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Rdsumd. Nous avons mesur6 des profits de gouttelettes smectique A
en fonction de la

temp6rature pour des mat6riaux di1f6rents. Quand de petites gouttelettes sont refroidies
en

dessous de la temp4rature de transition smectique A-n6matique TAN, une facette unique dont le

rayon est proportionnel I (TAN T)" apparait. L'exposant a est di1f6rent suivant les mat6riaux

mars est compatible
avec celui qui est mesur6 pour le module de compression des couches B. De

plus, nous avoils mesur6 la forme des r6gions courb6es adjacentes k la facette. Un ajustement

,avec une
loi puissance donne un exposant qui varie avec la temp4rature et le matdriau et qui,

dons tous les cas, est di1f6rent de la valeur universelle 3/2. Nous avons aussi 6tud16 comment

la forme des gouttelettes relaxe vers l'6quilibre et avons trouv6 que le temps de relaxation est

inf6rieur k
une

minute en refroidissant tandis qu'il varie entre quelques heures et quelques jours

en chauffant, suivant la valeur de (TAN T). Une estimation de la barri+re d'dnergie ndcessaire

pour nudder de nouvelles couches sugg+re que ce processus est interdit et qu'il faut chercher une

autre explication k l'asym6trie du taux de relaxation.

Abstract. We have measured profiles ofsmectic A droplets in air as a function of tempera-

ture for several different materials. When small droplets are cooled below the nematic-smectic A

transition temperature TAN, they show a single facet whose radius is proportional to (TAN -T)".
The exponent a differs for different materials but is consistent with that measured for the layer
compression modulus B. In addition, we measure the shape of curved regions of the surface

adjacent to the facet. A power-law fit gives an exponent that varies with both temperature
and material and in any case is different from the universal value of 3/2. We also study how

droplet shapes relax to equilibrium and find that while the relaxation time for shape changes

upon cooling is less than one minute, that for heating ranges from hours to days, depending
on

(TAN -T). An estimate of the energy barrier to nucleating new layers suggests that that process

is forbidden and that another explanation of the relaxation-rate asymmetry must be found.
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1 Introduction.

What determines the equilibrium shape of
a

crystal? A partial answer, given by Wulff and

others [1 3], is that if one knows the surface energy as a function of orientation with respect
to the underlying crystal lattice1(9), the shape may be calculated variationally by minimizing
the total surface energy while constraining the volume to be constant. The problem then is to

model 1(9). At zero temperature, the equilibrium shape of
a

crystal consists entirely of facets.

As the temperature is raised, thermal fluctuations can wash out a
facet via the "roughening

transition," which has been intensively studied both experimentally [4] and theoretically IS, 6].
An important point is that facets with different orientations (< 100 >, < II I >, etc.) have dif-

ferent roughening transition temperatures. Thus, typically
a

crystal at finite temperature will

have
some

orientations that
are

faceted (atomically flat) and some that
are

rough (disordered

on an atomic scale but smoothly curved on a
macroscopic scale).

In this article,
we report on

experiments whose purpose was to measure the shape oi
a

smectic A liquid crystal in the vicinity of room
temperatkre. Small smectic droplets deposited

on a
suitably treated glass substrate show round iacets

on
the top oi the droplet. These iacets

are analogous to those iound on a crystal and vividly illustrate the solid-like properties oi

these anisotropic fluids. We shall bring to bear
on our

observations the theoretical apparatus
developed to analyze ideal solid crystals. As in experiments

on
solids,

we
shall find that

there are many complications peculiar to our own material. Not surprisingly, in our case, the

subtleties come ultimately irom the fluid-like aspects of liquid crystals.
The rest of tllis paper is organized

as
follows: in section 2, we review the predictions oi

theories describing ideal crystal shapes. In section 3, we discuss the experiment itseli. In

section 4, we discuss the shape measurements, which iocus on the size oi iacets and the shape
of adjoining curved regions. In section 5, we study how the droplets come or

do not come

to equilibrium. In the last section,
we

raise
a

number oi theoretical issues suggested by
our

observations. Finally, in an
accompanying paper, we

take up one oi these issues: why it is that

only small droplets are iaceted.

2. The shape of
an

ideal crystal.

