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Rkswd.- La dynamique brownienne de particules colloidales au voisinage immddiat d'une

paroi rigide est mesurde par la technique de diffusion quasi-dlasfique de la Iumidre en onde

dvanescente. On observe un net ddcroissenJent du coeffident de diffusion, d0 au ralentissement

hydrodynamique des particules trds proches de la paroi. Cet effet est d'autant plus marqud que [es

particules peuvent se rapprocher trds prds de la paroi, c'est-I-dire que la portde de la rdpulsion
statique paroilparticule est faible. II est donc possible de tester [es interactions statiques
paroilparticules via une expdrience de diffusion dynamique de la Iumidre. Los donndes sont

analysdes par une simulation de dynamique Brownienne, particulidrement adaptde I I'interprdta-
tion des rdsultats de diffusion de la lumidre par des diffuseurs

« grinds », tels que des particules
confindes au voisinage d'une paroi, ou pidgdes dans des milieux poreux ou des gels.

Altstract.- The Brownian dynamics of a colloidal suspension is measured in the immediate

vicinity of a rigid surface by the Evanescent Quasielasfic Light Scattering Technique. A net

decrease of the measured diffusion coefficient is observed, due to the hydrodynamic sloving
down of the particles very close to the wall. This effect is all the more important when the particles

are allowed to get closer to the wall, I-e- when the range of the static waII/particle repulsive
interaction decreases. It thus provides a mean for testing the particle/waII static interactions via a

dynamic fight scattering measurement. The data are analysed by a Brownian dynamic simulation

which is proven to be quite valuable to interpret light scattering data from hindered » scatterers,

such as particles confined in the neighbourhood of a wall or trapped in a porous media or a gel.

1. Inwoducdon.

The interactions between particles suspended in a fiquid and the solid wall confining the

suspension are at the basis of a number of important practical phenomena such as particle
sedimentation and adhesion on a substrate.

These interactions may be classified in two types :

The static interactions mainly include the Van der Waals attraction and the electrostatic

interactions between the charges carried by the particles and the solid wall. The stefic
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interactions of entropic origin, present when the interacting surfaces are flexible (for
example, undulating vesicles or particles coated with a polymer layer) may be neglected in our

problem. This type of interactions lead to a non-uniform concentration profile in the vicinity
of the wall.

The hydrodynamic interactions due to the fact that the liquid flow created by a moving
particle is perturbed by the presence of the wall and thus reacts back onto the motion of the

original particle.
A number of theoretical [I] and numerical [2] studies have explicited the form and

numerical values of these interactions and more recently some molecular dynamics
simulations [3, 4] have helped understand their role in the Browniart motion of particles in the

immediate vicinity of a rigid wall.

As far as experiments go, the problem is far less advanced. Macroscopic experiments have

monitored the fall of suspended balls onto a solid surface, thus measuring the friction

coefficient A(z) as a function of the distance z between the particle and the wall [5]. On a

more microscopic scale ~particles around lo ~m in diameter) static experiments have studied

the height distribution of suspended particles above a given transparent plate, from which the

static interaction potential between the particles and the wall can be deduced [6]. Static

Fluorescence Techniques have also been used to measure the concentration profile of

particles doped with fluorescent probes in the vicinity of a transparent wall [7, 8].
The purpose of this paper is to give some new experimental results on the Browrian

dynamics of particles close to a surface, measured by art original method developed in our

laboratory: The quasi elastic light scattering technique using as the incident light an

evanescent wave which thus only probes particles within a distance less than the penetration
depth of the wave (see Sect. 2). To analyse our data, we have performed a «computer
simulated light scattering experiment » (see Sect. 3) to generate the correlation function of

the electric field scattered by a Brownian particle submitted to both the static and

hydrodynamic interactions discussed above.

2. Evanescent Q.L.S. experbnent.

2.I EXPEItIMENTAL CONDITIONS.

