»,

«
modes

» etc, and assigning equal energy or equal probability to each kind of excitation.

Such an estimate is essentially equivalent to measuring the volume of the phase space

available to the system.
We can calculate the normalised standard deviation in Fourier space for localised waves

described by the decay length f [18] and arrive at

Ak ~

l
(7)
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In a very rough estimate, the number of states should go like 4 ark( Ak cc
I/f( consistent with

the result of Safran et al. [17]. We used the fact that for the bicontinuous microemulsions

under consideration the product ko f always has a small value of about 2-3.

Although we will suggest in the following section a more accurate entropy evaluation which

does not depend on discretisation, the above procedure can at least be used to estimate the

number N of constituent waves in equation (2) as N
=

V. 4 grk (Ak.

3.I ENTROPY oF A BAND-LIMITED RANDOM FIELD. A truly continuous estimate of the

entropy is obtained if the rms amplitude or energy associated with each degree of freedom

varies with the position in k-space. For non-interacting models in planar geometry, this

variation can be obtained from the equipartition theorem [13]. Alternatively, if the amplitude
variation can be deduced from experimental data the equivalence of physical and in-

formational entropy [19] opens a way to the calculation of the system free energy.

We will use the three dimensional version of Shannon's classical derivation of the entropy
change in linear, band-limited filters in the time/frequency domain [5] to derive an expression
for the entropy differences between all possible wave fields with filter characteristic

f(k ; f, ko) associated with a given random physical bicontinuous system.
Consider a band-limited signal Y which is given by its sampling representation in k-space,

I-e. as a N-dimensional vector y= (y(kj),. ,y(k~))= (yj,. ,y~), where the y are

continuously variable in the band-limited domain. Each of the components y; has a given
probability distribution p~(y~) and the joint distribution associated with y can be denoted as

p =

p~pj(y~),.., p~~y~))
=

p(y). The signal Y can then be treated as a random variable

with a probability distribution p(y).
The difference between a reference signal Y and a signal Y' with spectral density

f(k) can be easily expressed by a simple weighting procedure or linear transformation

y'(k~
=

f (k~ ) y (k~ ) and with Shannon's entropy of a continuous random field Y given as [5,

20]

H
~

P (y '~J P ~y dy
,

a linear transformation of the above kind will result in the modified entropy

H'
=

p(y')inp~y')dy'

=

JP (Y) In (Jp (y)) J~ dy

=

H+ jp(y)lnJdy

=

H+lnJ.

The entropy change due to a certain spectral density is therefore just (In J), the logarithm of

the Jacobi determinant assigned to the transformation process. With

INin J
=

in fl
~~k))

,=i

=

£ In f~ (k)

~/ k~

=
~

In f (k ) dk
,(2

gr o
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an expression for the entropy of isotropic random fields relative to some reference field can be

written as

v k~
~H

=
~

4 grk In f(k f, ko) dk. (8)
(2 ar)

o

The remaining task is to establish that the information in the unlevelled random process

with a spectrum f(k) is the same as the information contained in the corresponding levelled

field. This problem has been recently considered by Curtis and Oppenheim [4]. Their

Theorem 4 states that for band-limited, Fourier expandable, multidimensional signals the

level surfaces contain the same information as the unlevelled field (up to an overall intensity
factor). The equivalence has been illustrated by examples of recovering two dimensional

images from level crossings.
However, the link has to be considered with care, as it does not take into account the

thermal fluctuations or the finite sharpness of the level surface. Until we have fully examined

this problem, we shall take the informational correspondence between the surfaces and the

field as exact.

3.2 EVALUATION oF THE FREE ENERGY, BENDING MoDuLus.- Having determined the

experimental parameters (f, ko), we can perform the free energy minimisation which will

yield the elastic modulus
«

of a iven experimental surfactant system. Note that in a particular

surfactant system S/V cc

/$
can only weakly vary with f and ko~ and we therefore

consider the surface to volume ratio as constant. This effectively reduces the problem to the

dependence on one free variable, chosen here as the coherence length f.

