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Abstract. — The swollen lamellar phase L, and the anomalous 1sotropic phase L, (sponge) are
presently the only two dilute phases of fluid membranes 1n amphiphilic systems that have been
clearly charactennzed We here deal with the L, phase. We first recall the scale invanance
argument leading to the ¢ >scahing law for the free energy density of phases of fluid membranes
We extend 1t further 1in order to denve scaling laws for several static and dynamic physical
properties of L, The effects of renormalizations of the membrane area and of its elastic constants
with scale length are discussed. These predictions are checked against a large set of expennmental
data obtamed from lhght scattering. electric birefringence and flow birefringence The results
obtained are puzzling since static quantities exhibit logarithmic corrections due to renormaliza-
tions while dynamic ones do not.

Introduction.

The equilibrium state and the physical properties of polymer solutions 1n the dilute and the
semi-dilute regimes are known to be dominated by the statistics of the bending conformations
of the long flexible unidimensional molecules Although 1t 1s very difficult to work out exactly
the corresponding statistical physics, many important insights have been obtained on the basis
of simpler scaling arguments [1].

In the recent years, it has become clear that, under suitable experimental conditions,
amphiphilic molecules do aggregate in the form of very large flexible 2D-bilayers even in very
dilute solutions [2]. Presently, two dilute phases of such fluid flexible membranes have been
well characterised 1n amphiphilic systems : the swollen lamellar phase L, and the anomalous

(*) Permanent address Service de Physique du Solide et de Résonance Magnétique, C EXN Saclay,
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1sotropic phase L, (sponge phase). The swollen lamellar phase L, corresponds to the case
where the infinite bilayers are regularly stacked parallel to each other so as to determune in
the sample a quasi long range smectic order. The L; phase 1s 1sotropic and shows no long
range positional order. Experimental investigations [3-6] involving scattering techniques and
measurements of transport properties have suggested the so called bicontinuous topology for
the L, structure, the membrane being multiconnected to itself throughout the sample as
schematized 1n figure 1.

Fig 1 — Schematic drawing of the multiconnected membrane in the L; structure

The basic charactenstic features of the structure assumed for L, are 1) the multiconnected
membrane separates the 3D space 1n two equivalent [7] subspaces each of them self connected
through out the sample; u) in spite of the absence of a long range positional order, a
charactenstic distance 4 clearly appears in the scattering profiles (maximum of S(g)) which
can be identified as the average size of the « passages » in figure 1. The conservation of total
area of membrane A then implies that 4 must scale as ¢ ~! where ¢ is the volume fraction of
membrane 1n the sample. At sufficiently high dilution (small ¢), d can so be made very large
compared to the thickness & of the bilayers and also to the range of the repulsive direct
molecular interactions. In that hmit the bilayer can be assumed to interact through self
avoidance only. Just like 1n the case of semi dilute long polymer solutions, we then expect the
equilibrium state of L, samples to be dominated by the statistics of the bending conformations
of the flexible membrane. Here again, although it 1s not possible to compute explcitly the
partition function {8], scaling arguments provide accurate predictions that can be checked
against experimental data.

In the first section, we briefly recall how the ¢ > dependence of the free energy density of
phases of infinite fluud membranes can be derived from a very general stand point. Actually,
this scaling law was first derived by Huse and Leibler [8] for the restricted case of swollen



N9 SPONGE PHASE SCALING LAWS 1103

cubic phases (exhibiting long range crystalline order so that the fluctuations of the membranes
can be expanded into normal modes). Later on [6], Porte ez a/ showed 1t to be very general,
based on a simple scaling argument with no respect to the presence or absence (like 1n
L,) of long range order It therefore applies to all cases where infimte flud membranes
mteracts through self avoidance only.