Material We have studied an aqueous latex suspension ~particle diameter
=

0.09 ~m) whose

concentration (cm3 x10~~g/cm~, I-e- mean distance between particle
=

I ~m) is large
enough to provide a confortable signal in the evanescent wave regime, but low enough to

allow us to neglect the particle/particle interactions. We have used different salt concen-

trations so as to be able to partially screen the electrostatic repulsion between the suspended
particles and the glass wall, both negatively charged.

Optical set-up (see Fig. I) : The liquid sample is contained in a half cylindrical cell, sealed by

an optically flat surface ~polished to A /20) of a larger semi-cylindrical glass prism. This surface

was ultrasonically cleaned with distilled water after each experiment. The sample holder is

placed on a precision tumtable, so as to easily change the incident angle
@~

of the vertically
polarized Argon laser (300 mW at

=
514.5 nm). The critical angle for total reflection is

given by the usual relation : sin
@~ =

n~~~~Jn~~. For
@; ~ @~, the incident wave vector in the

medium has a real component k~ =
2 wn~j~/A parallel to the flat surface of the prism, and an

imaginary component equal to the inverse of the penetration depth f given by :

f
=

(A /2 wn~j~~) [sin~
@I

sin~
@~]~

~~ (l)

This means that we are conducting a light scattering experiment with an incident beam always



bt 10 BROWNIAN DYNAMICS IN A CONFINED GEOMETRY J223

Colloidal

Argon Suspension

.

patial

ilter

beam
Scope

Micro

PM



J224 JOURNAL DE PHYSIQUE II bt J0

2.2 EXPERIMENTALLY MEASURED CORRELATION FUNCTIONS. Typical correlation func-

tions recorded for
@I

just below (f
=

0.8 ~m) and just above (f
=

ml the critical angle
[, but at the same scattering angle @, are shown in figure 2, illustrating the so-called

« surface » and « bulk correlation functions whose theoretical expressions are now recalled.

Bulk correlation function
: In a heterodyne experiment, the intensity correlation function is a

linear function of the first order correlation function of the scattered electric field, which, with

homogenous illumination of the scattering volume and in its normalized from, can be written

as :

g (t)
=

Re (e"~'~ (~l) where the scattering wave vector q =
k

;
k~ (2)

is the difference between the incident (k;) and the scattered (k~) wave vectors, and

r (t) is the vector position of the particle which was at the origin at time zero. The average is to

be taken on a great number of independent Brownian particles.
In the case of the usual bulk geometry, the probability density for a particle to be at time

t at a distance
r

from its starting point at time zero is the well known Gaussian probability :

P (r, t j
=

(4 qrDt j~ ~'~ exp r~i4 Dt j (3j

where D=kT/6w~R is the bulk diffusion coefficient, related to the particle radius

R and the suspension's viscosity ~. Using this probability density to compute the average in

equation (2) leads to the usual expression for the bulk correlation function :

g~(t)
=

e'~'~~~~ P(r, t) d~r (4j

= exp (- Dq ~ t) (5)

Surface correlation function : In the presence of a wall, it is useful to decompose the 3D

Brownian motion into two independent motions, one parallel and one perpendicular to the

wall, along the direction Oz. Neglecting, to begin vlith, the particles/wall interactions, the first

motion obeys the usual 2D Brownian motion statistics, and the second one includes the

« mirror » effect of the wall. Accordingly, the proper probability density to be used in

computing the average in equation (2) is no longer given by equation (3) but now reads :

~ (= zo12 (z + zo12

p ( ~ J~ )- 3/2 4 Dt 4 Di 4 Dt (~)~ll, Z, Z o, " " e e + e

where (0, zo) and (q, z are the parallel and perpendicular coordinates of the particle at time

0 and t, respectively (see Fig. 5).
In the evanescent wave geometry, one must further take into account the fact that the

scattering volume is not unifornfly illuIninated, which requires that the average in equation (2)
be properly weighted by the electric field amplitude at the particle's position at time 0