In this section,
we

suiumarize the theory of ideal crystal shapes. Such theories focus
on

"universal" aspects of equilibrium crystals. Two issues of particular interest are the size oi

iacets and tlle shape oi rounded regions adjoining those iacets, which
can

be modeled
as a

series oi steps wllose flat parts are
parallel to the iacet. (see Fig. I.) Let the step height be

a

(usually the lattice spaciilg), the local step separation d, and the local step density
n =

I Id
then the steps describe

a
suriace whose local orientation 9 with respect to the iacet is given hi'

tang
=

a/d. In order ior this description oi "vicinal" suriaces to make sense, the step width

( « d or, approximately, 9 « a
If.

Let E(n) be the iree energy per unit
area

along the facet. Since E
=

i/
cos

9 and
n =

tan 91a,
knowing E(n) is equivalent to knowing1(9) and the crystal shape. As n

-

0, one expects

16, 71

E(n)
= lo + fin + #n~ + O(n~) (I)

Here, lo is the suriace energy oi the facet, fl the step energy/length, and # the leading term

describing step-step interactions. In general, # has both elastic and entropic contributions.

The former arise because the stress field due to one step affects that of its neighbors. The

latter arise because steps cannot cross:
since

a greater separation leaves more modes available
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Fig. I. View of
a

smectic A droplet depositdd
on a

flat substrate. If the substrate is treated correctly
and the droplet is not too large, then the smectic layers will be flat, the surface will have steps, and

the droplet will be faceted.

to fluctuations, entropy produces
a step repulsion. There is no

O(n~) term for two reasons:

first, the specific models of elasticity and entropic interactions are
O(n~). Second,

even
if there

were
O(n~) terms, they should not be detectable because of thermal fluctuations [7]. More

precisely, the facet and the rough orientations can be viewed
as

distinct thermodynamic phases

[8]. Taking
n ~

0 is then analogous to approaching a phase transition temperature. If # > 0

(steps repel each other), then the transition will be second order and the curved part of the

crystal will join tangentially onto the facet. The profile h(r) follows
a power law

where we consider a round iacet oi radius
r = rF, and h is the height difference between the

facet and the crystal surface. For a
circular facet, the equilibrium facet radius rF~~ is predicted

to be 2fl/F, where F is the "supercooling," which is fixed by the internal hydrostatic pressure

of the crystal. More precisely, F represents the work per unit area
expended in extending

a
facet

one
lattice spacing. Thus, it is equal to the internal hydrostatic pressure times the

distance (a) the suriace is displaced. F
=

2ai/R, where i is the surface energy far from the

facet and R is the radius of curvature there. The "shape exponent" b
=

3/2 in equation (2) is
a

universal critical exponent, independent of the nature of the solid studied. The O(n~) term in

equation (I) should be undetectable because it is irrelevant in the sense of the renormalization

group iii.
Experimental tests oi the above theoretical picture have followed three approaches. The first

is to use ordinary materials such as lead, gold,
or salt. The major difficulty is in establishing

thermodynamic equilibrium: the energy barriers that must be broached to reshape a crystal

are usually much higher than kTm~iting and the observed shapes reflect growth rather than

conditions. Measurements by Rbttman et al. [9] on
micron-sized crystals suggest that very

small crystals do equilibrate and show shapes with exponents consistent with b
=

1.5; however,
Saenz and Garcia [10] analyzed the same data independently and found evidence for

a
small

(b
=

2) region near the facet. Subsequent measurements by Heyraud and Mdtois gave 1.6 <

b < 2.0 ill].
The second approach is to study large He~ crystals, which equilibrate rapidly. Carmi,

Lipson, and Polturak [12] found b
=

1.55 + 0.06, but independent measurements by Gallet et

al. [13] suggest that the experimental errors are larger, probably about 0.2. Also, by measuring
the dispersion relatioil oi melting-crystalization capillary waves, Andreeva and Keshishev [14]

concluded tllat d~E/dn~ is constant as n -
0. From equation (I),

we see
that this implies
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an
O(n~) teriu in E(n). (Two recent but different! proposals argue that the quantum

nature of helium may resolve the apparent contradiction between capillary wave and shape
measurements [15, 16].)
The third approach has been to measure step shapes and separations on silicon wafers