The bending energy will in general comprise Gaussian and mean square curvature terms.

The Gaussian curvature (cf. Appendix A) is proportional to (k~) and thus constant in a given
sudactant system with a constant S/V ratio [3]. If we are interested in free energy differences

only, the Gaussian curvature term can be discarded.

Adding Teubner's result for the mean square curvature [3] to the informational entropy

equation (8) completes the expression for the free energy difference between two surface

systems AF
=

AU T AH. We compare two random fields characterised by two distinct pairs
of parameters (f, ko)j,(f, ko)~ denoted in the following by the subscripts I and 2.

AF
=

(Uj U~) kT (Hi H~)

5~~) ~~ ~~~~ ~~~~~~
2~i)~ ~~

~ ~~~~~ ~~~~
~~

and thus for the free energy density

In a self-consistent theory, variation (with respect to fl of the free energy terms in equation
(9) with an additional Gaussian curvature term and with the two conditions on the norm and

the second moment should determine the functional form of f(k). Restricting the

consideration to the set of functions compatible with the usual boundary conditions we find

that with the appropriate functional L
=

F +Ak~f+ pk~f (where A, p are Lagrange
multipliers [25]) the extremal requirement dL/df

=

0 is fulfilled by spectral densities of the

form

~~~~°~Ak~+~k~+C' ~~~~
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which are formally equivalent to the phenomenological Teubner-Strey scattering intensity

function [10] or the first term in equation (12) of Appendix A.

Figure 6 shows bending energy, entropy and the resulting free energy curves for the model

parameter pairs which we obtained for the 7 fb and 10 fb SDS systems from a fit to the

scattering data in the previous section. The physical requirement of finding a free energy

minimum for the experimental parameter pairs yields the value of the bending moduli

K =

2.0 kT for 10 fb SDS and « =

2.6 kT for 7 fb SDS. The bending moduli show a certain

dependence on the cut-off length A~, and vary in the cut-off range (cf. Appendix A) by a

factor of less than two.

1.0

ii ';
G~ ii 'j
j~ °.5 'j

I.

Jd (
~

i~
',

~~
J0% SDS .,

"

~~ ~~~

~

#Q i, j
~ i, j
j -0.5 j. j
~ (., j

I
''.,

'
''.

-1.0 ', ',

0.5 1.0 1.5 2.0 2.5

j a0+1 hi

Fig. 6. Bending energy (dotted), entropy (broken) and resulting free energy (solid) for the 7 fb SDS

and lo fb SDS systems as a function of the coherence length f. The bending moduli were

« =
2.02 kT for 10 fb SDS and

« =
2.64 kT for 7 9b SDS. Surface to volume fraction was kept constant

in both cases. The functional forms of tile spectral densities f(k ; k~ f) in figures 5 and 6 were assumed

to be the same as to the ones used in figures1-4.

Measurements of the bending constant of membrane systems in ordered phases have been

performed by several authors (see [21] for a summary of results). On SDS and cosurfactant

systems Safinya et al. [22] found
K

values between I and 3 kT, if the cosurfactant tails is 5-6

carbons long and much higher values for longer tails. Our system consisting of SDS

monolayers is different and several factors could have influenced the results. The SDS and

cosurfactant monolayer between oil and water is not symmetrical, and spontaneous curvature

is likely to be different from zero. As a result, the monolayer is on average under some

bending stress, which could lead to a higher value of
K.

The entropy term given in the work of Safran et al., which corresponds to our expression
(7) is in general lower than the entropy of equation (8), and the quantitative difference

depends on the magnitude of f. The Safran et al. entropy contains no contributions from the

region of the phase space where (k(
~

2 «If. When entropy is evaluated in the range of

± 10 fb around the experimental values of f, we find that the two entropies differ in the case

of 7 fb SDS by about a factor of 10 and in the case of 10 fb SDS by a factor of 5.
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Fig. 7. The coherence length f as a function of the bending modulus
«

for 7 9b SDS and lo 9b SDS