[Eo e ~°'~] and time t [Eo e
~'f

The theoretical forrn of the «surface» correlation function g~(t) is thus given by the

following integral :

g~(t)
=

~°
e

f iii P (rj, z, zo, t ) e
e'" ~ e'~"~~ ~°~ d~q dz (7)

f

~~
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which has been found [9] to be equal to :

gs(t)
=

eXP (- Dq
II

t) gz(qz, f, D, t ) (8)

where qj and q~ are the components of the scattering vector parallel and perpendicular to the

wall, and g~(q~, f, D, t ) is an analytical function whose limited expansion can easily be

implementd on a micro-computer-
The theoretical correlation functions (5) and (8) have been used to draw the solid lines in

figure 2, leaving as an adjustable parameter the diffusion coefficient D. Now, the value found

for the best adjustment of the surface correlation function was always lower than the value

found for the bulk measurement, the difference being all the greater when the particles were

allowed to come closer to the wall, I.e. when the particles/wall repulsion was reduced by
increasing the salt concentration of the suspension. This is interpreted as the combined effect

of the repulsive hydrodynamic and electrostatic interactions between the particles and the

wall as we now discuss.

2.3 ROLE OF PARTICLES/1VALL INTERACTIONS. As mentioned in the introduction, two

kinds of interactions must be considered.

The static particle/wall interactions represented by a position dependent potential interaction

U(z), results in a non-uniform distribution of particles in the vicinity of the wall. As We

studied negatively charged latex particles of radius R suspended in salty Water, in the vicinity
of a glass wall, both negatively charged, the electrostatic interaction may be derived from the

DLVO theory [10] :

~~ ~~~ i~~~
~

~~'~ ~ ~'~ ~ ~~'' ~'~~ ~~ ~
~ ~~~

~

~~
~

+
(#i+ WI H#1 #21in Ii

A
1~°e-

~l1
(91

with the following notation :

s is closest distance between the particle's surface and the wall (I.e. : s = z R)

x~ is the screening Debye length

K "
[6~~/(2 ~~~~iA Cw~t))~~~ (IO)

(with N~ the Avogadro number,
e : the dielectric constant of the mediuTn, e the electronic

charge and c~j~. the salt concentration).

~j and ~~ are the surface potentials of the latex particle and the glass wall (typically on the

order of 50 mlo.
His a dimensionless quantity defined as :

H=
~ ~~~+ ~~~ ~~~ (ll)

R+s R

To this repulsive potential must be added the attractive Van der Waals potential derived from

Hamaker's theory [11] :

with Am I kT.

The resulting interaction potential U(s) is shown in figure 3a for different salt concen-

trations, and the corresponding BoltzTnan concentration profiles c(s) are plotted in figure 3b.
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Fig. 3.- Part a) Total Interaction potential (squares) between a particle and the glass wall, both

negatively charged, for various salt concentrations. The attractive Van der Waals part of the potential is

shown vith the dotted line. Part b) Corresponding particles' BoluJnan concentration profiles (squares).
The profiles obtained when ignoring the Van der Waals attraction are shown with the dotted fines.

This figure clearly shows that the effect of the Van der Waals attractive potential will only be

detectable for the highest salt concentration used (10~~ mol/I) and the shortest penetration
depth (f

=
0.2 ~m ), enhancing by lo fb the hydrodynaniic slowing down as will be explained

in the next section. This attractive potential was however hnportant in all our experiments, as

it was responsible for a very slow but detectable aggregation, all the more rapid when the salt

concentration was
increased. Beyond 10~ ~ mol/I, the aggregation was found to be too rapid to

insure good evanescent wave conditions on the flat surface of the prism during the data

acquisition time (of the order of lo mini.
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The effect of the hydrodynamic interactions between the particles and the wall, mediated by
the water molecules, are included through a position-dependent friction tensor A which,
multiplied by the vector velocity V of the particle, yields the friction force F experimented by
the particle :

1)' =

(/' ~' ). (13)

z c :
Vz

Using the Einstein Smoluchowsky relation, leads to a position dependent diffusion tensor

whose component Dj (s) and D~(s) have been calculated in the literature.