directly via scanning tunneling microscopy. Although the technique is very promising, the
case

of silicon is complicated by surface reconstruction, kinks, and the existence of different kinds

of steps. The results to date include step-energy measurements iii] and confirmation that
on

surfaces vicinal to the < II I > face, steps repel each other via an
elasticity-dominated O(n~)

interaction [18].
In this article, we take a different experimental approach and study the shape of faceted

smectic A droplets. Part of the results described here have been summarized in a previous short

publication [19]. Although facets
on

smectic drops have been observed previously [20, 21, 22],

ours is the first quantitative study of drop profiles and facet sizes. The smectic A liquid crystal
phase consists of stacked twc-dimensional fluid layers. One expects a

single facet parallel to the

layers,
so

that one avoids the complications that arise when a crystal surface is simultaneously
vicinal to two nearby facets [23]. Because the smectic layers are fluid, facets will be round

and steps will have
no kinks. Also, the transparency, low volatility, and convenient melting

point of liquid crystals allow
one to do optical experiments in open air near room temperature.

Finally, one expects that both the laws describing elastic effects and the way samples relax to

equilibrium will be quite different in a smectic as
compared to a

solid.

3 Experimental met ho ds.

The experimental set up is illustrated in figure 2. A small smectic A droplet (the radius
was

typically 50 ~m) sits on a glass slide treated with
a

silane compound (Merck ZLI 2510) to align

layers parallel to the glass (homeotropic orientation). Drops were partially wetting with contact

angles ranging from 7° to approximately 20° depending
on

the materials and fine details of the

surface treatment. Contact angle hysteresis was estimated to be
a

factor of two by measuring
the maximum ellipticity of droplets. Only drops round to better than 5il

were used.

Detailed experiments
were

performed on BOCB, IOOCB, and 4.O.8 [24]. The nOCB series

is chemically very stable, allowing a
single drop to be used for up to a week with little change

in material properties. The major source of impurities was residue from the silane treatment.

During the first hour, the nematic-isotropic temperature difference of BOCB increased from

0.I °C to 0.3 °C, where it remained thereafter. By contrast, 4.O.8 contains
a

Schifr's base and

is known to decompose in the presence of oxygen and water vapor. Experiments on 4.O.8 were

therefore done quickly, within several hours of the preparation of the sample.
These three materials seem to exhaust the different classes of experimentally observed shapes

for thermotropic Sm A droplets. In BOCB, the phase transition from the smectic A to the

nematic phase_lying above it in temperature is second order [25]. By contrast, in IOOCB, the

smectic A phase undergoes
a

clear first-order transition to an isotropic phase lying above it in

temperature. Note tllat BOCB and IOOCB differ only in the length of the molecule (IOOCB
has two extra CH2 groups).

The material 4.O.8 differs from the previous two in that its molecules have only
a very small

dipole moment, which is transverse to the long axis of the molecule. As a result, it iorms a

classic smectic A pllase, with
a

layer spacing equal to the molecular length. [see Fig. 3a.] By

contrast, both BOCB and IOOCB have significant dipole moments lying along the molecules

and form "Smectic Ad" phases. In this sub-variety oi the smectic A phase, the layer spacing is
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Fig. 2. Schematic of experimental apparatus, showing liquid-crystal drop and Michelson interfer-

ometer.

between one and two times the molecular length, the spacing varying slightly with temperature.
In each layer, dipoles are anti-aligned, the "upward-pointing~' dipoles slightly displaced relative

to the "downward-pointing" dipoles. [see Fig. 3b.]
In addition to the above materials, we also examined briefly AMCII, DOBAMBC, BCB,

and g-DA [26]. All of these _materials have smectic A phases that fall into the classification

sketched above. (We tested them mainly to examine droplet shapes in phases other than the

smectic A phase. The results
on

other phases
are

still too sketchy to be discussed here.) We

emphasize that for all of the smectics examined, small droplets were faceted.