In section 2, the argument is further extended 1in order to denve scaling laws for other
measurable physical charactenistics of the L, phase We first recall [6,7] how the
¢ dependence of the osmotic compressibility is immediately obtained from that of the free
energy density. And we present how the argument can be also applied to the collective
diffusion coefficient, to the electric birefringence (amplitude and relaxation time) and to the
flow birefringence.

In section 3, we discuss the effect of renormalizations of the rigidity moduli K and
K due to short wavelength curvature fluctuations of the membranes. Following the views first
reported 1n [7], we show that they should induce logarithmic deviations to the scaling laws
derived 1n the frame of exact scale invanance

In section 4, these predictions are compared to experimental results obtained in hght
scattening (static and quas: elastic), time resolved electric birefringence and flow birefrin-
gence.

The static quantities actually exhibit the logarithmic deviations due to renormahization but
the dynamic ones do not. This puzzling point 1s emphasized 1n the discussion of section 5.

1. Free energy density.

Each accessible bent conformation for the membrane subjected to the only restriction of self
avoidance must be weighted by the Boltzmann factor related to the elastic energy to be paid
upon bending. The most general expression for the bending energy density of flud film has
been worked out by Helfrich [9] In the particular case of membranes symmetrical with
respect to side interchange (symmetrical bilayer) the spontaneous curvature must be zero,
and the bending Hamiltonian is

1 PR
H= ~K K dA4 1
L [2 (c; + )"+ K¢y ‘-'2] M

where ¢, and ¢, are the two prnnciple curvatures of the area element d4. K and
K are the ngidity moduli respectively associated with the mean curvature (¢; + ¢,) and the
Gaussian curvature (c; ¢;) of the membrane

Scaling laws are often the result of the invariance of some charactenstic quantity with
respect to a set of spatial transformation. In the present case, the invanant quantity is the
elastic Hamiltoman [1] and the spatial transformation 1s the set of 1sotropic dilations (i.e.
same change in scale in the 3 directions of space) - a dilation of ratio A will transform
dA mto A2d4 and each ¢; and ¢, into ¢;/A and cy/A so that H remains identical

Let us consider two systems [6] (Fig. 2) consisting of respective total area of membrane
Aand A' = A 2A4 confined 1n respective volumes ¥ and V' = A 3 Note that, in the case of
the L; structure drawn on figure 1, the ratio V/A4 (respectively V'/A’) can be essentially
identified with the charactenstic distance d(d') up to some geometrical prefactor of order
unity. However, the argument 1s general enough to be apphed even in the case of a structure
showing no well defined measurable characteristic distance So, we work 1t out keeping
A and V (rather than A4 and d) as the parameters defining the considered situation. Apart
from short wavelength thermal ripples (wavelength smaller than 4 and d°), any configuration
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Fig 2 — Dilation transformation applied on a given configuration of the membrane

of the first system corresponds to a « dual » configuration of the second system through the
1sotropic dilation of ratio A. Dual configurations having the same elastic energy they have the
same statistical weight and therefore bring the same contribution to the free energy of each
system. This means that, except for the contribution of the ignored small nipples, the free
energy of fluid membranes is also scale invariant just like the elastic emergy. Moreover, 1t 1s
trivial to show that, in the lhmut of high K/T values (ngad lmit where the high
g curvature modes of a flat membrane can be assumed independent), the contribution of the
small wavelength thermal ripples 1s sumply proportional to the total area of membrane
A (or A" = A 2 4). This contribution can therefore be entirely incorporated into the standard
chemical potential u , per unit area of membrane. Putting together these feature with the
extensivity of the free energy, we arrive at the following expression for the free energy of a
given sample with area of membrane 4 confined within the volume ¥V for a phase consisting of
infinite membranes only [10] (such as L, and L;):

F=p,A+ByK K, T)AYV? )

where B, 1s an unknown function of X, K and T The second term 1s both extensive and scale

invariant. 4/V being simply proportional to ¢ (¢ = §A4/V), [2] can be immediately
translated in terms of the free energy per umt volume of the sample