Using Faxen result [12, 4], we computed Dj (s) with the following linfited expansion :

D~(s) was derived from Brenner's expression [13, 4], keeping the first seven terrns of the

series :

l~b~k

Dz(S)

4
~

"
n (n + I 2 sinh (2 n + I

a + (2 n + I sinh 2 a
~~ ~~

3
~~~ "

~~
(2

n
) (2 n + 3 ) 4 sinh~ (n + 1/2

a
(2

n + )~ sinh~
a

vlith
a =

cosh~ '
~ ~ ~

R

To account for this position dependence of the diffusion coefficient in the computation of the

correlation function g~(t) is not a trivial matter, except for short times compared to the

correlation function relaxation time.

In this finfit, a limited expansion of equation (8) yields :

gli>(t)
m

ii Di gilt Dz(q]+ il12)11 (161

For such short times, one can assume that a given scattering Brownian particle is confined to a

volume small enough so that its diffusion coefficients Djj (z) and D~(z) can be considered as

constant. The observed correlation function is an average of equation (16) over all the

Brownian particles contained in the scattering volume. Taking into account the facts that the

concentration c(z) of particles near the wall is position dependent (see Fig. 3b) and that

particles closer to the wall receive and thus scatter a higher intensity according to the

exponential law exp(- 2 z/f), leads to the approximation :