The droplet shape was measured using a Michelson interferometer (Ealing Electrc-Optics
25-0084) combined with detached parts from a Leitz microscope, all mounted to a

large,
ver-

tical optical rail for greater stability. A microscope objective attached to the beamsplitter
of the interferometer projected the image of the fringes onto a

CCD camera
(Panasonic WV

/8L200) and transfered to a Macintosh IIfx computer via a
frame grabber (Data Translation

DT2255). Images were
analyzed with the NIB Image program [27]. The vertical resolution of

the interferometer was enhanced by modulating (by hand) the distance between the droplet
and the beamsplitter while tracking the fringe displacement. By recording and quantitatively
analyzing multiple images (typically 12 images) of the shifting fringes,

we
achieved

a vertical

resolution
as

good as 20 1, with 50 1 typical.
One limitation of our interferometer is that light rays impinging

on
the steeply curved

portions oi the droplet
were

deviated
so much that they missed the microscope objective.
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(a)

Smectic A

Smectic .Ad

16)
'j j

j

Fig. 3. Sketch of molecular configuration in two different smectic A configurations. (a) The standard

Sm A phase. The layer spacing a equals the molecular length I. (b) The Sm Ad Phase. Formed in

materials possessing strong dipole moments oriented along the long axis of the molecule, the layered
phase has I > a.

Thus, the droplet images show iringes only out to 6° inclination, and the outer portion of the

droplet appears black (see Fig. 4). For this reason, we were unable to measure accurately
either the contact angle or the absolute height oi the drop.

Systematic errors were
evaluated by imaging isotropic drops and fitting to arcs

oi
a

circle.

Since
we

had
access

only to about 12°,
we

iound that
a

parabola fit the isotropic profiles
equally well. Because results

were very sensitive to iocusing errors, the iocus
was

checked to

+I ~m ior each profile by measuring the apparent drop contact-line thickness in white light.
In order to locate

more
precisely the iacet edge,

we
tilted the secondary mirror approximately

4°, thereby increasing the number oi fringes lying
on

the iacet. Thus, in the photographs oi

iringes in figure 4, the glass substrate surrounding the droplet is ruled with vertical iringes
irom the tilted secondary. In figures 4b-d, the facet may be

seen
directly since the iringes

there are straight, parallel, and spaced the
same

distance
as are

the background fringes
on

the substrate. Another way to see
the advantage oi tilting the secondary is to compare the

technique to heterodyne detection [28]. In both cases, a low-irequency signal is detected by
mixing the base signal with

a
high-irequency carrier wave, which here is the background iringe

pattern on the glass plate. Aiter measuring the slope variation around this reierence, the

signal is "demodulated" by subtracting the known background slope. In this manner, the

noise inherent in low-frequency measurements is reduced.
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Fig. 4. Video images of the fringe pattern on a droplet of 4.O.8,
as

the temperature is lowered. The

straight, parallel fringes surrounding the droplet result from
a

deliberately tilted secondary mirror.

The fringes give
a contour map with 1/2

cz 273 nm separating each hinge. Photos (a) and (b)
are

of droplets in the nematic phase. Photos (c) and (d)
are in the smectic phase. Photo (d) is at

AT
=

TAN T
=

10° C. In (a) and (c) the secondary mirror is exactly perpendicular to the glass
substrate of the sample. In (b) and (d), it is sligh inclined from 90°.

4. Profile measurements.

In figure 5, we
show the typical evolution of the shape of a

small droplet of BOCB
as

the

temperature is lowered from the nematic phase. Notice the formation of a
flat region (facet)

below TAN, the nematic-smectic A transition temperature. Droplets whose radius
was

larger
than 100 to 200 ~m, depending

on
the material, were not faceted. See below for

a
discussion of

these size effects. The facet size rF and the surrounding curved profile adjusts to temperature
changes in a time that is shorter than that needed by the oven to change temperatures and

restabilize at the new
setpoint (about

one minute). The only further change observed is a
5il

decrease in apparent drop size over several days that
we

attribute to a
change in over-all surface

tension due to impurities. Thus,
we

considered the droplets to be in equilibrium. Below, we

discuss this assumption in more detail. The profiles
were

analyzed by first aligning the facet

with the J~-axis, with the same rotation being used for all profiles of the same drop. Although
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least-squares fit for flit "
30A pm.

independent measurements of the orientation of the facet agreed with that of the glass plate
to 10~~ radians,

we
found that accurate curve fits required that the facet be aligned with the

J~-axis to 10~~ radians and thus used the latter
as our reference orientation. Once oriented,

the height of the facet (the highest point of the curved droplet)
was set to zero

by hand and

the profile was fit to the functional form

~ 10,
T ~ TF (~ja(r rF)~, r > rF

with a, rF and b free parmeters. Since
one expects that far from the facet O(n~) terms will

become important,
we

anticipate that equation (3) will hold only out to some unknown value
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5. Relaxation to equilibrium.