FIV =psd+By(K, K, T).¢°. ?3)

The first term, linear 1n ¢, is trivial and does not affect the stability and physical properties
of the phase. The second term which scales as ¢ > expresses the scale mvanance of the
statistics of membranes and plays a central role in the physical properties of the phases : quite
a number of other scaling laws can be straightforwardly derived from 1t as shown 1n the next
section

But before closing the present section, we want to stress again the basic conditions required
for the scaling argument to apply. The essential restriction 1s that the Hamiltonian must be
invanant through simple dilation. It therefore apply to the case of membranes interacting
through self avoidance only In that respect, the 4~ 2 dependence of the effective Helfrich
steric mteraction [11] in the swollen lamellar phase indeed arises from the scale invariance
Further more, the argument also works in the high dilution asymptotic limit when the
membranes interact through a net direct repulsive potential decreasing with the distance
d faster than d~2[12] On the other hand, whatever short 1ts range, a net attractive interaction
obviously breaks the scale mmvariance of the Hamiltonian : even a sticky potential has an
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increasing effect upon dilution (or dilation), presumably leading to a negative ¢ 2 term 1n the
free energy density [13]. Another strong himitation of the approach 1s the idealisation of the
membrane as having only curvature degrees of freedom. In real systems, the possibihity of
other internal degrees of freedom must be questioned. In particular, in many common
surfactant systems, fluid membranes form spontaneously provided that a cosurfactant 1s
used : the additional degree of freedom 1s the local composition of the membrane, possibly
coupled to its local curvature. The contribution of the coupling to the overall Hamiltonian of
the system has no reason to be scale invariant and the argument mught fail. In the present
report, two of the three systems investigated 1n sections below actually involve membranes
made up of mixed surfactant and cosurfactant. Nevertheless, their physical properties are
found to agree with the scaling expectations indicating that, for these two systems at least, the
composition degree of freedom 1s not too important.

2. Scaling laws.

2.1 OSMOTIC COMPRESSIBILITY. — Using (3), we immediately derive the osmotic pressure
T

F A(F/V)
'rr=—<7>+qb 5% ~¢3. @

Then, the intensity of light scattered at zero angle (/(g — 0)) being proportional to the
osmotic compressibility :

uqqm~¢(§§)” ©)
we expect :
I(g-0)~¢! (6)

along a dilution line (constant K/T and K/T).

2.2 KERR CONSTANT. — In an electric birefringence experiment, the sample 1s submutted to a
static electric field E. Bilayers being locally amsotropic with umaxial symmetry oriented along
their local normal n, they usually exhibit amisotropy of therr static dielectric polarizability and
therefore a spontaneous tendancy to orient with respect to the electric field. As a result, the
initially isotropic structure of L; becomes anisotropic under the field and shows measurable
optical birefringence An :

An = By E*Ay (A, wavelength of hight ) (7)

where the proportionality constant By 1s the so called Kerr constant. Our purpose 1s here to

derive the scaling law for By Let us introduce £ the average structural anisotropy induced by

the electric field We need 1t to be expressed as a dimensionless quantity, a convenient choice
18

_dip-d,g

dr+d g

®

where d|  and dj; are the « umt cell » dimensions along directions respectively normal and
parallel to the electric field E.
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For weak deformations (B8 < 1) we make a Taylor expansion of the free energy around

=0

F(B=0)=[pud+B(B=0).¢%.V )

= AF(B) = F(B) ~ F(0) = 5 8%.B"(0). 6°. ¥ (10)
where )
” __a__é

B"(0) = 5 o (1)

The contribution of the electric field to the total energy of the membrane is:

_525.52.3.5.,4 (12)
where Ae 1s the anisotropy of dielectric constant (at zero frequency) of the membrane,

A 1s the total area of membrane 1n the volume V. Minimizing the sum of (10) and (12) gives
the equiibrium value of 8 :