~~~

j) ii Dj (z) qi
t D=(zj (qj

+
lif~) ii c(z) exp(- 2 zif dz

~~ ~~~

)~ c(z) exp (- 2 zif dz

~~~~

o

m
Ii b(f) (q2+ 1/f2)j (18)

thus defining the weighted average fi(f) which has been numerically computed for different

penetration depth for [Nacl]
=

10~~ mol/I (see dotted lines in Fig. 4).
It must be remembered, however, that this approach 15 only valid for short times, and the

above result should be compared with the very beginning of the experimentally measured
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Fig. 4. Average diffusion coefficient D (f ), normalized to the bulk diffusion D~~~, as a function of the

penetration length f for two salt concentration (Q :
10~~mol/1; m no salt added). The values

computed from the « short-time approximation are shown by the dotted line for [Nacl]
=

10~ ~ mol/I.
The computer simulated results for [Nacl]

=

10~~ mol/I and [Nacl]
=

10~~ mol/I are indicated vith

dashed fines.

correlation function, I.e. its slope at the origin. Unfortunately, this comparison cannot be very
precise, as the surface correlation function is far from an exponential and its slope at the

origin can only be poorly defined. We thus looked for a better way to analyze our

experimental data, which led us to the Brownian dynamics simulations we now describe.

3. Brownim dynandcs sbnviafions.

The idea is to simulate a light scattering experiment on a computer and derive numerically the

expected correlation function g(t). As we explained in section 2.2, any photon correlation

experiment measures the normalized correlation function of the electric fields scattered by a

walker at time 0, E(0 ), and by the same walker an instant t later, E(t). If the walker at time 0

and t receives the same incident intensity (constant illumination profile), the only difference

between E(0) and E(t) is a phase factor cos (q r (t)) where q is the scattering wave vector

and r(t) is the distance covered by the walker during the time t, and thus :

g(tj
=

l~~~) ~(°)i
=

jars (q.r (iii> (19)
iiE(0j ii

If the scattering particle is far from any wall, thus undergoing a Brownian motion with a

diffusion constant D~, it can be modelled by a random walker which takes every time interval

r
and in any direction a step ± (2 D~ r )~'~. The time interval

r
chosen for the simulation must

be small compared to the time decay of the Light Scattering correlation function, but large
enough to allow for Brownian fluctuations to decay. The light scattering correlation function

is then obtained as follows. Let a given walker move around during a time interval

t, thus covering a distance r(t) compute the phase factor cos (q.r(t)) and repeat the

experiment a great number of times, the average of the phase factor progressively building the

correlation function g(t). In the case of a free Brownian particle, moving in a constant
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illumination profile, the simulations match the well known analytical result (see Eq. (5)). If

we now introduce the exponential illuwnation profile, together with the mirror effect of the

wall (I.e. a walker meeting the wall just bounces back into the suspension see Fig. 5), the

simulations exactly match the solution given in equation (8). The method however takes on

all its value when we introduce in addition the static and hydrodynamic interactions between

the walker and the wall, as we now describe.

Starting from the Langevin equation describing the motion of a Brownian particle
submitted to a position-dependent friction coefficient and to a static position-dependent

force, Errnak and MacGamrnon [3] derived the expression for the position-dependent step
such a Brownian particle accompfishes. In our problem, the random displacement
L(z) of a walker along the Oz axis during a time interval

r
is tile sum of three terms :

L (z)
=

= (2 D~(zi
r

)"2 + dD;/dz
r + iD=(z)/k11 F= r

(20)

The first one is the usual random step, Lo
= ±

(2Dr)~'~ with a z dependent diffusion

coefficient D. The second one is merely a correction dLo to the first one, taking into account

the fact that D is not constant over the whole step Lo. This correction terra may be simply
derived by differentiating Lo with respect to z :

~
dD

~~
~

dL0
" +

~
(21)

2 Dr

which, for dz
=

Lo, yields the second terra of equation (20). The third term of equation (20) is

simply the drift of the walker away from the wall, due to the static repulsive force

F~ computed by taking the gradient of equations (9) and (12).
Now the random displacement L'(z) of that same walker parallel to the wall is somewhat

simpler as it includes just the random step, whose magnitude however is position dependent :

L'(z)
= ± (2 Dj (z) T)~'~ (22)

We have thus implemented on a MaCII microcomputer a program computing the position
r(t) of a walker staffing at time zero from a randomly chosen position r(0), repeating the

procedures as the walker moves around. The simulated surface correlation function is



1230 JOURNAL DE PHYSIQUE II bt 10

progressively built up by sumnfing, for each couple of positions [r(0), r (t)], the properly
weighted phase factor :

w (

ig~(t)j~~~~~~
= ~ ~

z
e

f
e

f
cos jq (r(t) r(0j)j (23)

° P~"
overatipmn

The advantage of using a single walker and following him throughout the computation is
that it will sample all the distances z from the wall according to the proper distribution law

c(z), as we checked in figure 6, and the non-uniform concentration profile is automatically
accounted for in the simulation.