Among the many reasons for
a

deviation from the predicted shapes of equilibrium crystals, the

most obvious is that the droplets are not in fact in thermodynamic equilibrium. As mentioned

above, the relaxation upon cooling is very fast (less than one
minute). By contrast, when

we
raise the temperature from deep within the smectic A phase to just below TAN> the facet

shrinks to its former size extremely slowly on a
timescale of hours

or even days (see Fig.
12). As T

~
TAN the relaxation time is shorter, although always several orders of magnitude

greater than the time necessary to grow facets.

-
5 ~

~

~
'

E

~' 3 ",,

,~
',,

~ 2 1-1 'C ", 3.7 'C

~ fl,~(
0.S °C

~",
~'

""~~""".i_8
~C

o

0 lo 20 30 40

Time (Hours)

Fig. 12. Facet size vs. time for BOCB, as a
large facet relaxes towards its equilibrium size, for

different temperatures. From [19].

An explanation of the relaxation-rate asymmetry is that growing
a

facet involves removing
smectic layers (I.e., making the drop thinner). The timescale rp is then set by permeation [30],
where a pressure gradient across layers induces

a
corresponding flow of molecules. It may be

estimated as follows: The line tension fl of the innermost step (whose radius is r) produces an

inward force fl/r that tends to shrink the topmost terrace. Molecules in this terrace are at a

higher pressure and will permeate down to the next layer. The frictional force fixing the flux

of molecules is a/m(dr/dt), where m m
fi is the mobility of edge dislocations, lp is the

permeation constant, and q the viscosity. Equating these two forces, we have

~++~=0
(4)

m r

Integrating this gives
~ ~

~ im /~ ~~~ ~~im ~~~

Taking a =

301,
rF "

10~~ cm, fl
=

2 x
10~~ ergs/cm (see below), q =

I poise, and

lp
=

2 x
10~l~ cgs [31, 32], we

find rp m 0.2
sec.

This is consistent with the fast relaxation

observed upon cooling. By contrast, heating would imply that additional layers must be

created via twc-dimensional nucleation of
a

small circular germ exceeding a critical radius
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rc. If the energy barrier Ec were greater than kT, the basic relaxation time would be set

by Tn =
Tpe~c/~~, thus explaining the relaxation-rate asymmetry. Since the energy barrier

could be expected to go to zero as T
-

TAN, this would also be consistent with the observed

temperature dependence of the relaxation rate.

One test of this scenario would be to see whether the droplet radius stablizes at a
radius rF

upon being warmed. More precisely, assume that
we start from TAN and lower the temperature

to Ti By the argument above, the facet radius will be frozen at rc(Ti). Continue cooling the

droplet to Tz, which is cold enough
so that rc(Tz) > 2rc(Ti). Now reheat back up to Ti The

facet should stabilize at rF(Ti)
"

2rc(Ti). Unfortunately, our current data
are not sufficiently

precise to allow such a test.

Although the above explanation is qualitatively satisfactory, there is a snag: the estimated

energy barrier is so much bigger than kT that the probability to nucleate
a new

layer should

be essentially zero. To see
this,

we note that the free energy E(r) of
a germ of radius

r
is [6]

E(r)
=

-~r~F + 2~rfl (6)

Taking dE/d?.
=

0 gives
a

critical radius rc =
fl/F and

an energy barrier Ec
=

~fl~ IF
=

~rc~f.
As mentioned above,

we can
take F

=
2ai/R. Assuming that the observed facet radius

rF * rc, we
have Ec m

2~irF~(a/R). For BOCB, near TAN, rF "
2 ~m, 7 "

30 erg/cm~, and

R
=

100 ~m, o,e have Ec m 2.3 x
10~~° erg m

10~kT.