1 Aec.E?. A4

B~§'B"(0).¢3.V~

¢ 2. E%. 13)

Assuming that the resulting optical birefringence An only arises from the intrinsic molecular
anisotropy of the bilayer we expect

An~¢ .B~¢ "'.E2. (14)
So finally, the Kerr constant By should scale as:
Be~¢"' (15)
More generally, we expect all static susceptibilities to scale hke ¢! L,

2.3 RELAXATION TIMES. — After having suddenly switched off the electric field, the
structure will progressively relax back to its 1sotropic 1nitial state (8 = 0). The rate of free
energy variation during that process is:

(5.8 5. 5. 0. 45
AF(B,E—)_B(O)-B B ey (16)

Assuming that all dissipation is due to viscous flows of the solvent inside the « cells » and
the « passages », we write for the rate of entropy production :

1 v, 0v, de an
5 Mo V(B_xk+3_x,

T.AS =
where 7, is the viscosity of the solvent and v is the velocity field in the solvent At fixed
deformation rate 38/9¢, the velocities at corresponding points 1n a dilation transformation are
indeed proportional to the dilation ratio, but the velocity gradients have the dimension of an
inverse time and remain invariant. On the other hand the velocity gradients are indeed
proportional to the deformation rate 38/3:. We therefore expect T. AS to be of the form :

. 2
T.AS~1;0.V.(%§) a8)
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independent of the dilution ¢ For sufficiently short times, the relaxation process 1s adiabatic
and no work 1s exchanged with the outside :

AU =0 = AF + TAS 19)

Since AF 1s proportional to ¢ > and T AS 1s independent of ¢ we immediately obtan that all
relaxation tiumes must scale as:

TR~ (20)

2.4 DIFFUSION COEFFICIENT. — Indeed simular arguments apply to the dynamucs of the
relaxation of concentration fluctuations as measured 1n a quasi elastic light scattering
expeniment. But the total amount of membrane 1n the sample 1s a conserved quantity which
means that the relaxation time 7, must depend on the wave vector g at which it 1s measured.
Assuming simple diffusion we expect :

5'(q, ¢ ) = D(¢) q° 1

where D_(¢ ) 1s the cooperative diffusion coefficient.
Using the same analysis as before (but keeping in mind that a dilation transformation of
ratio A changes the wave vector ¢ 1nto g’ = g/A) we sumply obtain :

0(g, ¢ ) = 70(q/¢) . &°. (22)

Combining (21) and (22) gives [14]:
Dc(¢) ~¢ (23)

2.5 FLOW BIREFRINGENCE. — A charactenstic feature of the L; phase 1s that it shows strong
flow birefringence upon gentle stirnng We guess indeed that it anises from the coupling
between the induced structural anisometry 8 and the elongational part of the shear stress. In
the low shear rate imit (linear regime) we expect the induced anisometry 8 to lie n the plane
of both the velocity and the velocity gradient, tilted at /4 off the direction of the velocity
gradient The corresponding induced optical birefringence being of the form :

M=Bﬂow7~¢-ﬁ (24)

where we assume again that the local dielectric constant anisotropy (at optical frequency) only
arises from the intrinsic molecular anmisotropy of the bilayer. However, Bg,, cannot be
considered as a susceptibiity since 1t is measured in conditions such that energy is steadily
mjected 1nto the structure by the imposed shear rate y. It 1s 1n a steady dissipative state, out of
equilbrium and By, must be considered as a dynamical charactenstic. The induced
anisometry B 1s related to the fimte time i necessary for the structure to relax the shear
deformation and we expect accordingly :

B~Tgr.v (25)

where the prefactor 1s of order unity Keeping in mind that 7y scales as ¢~ (see above) and
combining (24) and (25) we immediately obtain :

Bpow~ ¢ 2. (26)

The ¢ dependences predicted 1n this section are reported in table L.
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Table 1. — Scaling laws for the physical properties of the L; phase.