systems. The experimental values of fare highlighted by circles. The lack of smoothness in the curves is

due to numerical noise.

Figure 7 concludes our considerations of the bending modulus
K

in a two parameter f,

ko (with boundary condition) system. We draw the functional dependence of K on the

coherence length f for the 7 fb and 10 fb SDS systems. A stiffer system is predicted to have a

larger coherence length, as it should.

4. Discussion.

The degree of disorder in a physical system is always indicated by the broadening of its X-ray,

neutron, light.., scattering spectrum. But the link between the scattering spectrum and the

system entropy is straightforward only in very simple geometries. With liquid state type of

order, the link is very complicated even in the case of simple constituents (e.g. in the hard

sphere fluid).
Within a given phase of an amphiphilic system, the degree of disorder is dependent on the

elastic restoring force and the temperature. In a lamellar system, given the elastic constants,

one can determine fkom the equipartition theorem the spectrum of the excited modes, the

entropy, the correlation function and the broadening of the scattering peak [13, 23].
In the irregular geometry of random bicontinuous phases the physical principles are the

same but the path is not straightforward. In the preceding sections we have argued that a

similar program is feasible in the simple case of a system of random bicontinuous surfaces. It

is based on a geometrical assumption of an ensemble of surfaces described by the associated

Gaussian random field (instead of the surfaces in a planar multilayer system). The

experimental scattering spectrum then uniquely determines the spectrum of the underlying
random field, and the entropy associated with the latter can be calculated from its information

content. To obtain a link to the elastic modulus of the film we need to include the

fundamental laws of statistical mechanics (equivalent to the use of the equipartition theorem

in the earlier work on multilayers). As we do not have an explicit equation linking the

spectrum to the elastic properties, we achieve the same result by adjusting the values of the

elastic constant until the known physical state corresponds to the minimum of the calculated

free energy.

Many of the concepts and results presented in this paper are generalisations of similar

earlier work for planar multilayer systems. Disordered bicontinuous systems described by
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random Gaussian fields provide another interesting geometry where a relatively simple
formalism can be used to study the statistical mechanics of surface configurations.
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A Appendix.

Correlation function, spectral density and curvatures of a localised random field.

Localised waves as suggested in reference [6] will after averaging over the
«

grain
»

positions

r~ and the directions of k~ give the two point function g(r) and the corresponding spectral

density f(k
=

~

~

4 grr~ jo(kr) g (r) dr. To give an example of the procedure, and to
(2 gr)

o

prove the basic utility of the model a Yukawa-like localisation for u (r ; f) has been chosen for

the constituent waveletts

~-
jr if ~- rl'rm

s(r)
= cos (ko r) (I1)

r

We stress that there is nothing unique about this function, and other functions (possibly
Bessel functions or functions derived from experimental scattering intensity curves) might be

used just as well. r~ is necessary in equation II to avoid the singularity at r =

0 and will be

taken as constant of the size of the monolayer thickness minus headgroup length for SDS

systems (given by Auvray et al. [7] as about 10 h). The two point function is then [6]

a(a + j)
~~

j
~~~

4 f(e~ ~'~ e~ °~~) sin ko r

~ ~~~
(a 1)~

~ ~ ~
a

~ r(a~ I ) ko r
'

with a =

f/r~ and the spectral density

~ ~~~
l a(a + I) 41i

~ W (a 1)~ illi~
+ (k ko)~i illi~

+ (k + ko)~i
~

41i
~ iaii~

+ (k ko)~i iaii~
+ (k + ko)~i

2 ~ [a~/f~ + (k + ko)~] [l/f~
+ (k ko)~]

+ In (12)
(a~ I ) kko [a~/f~

+ (k ko)~] [l/f~
+ (k + ko)~]