If nucleation of additional layers is forbidden, then another explanation must be found for

the observed slow relaxation. Assuming the drop height and volume to be fixed,
a

change in

facet size implies
a

change in the shape of the round part, or a
change in apparent drop radius

or contact angle. Experimentally, the drop radius remains constant to better than 0.5~
as

the

facet goes from zero to 7 ~m and relaxes back to I ~m; however,
we cannot now

rule out a

small change in drop height or contact angle.
Another iiuplication of

a
large barrier height is that since rc = 1/2(rF)~~, we expect to

observe rF * rc, rather than rF " (rF)~~. After
a temperature quench, layers whose radius is

less than the new rc will collapse rapidly, on a
timescale of Tp. Once the facet has grown to

rc, removing additional layers requires crossing
an energy barrier E(r). Since the scale of this

barrier is set by E(rc), the facet will be frozen at a
value just larger than rc.

If we assume
that rF * rc and not (rF)eq, we find that, close to the facet edge, the profile

of this metastable configuration should have h(r)
ot

(r rF)~, in agreement with
our measure-

ments. To see t-his, we
consider the forces lying on a step. The supercooling F pushes it out.

Steps lying beyond the facet edge push it in with
a

force equal to minus the gradient of the

step "chemical potential" (
=

dE/dn [6]. There is also an inward force due to the line tension,
-(IT, wllere

r
is the local step curvature radius. Equating these gives

Integrating, we have

~
~ ~ ~ ~~

~~~~ ~

~~~

where A is an integration constant that is fixed by defining the position of the facet edge.
Solving equation (8) for h(r),

we
have

~~~~
~fiII ~~ Ii

~
]

~~~
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From equation (8),
we note that A may be expressed in terms of rF as A

=
rF(fl %). The

integrand is then

~ ~i ~
$ ~

~i~ ~~~~

If the facet is at its equilibrium size, then rF =
2fl/F, which gives a

height profile of

If the facet radius has anytlliilg other than its equilibrium value, then the integrand takes the

form I m
@@, whose integral gives an exponent of 2. For example, if

r m rc =
fl/F,

then one can evaluate the integral in equation (9) directly to obtain

~~~~
~~li~

~
~ ~ /~

~~~~

a

The expansion around r/rF * I then gives

~~~~
2rF

l~~
~~~~ ~~~~~~

Note that for a general value of A,
one can express the integral in equation (9) exactly in terms

of elliptic integrals. The above conclusions are then directly verified.

The above result implies that in
a

circular geometry both the facet and the steps must be

in equilibrium to see a
shape exponent of 3/2. In previous experiments, it is unclear whether

the facet had reached its equilibrium size.