Physical poperty Scaling behavior
Free energy density FIV = p, ¢ + TB(K/T, RIT) ¢°
Osmotic compressibility I(gs0)~¢ !
Kerr constant Bg~¢~!
Diffusion coefficient D.~¢
Relaxation time of the Kerr effect TR~ 3
Flow birefringence By~ 2

3. Renormalizations.

Scaling laws for several quantities characterizing the L, phase can so be derived as quite direct
consequences of the scale mmvariance of the elastic energy of fluid membranes. But an
important point of our argument 1s that the small ripples can be analysed as combinations of
independent normal modes (their contribution to the free energy 1s then simply proportional
to A) which 1s an approximation valid in the rigid limit only (K/T > 1). In this hmit only can
the increase of area compared to 1ts projected value be neglected and the dilution be
identified with a pure dilation. Perturbation calculations [15-17] worked out recently, have
shown that the effect of small wavelength curvature fluctuations is to renormalize the effective
values of 4, K and K. Up to the first order in T/K, the following expressions for the
renormalized quantities have been obtained [17]:

kBT g
A=A0[l+4wK1n <5>] @7)
3ky T
K(#) = Ko— 1n(§) (28a)
and
_ _ 10ks T
K(¢) = Ry + 5 1n (%) (28b)

where 4, 1s the area of the projection of the membrane on its average position,
K, and K, are the bare values of the ngidity moduli (as measured at very small scale length), a

1s the short wavelength molecular cut off, and ¢ the scale at which those effective values are
involved. For L, the relevant scale length 1s indeed the structural characteristic length

d The man consequence of renormalizations is to break up to some extent the scale
invariance of the free energy. Therefore, the ¢ > dependence of the free energy density in [3]
should be somewhat affected. However, renormalizations of 4, K and K are all logarithmic in

d (1.e. 1n @) and therefore increase very slowly. So finally, for small values of T/K, we expect
for the free energy density a ¢ dependence of the form [7]:

F/V),~$*(1+clng) 29)
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re. a mam dependence still m ¢* but with a loganthmic correction, the prefactor
¢ being an unknown function of T/K. Consequently, the other scaling laws derived 1n the
preceding section should be as well affected by corrections logarithmic in ¢ [7].

It must be emphasized at this point that (27) (28a) and (28b) are first order corrections (in
powers of 7/K) in perturbation theory. They are quantitatively rehiable in the semu ngid
regime only 1e. for situations where the charactenistic distance d 1s much smaller than
persistence length £y of the bilayer -

47TKO
§K=anP(3—k;T)

where a 1s a molecular size (presumably of the order of the membrane thickness ~ 20 A). For
two systems investigated below (namely CPCI and AOT — see next section) recent
measurements of Ky [22] (Ko(CPCI)~ 15k T and K (AOT) ~3ky T) yield £; values
(£x(CPCI) ~ 2 x 10* A and £, (AOT) ~ 6 x 10° A ) much larger than d at all dilutions so that

we expect to remain in the first order perturbation regime all along the dilution line The
situation 1s less clear for the third system (betain, see next section) for which we have no
rehable data for K. but we have good reasons to guess that 1ts ngidity 1s somewhat lower so
that the sem1 ngid regime 1s questionable. This point 1s discussed further in the next section
for the purpose of analysis of the electric birefringence data obtained for this later system.

4. Experiments.

Three different systems have been investigated . the quas: binary system AOT/brine [18], the
ternary system n-dodecylbetain/pentanol/water (betain system) and the quasi ternary system
cetylpyrnidimum chlonde/hexanol/brine (CPCI system).