For experimental parameters the first term dominates for reasonably low values of k the other

terms by at least one order of magnitude. Over the physical range our test function

f(k) is thus consistent with the result equation (lo) of the variational procedure carried out in

subsection 3.2. Nevertheless we note that the minor deviation might indicate that the

localisation is in reality a slightly different one.
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The small r expansion of g(r) is

g(r)
=

g(0) 1/2 g,,(o) r2
+ 1/24 g~4>(o) r4

+ o (r5)

a + k( f~
g"(0)

=
~3 f

~~~
3 a + 9 a~

+ 3 a~
+ 10 ako~

f~
+ 3 k( f~

g (0)
=

15 f~

The well-known rule for the large k expansion of any rotational Fourier transform

F(k) of some correlation function G (r) [26, 27]

F (k)
=

~

~ ~')~~ +
~

~~j~~~ +
~ ~ ~~~~

+
2

gr
k k k

yields that f (k has here a k~ ~ asymptotic term, hence it's second and it's fourth moment will

exist asymptotically.
The relationship between the even spectral moments and the behaviour of the correlation

function at r =

0 is (k~~)
cc lim~~o(- 1)~ A~~g(r) [12]. It can be used to derive the useful

relations (k~)
=

3g"(0) and (k~)
=

5g~~~(0).
With those rules we obtain easily by application of Teubner's results [3] :

The Gaussian curvature

j
~ ~

ja+k(f~
~~~~

6
~~ ~" ~~ ~ 6 f2

~" ~~

The mean curvature

(Hi
=

ji
(k~)

a -

Ii
~ ~ ~~~~a

2 6 2 6 f~

The mean square curvature

(H~)
=

(k~) (a~+
~~~~

Ii
=

(K) +

~~~

lk j jk j

j a +
k(f~

~
6 3 a + 9 a~+ 10 a

kjf~+ 3 k(f~
~ 6 f2 " ~

15 (a +
kj ~2)2

For our specific g (r), f (k of localised random fields the Gaussian curvature is a factor 5-10

smaller then the mean square curvature for the cases of 7 fb and 10 fb SDS.

The surface to volume fraction is well-known [14] to be

)
=

4. ~~(i ~~) ~) (o)
=

~
~e-

a~'2~

"

~

The above simple analytic expressions for the curvatures are asymptotic cases when no

wavelength cut-off is taken into account, A~ - oJ. They were used as good cross checks for

the bandlimited case that was constructed by f~(k)
=

f(k) for km k~ and f~(k)
=

0 for

k
~

k~. For band limitation, too, the integrals can be done analytically, yielding far more

complex expressions.

Hence our construction prescription for g~(r) will be g~(r)
=

4 ark~ jo(kr) f~(k) dk with

normalisation factor 4 ark~ f~(k) dk.
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For the specific case of the SDS surfactant systems studied in section 2, the upper and lower

limits, as discussed in section 2, of A~ tum out to be 50-70 I. The lower limit is four times the

monolayer thickness of about 12 I [7], the upper limit can be estimated when analysing the

dependence of S/V on the cut-off scale. Although S/V is given experimentally only roughly
(for 7 fb SDS : S/V

=
1.0 x 10~ ~ l~ for 10 fb SDS : S/V

=
1.5 x

10~~ i~
~), with the fast

convergence of the theoretical S/V a limit of A~ can be identified beyond which agreement
with S/V can not be possibly reached. It has to be remarked, that the situation is complicated

by the fact that the theoretical bulk scattering curve is also influenced by A~ and some

interrelation with f and ko arises. But the effect on the scattering (before k~) is of the

magnitude of some I fb only, and so our estimate for the cut-off remains valid. The values of

k~ determined by this technique are for SDS 7 fb
-

6 ko and for SDS 10 fb
-

4 ko. This is in

agreement with de Gennes and Taupin's [11] estimate k~ I10/f~.
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