Fig. 6. Concentration profiles obtained by numerical simulation using in the walker's step only the

first terra in equation 20 (curve I), the first two terms (curve 2) and finally aIJ three terrns (curve 3). The

dashed lines indicate the anaJyticaJ concentration profile deduced from the BoJtzman distribution using
equations (9) plus (10) for the particles/wall interaction.

Note that figure 6 illustrates the importance of all three terms in equation (20). Curve I

shows that accounting for the hydrodynamic repulsion by merely reducing the Brownian step

as the particle approaches the wall leads to an accuTnulation of particles in the vicinity of the

wall. It is only by adding the second term (curve 2) that the expected « flat » concentration

profile is obtained. The last curve (n° 3) in the presence of the static interaction potential is

well fitted by the Boltnnan distribution using equation (9) plus (12) for the particles/wall
interaction.

Finally let us mention that to avoid loosing too much time with the walker sampling a region
too far away from the wall (where the illumination intensity is too low to give a significant

contribution to the correlation function) we put a fictitious purely reflecting wall at

z = z~~. TMs distance was chosen as a good compromise between saving time and avoiding
distorsions on the correlation function.

This « simulated »
correlation function was then fitted vlith the theoretical expression (8)

found for g~ and the best fit yielded the simulated value D(f ). Repeating this procedure for

several values off and salt concentrations allowed us to plot the dashed lines shown in figure
4 and to fill the last column of table1.

4. Results and discussion.

All the experimental results are summarized in table I for different penetration depths and

salt concentrations.
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Table I. Summary of the experimental and simulation results for DjD~~j~ at various floacl]
concentrations and penetration depths f.

Depth c;pertinent) periment)

(experiment)

No salt f = 0.85

f = .43
~m

4.35 ± 0. I1 4.49 ± 0.04

f
=

0.20 ~m 4.35 ± 0.I1 0.97
0.95

.5
x

10-3 f =
0.85

~m 4.26 ±

f =
0.20 m

3.94
± 0.04 0.85

0.75

.0
x

10-~ f =
0.85

~m 4.10 ±

f =
0.20 m

3.85
± 0.04 0.81

0.74

.5
x

10-~ f =
0.85

~m 4.05 ±

f =
0.20 m

3.78
± 0.04 0.79

0.73

.0
x

10-2 f =
0.85

~m 4.09 ±

f =
0.43 m

3.76
± 0.08 4.80 ± 0.06 0.79 0.78

f
=

0.20 ~m 3.77 ± 0.04 ,
0.79

0.73

The experiments were conducted as follows : the latex suspensions were prepared in pure

water, and the bulk diffusion coefficient was measured. The optical set-up was then aligned
for a given penetration depth f, and the corresponding surface diffusion coefficient

measured. Without changing the optics, the necessary salt solution was added and

D~ measured at different salt concentration. Changing back the incident angle to

@; ~ o~, the bulk diffusion coefficient was measured on suspensions containing the same salt

concentration. Note that the bulk diffusion coefficient D~ is larger in the salty solution than in

pure water. This is simply due to the fact that the dangling chains covering the extemal latex

surface carry OH~ groups at their tips. In pure water, these chains are more or less fully
extended, so as to spread the OH groups as far apart as possible, whereas in the presence of

salt, they can fold back to a more compact structure which allows the particles to have a larger
diffusion coefficient [14].

The ratios D~(f)/D~~j~ obtained from the experiments are summarized the next to last

column of table I and the data extracted from the simulations are indicated in the last column

of that table. As expected, we note that the experimentally measured ratio D~(f)/D~~i~
increases as the salt concentration is decreased, but that the values obtained in pure water are

still significantly lower than I. The simulations of pure water » given at the beginning of the

last column were made assuming [Nacl]
=

10~~ mol/I.
As experiments and simulations are in fairly good agreement, we feel confident that the

Brownian dynamic simulations will be quite valuable to interpret light scattering data from

hindered » scatterers, such as particles trapped in a porous media or a gel ; it is expected
that the correlation function of the electric field scattered by such particles Mill decay Mith a

time constant reflecting both :

JOURNAL DE PHYSIQUE II -T I, V t0, OCTOBRE 1991 s3
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ii the geometrical constraints which reduce the span of the particles' diffusive motion [15]

and

iii the physical interactions between the particles and the walls, which slow down the

particles' Brownian motion itself.

To summarize, we have shown that the Evanescent Quasielastic Light Scattering Technique

is a sensitive tool for measuring Brownian dynamics in the immediate vicinity of a rigid

surface.

A net decrease of the measured diffusion coefficient is observed, due to the hydrodynamic

slowing down of the particles very close to the wall. TMs effect is more observable when the

particles are allowed to get closer to the wall, I.e. when the range of the static wall/particle

repulsive interaction decreases.

This method could also prove to be very sensitive to the onset of particles aggregation on

the surface, introducing in the computation a « residence time » during which a given particle

would remain stuck on the wall before drifting again in the suspension. Simulations are

currently being done to test this possibility.
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