The AOT system was 1nvestigated with light scattering (elastic and quasi elastic) in order to
check the scaling predictions for the osmotic compressibility and the cooperative diffusion
coefficient D, All data are collected using a standard AMTEC goniometer with a
Brookhaven digital correlator The scattered intensity is collected for each sample as a
function 'of the wave vector ¢. For dilute samples, appreciable g-dependences are observed
(see e g, Fig. 3) which are very well fitted with the theoretical expression proposed by Roux
et al. 1n reference [7] :

(30)

-1
(@) =A[B+ tg (951/0/2)]

g¢ yo/2

3 —
0 0002 0004
q (A

Fig. 3. — g-dependence of the ight scattered intensity for the AOT sample with ¢ = 0487 The full
line correspond to the best fit using relation [30] as proposed m [7]
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where the correlation length £ 1s that of the thermal fluctuations beyond the average I/O
(inside/outside) symmetry. From those fits, accurate values of I(g — O) can be determined
for each dilution ¢ In order to exhibit possible logarithmic deviations beyond the expected
mamm ¢~ dependence for I(g — O), we have plotted in figure4 [¢ .I(O)]"! versus
In ¢. A straight hne 1s obtained showing that the osmotic compressibility 1s of the form [7] :

-1
I(q—>0)~[¢-ln¢il*] G1)

consistently with the scaling approach corrected by the renormalizations

For all samples the relaxation of concentration fluctuations as measured by quasi elastic
light scattering 1s a single exponential with a characteristic time 7p proportional to
g* (simple diffusion process see Fig. 5) [23] from which a cooperative diffusion coefficient
D.(¢) can be defined

75'(¢,#) =D.(¢).q° 32)
2000 15000
((q-0) @)
Ty (s
10001 A
0 y ' ' 0 i
-20 -1.6 -12 -08 0 6 12
log(®) q2 (1010¢em-2)
Fig 4 Fig §

Fig 4 — [#I(O)] ! versus In ¢ for the L, phase of the AOT system

Fig. 5 — g dependence of the inverse relaxation time 75 for several L, samples in the AOT system.
Dafferent samples with volume fractions ranging from ¢ = 00487 and ¢ = 0 397

The vanations of D.(¢) versus ¢ are plotted 1n figure 6. The observed evolution 1s simply
linear :

D(¢d)~d (33)
the intniguing pomt being that no logarithmic dewviation 1s observable for that dynamuc
charactenstic quantity (in contrast with the conjugate susceptibihity — 1e. the osmotic

compressibility) An interesting point 1s that the order of magnitude for D, 1s sumular to that of
disc like objects of average size d (see Tab. II).

Electric birefringence measurements are performed on the L; phase of the betain system
[19]. For that system the membrane 1s uncharged at pH 7 and the solvent is pure deionized
water and therefore non conducting. The samples can thus be submuitted to an electric field in
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15
o
g
D(107cm2/s) =
0.0 y
0o 02 04
[
Fig 6 — Evolution of D_ versus ¢ for the AQOT system
Table II. — Quasi elastic light scattering data for the AOT system. d are from neutron

scattering data reported in reference [15] The hydrodynamic length &y is derived from
D, using the classical relation D, = kg T/6 wno £y where 7 is the viscosity of brine. Note that
£y 15 of the order of d at all dilution.

¢ d (&) D, (1077 em?s™ 1) £y A)
00479 605 0205 1200
0 0704 412 0259 940
0.0952 305 0.294 830
0.119 243 0.368 663
0.143 203 0.477 511
0.167 174 0627 389
0.188 154 0.661 369
0.230 126 0706 346
0 287 101 106 230
0.383 76 1.14 216

the range 400 < £ <1700 V/cm with no mmportant charge transport. For all mvestigated
samples, the induced optical birefringence is linear 1n E?:

An~E? (34)