A second inference is that, away from TAN, the observed step energy

fl
=

rFF
=

~~~~
m 2 x

10~~ erg /cm (14)

The corresponding step ~vidth

t >
ia~/fl

> a(R/(2rF)
> 4.5a (IS)

(On the other llaild, if rF " rfeq, then ( m 9a.) In either case, rF ot fl, giving an interesting
interpretation to our measurements of facet size

vs. temperature (Fig. 4). The value of the

scaling exponent a is consistent with the scaling index measured for the compression modulus

B of smectic layers in BOCB [33] (the exponent there was 0.49 + 0.03) and suggests that the

step energy fl is proportional to B.
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6 Conclusions.

In this article,
we

have described in detail experiments measuring the shape of smectic A liquid
crystal droplets. Our observations may be summarized as follows:

(I) If the material studied has a
second-order phase transition to a

nematic phase, then small

droplets show facets whose size grows smoothly from
zero as

the temperature is decreased below

the smectic A-nematic transition. If the material studied has
an

isotropic phase, then
a facet

of finite size is formed upon entering the smectic phase. These differences mirror the second-

and first-order-nature of the respective bulk phase transitions.

(2) Only small 4roplets, those whose radius is less than approximately 200 ~m, show facets.

Larger droplets have smoothly rounded tops at all temperatures where the droplets are in the

smectic A phase.
(3) Studies of the shape of rounded regions adjacent to facets and attempts to fit such

shapes to power la~vs suggest a
further classificatiin of behavior as a function of the detailed

structure of the siuectic A phase, if
we assume

that the materials
we

studied
were

typical of

their class. Materials forming
a

classic smectic A phase show shape exponents near 2 over

nearly the entire temperature range of the smectic. Materials forming the Sm Ad phase show

shape exponents that decrease from 2 near the smectic A-nematic transition temperature to I

near a more
ordered phase, such as the smectic B phase. In both cases, we

did not see
evidence

that the value of 3/2
was in any way singled out, although over a certain range of temperature

there
were

profiles of Sm Ad droplets with exponents near this value. We emphasize again that

the measurement is delicate, and despite shape measurements as
good

or
better than other

experiments concerning crystal shape, we found that the precise value of an exponent was quite
sensitive to details of the fit (such

as
how far out the fit went) and that in the absence of

an

independent way of determining the position of the facet edge, estimates of the shape exponent
should not be overly trusted. ~fe note that in principle the best way to measure such shapes
would be to determine the position of each step directly via scanning tunneling microscopy

or

atomic force microscopy.
(4) We studied ho~v the droplets relax to equilibrium. In all cases, it seems likely that

the curved regions (~vith steps)
are in equilibrium. The

same
is perhaps not true for the

facet, however. We observed that upon lowering the temperature from
a nematic-smectic A

transition, facets grew rapidly and did not afterwards change size. But when the temperature

was raised back to~vaid the nematic, the facet size shrunk much more slowly, taking hours
or

even days, depending on the final temperature in relation to TAN-
(5) We also measured the absolute sizes of facets as a function of temperature. Using theore-

tical predictions that the size should be proportional to the step line tension, we deduce a

typical value of10~~ erg/cm for the latter. The exact value for different materials is uncertain,
since the proportionality constant depends on the ratio between the actual facet size and the

equilibrium facet size,
a

number for which the uncertainty is at least
a

factor of two (pending

a
better model of the siuectic orientations in the droplet).
(6) There are a number of observations suggesting that bulk edge dislocations may be present

in some of the droplets. In the optical microscope, faint lines
are

often observed. Second, the

occasional facets sho~v
a

slight rounding (several hundred angstroms over
distances of several

microns). These observations suggest that the dislocations might be metastable configurations.
These observations raise

a
number of theoretical issues, only a few of which were touched

on in this article. The asymmetric relaxation of facets together with an estimate of the energy
barrier to nucleating new smectic layers suggest that the facet size is blocked very close to rc,

Which is only half its equilibrium value. ~fe then showed that
a

blocked facet would lead to a

finite-size correction to the predicted 3/2 scaling law whose leading term had
an exponent of
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2. While this scenario is consistent for our
observations in BOCB and related Sm Ad phases,

it does not match very well with our observations of 4.O.8 and other classic smectics.

Another problem is to explain the asymmetry in facet relaxation rates. As explained above,
twc-dimensional nucleation of layers, while giving qualitatively the correct behavior seems

to lead ti quantitative predictions violently in disagreement with experiment: the energy
barrier we estimate is some 10,000 kT, which gives essentially infinite nucleation times. One

explanation we have not yet considered is the role of volume defects such as screw dislocations

and Frank-Read sources [6]. The former are not likely to be of help since a screw dislocation

on the facet ought to wind in one direction at roughly the rate it winds in the other direction.

Thus, there would be no asymmetry, although the dynamics might be fast in both directions.

An intriguing possibility raised by Noz14res [34] is that surface melting may be present on

the rough orientations of the smectic, even if the facet remains entirely in the smectic A phase.
In this view, the rouilded parts of the droplet would be covered with a thin layer of nematic,
whose thickness would grow and possibly diverge as the nematic transition were approached.
The view is in analogy to surface melting in solid-liquid-vapor systems, where the solid-vapor
interface of a crystal becomes covered with a thin liquid layer as the triple point is approached.

As has been seen experimentally in lead [35] and discussed theoretically [36], there may be

surface melting on the rough orientations but not on a
neighboring facet. The theory for such

an
effect in smectics has not yet been worked out.

Finally, the existence of
a

critical droplet radius beyond which the droplet is
no

longer faceted

suggests a
competition between

a
configuration in which layers

are
parallel to the substrate

and steps adorn the droplet's surface and one in which layers are rounded and include bulk

edge dislocations to meet the substrate boundary condition. (The first layer must be flat.) A

detailed consideration of the energies of the two configurations is given in the accompanying
article.
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