Which means that we are in the linear regime where the induced structural anmisometry
B is small : B < 1. Time resolved analysis of the An evolution has shown that the rise time of
An upon switching on the field and the decay time after switching off are 1dentical (Fig. 7)
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Fig. 7 — Dynamic of the electric birefringence signal for the betain sample with ¢ = 0 0552 showing
that the nse time and the decay ume are identical

indicating that there is no permanent dipole effect (purely induced dipole effect). This is
further checked making an abrupt reversal of the electric field (E - — E) : nothing noticeable
happens on the birefringence signal. The Kerr constant Bg (¢ ) can thus be defined safely and
measured accordingly, the obtamned data being plotted n figure 8 (see also Tab. III) : the
Kerr constant is negative at high ¢, comes to zero around ¢ = 0.07 and becomes positive at
low ¢’s. That change 1n sign upon dilution is specially intrigning, since 1t seems to suggest that
the structural amsotropy induced by the field has opposite sign depending on the
concentration i.e. that the dielectric anisotropy of the membrane is ¢ dependent. This
unrealistic possibility can be discarded from observations in polanzed light of monocnistalline
oriented smectic samples of the swollen lamellar phase L, of the same system. Their optical
birefringence also changes sign at essentially the same volume fraction ¢, = 0.07, indicating
therefore that this 1s a purely optical effect for both L, and L, phases. We interpret it
according to the explanation proposed by Barois and Nallet [20]. Two contributions to the
optical birefringence of the samples have to be considered : the first one 1s indeed related to
the molecular anisotropy of the membrane (this 1s what we have assumed i the scahng
approach of By 1n the preceding section) ; and the second would be present even 1n absence of
any molecular anisotropy of the membrane and arises from the partitioning of space into

Bx (10°cm V2)

8 o

o
41 o

o
o k|

L)
%ogao a

-4 T T
00 01 02 0.3

0]

Fig. 8 — By versus ¢ for the L; phase 1n the betain system
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Table III. — Electric birefringence data for the betain system. d is estimated from neutron
scattering data obtained for the L, phase. &y is derwved from Ty using the classical relation
78" = 6 kg T/8 mwn&d. We here only report data far enough from ¢, where Ty 1s unambigously
defined by a single exponential fit of the relaxation.

¢ 7 g (ns) £n ) d @A) (19_95‘_‘2“1)
0.0483 467 800 1100 7.72
0.0501 416 770 5.69
0.0552 298 690 3.44
0.0603 274 670 770 1.91
0.0654 208 611 102
0.137 16.4 262 —192
0.156 10.4 225 —-2.05
0.175 6.87 196 - 2.00
0.215 4.89 175 180 —2.36

alternate shces of different optical dielectric constants (membrane and solvent). That second
contribution being usually called the form birefringence. The resulting total anisotropy
Ae of dielectric constant (at optical frequency) has been calculated by Barois and 1t has the
form [20]:

—é(l— _ _ a
Ae =gy —¢, = i 8 ;L:snl(isl —s(r)-’.s)m-: Peslui = us) (35)

where the subscript / and L stand for the directions respectively parallel and normal to the
director of the lamellar sample, g5 is the dielectric constant of the solvent and ¢y and
ey 4 are the dielectric constants of the membrane relative to the direction of the director of
the sample. The first term in the numerator of [35] corresponds to the form contribution and
the second term to the intninsic contribution In general we expect the form contribution to be
negative (eg < £)y) and €y | ) and the intrinsic contribution to be positive and a change in sign
is observed at finite ¢. Finally, the optical birefringence An;, of a lamellar sample should
vary as

Anp, = — A¢ + B 2 (36)

(4 and B =0 are unknown specific constants) at small ¢.
Anf for a L, sample with fimte field induced structural anisometry 8 :

An(B) = (- A$ +Bo ) B 37
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instead of (14) and the scaling law for By (15) must be modified 1 the form -
ag
BK~$—bK (ag and bg=0) (38)

assuming reasonably that the bilayers preferentially align parallel to the electric field E (in
order to munimize the depolarization field : 8 < 0).

The prediction (38) is checked against the expenimental data in figure 9 where
By is plotted as function of ¢ ~! We clearly see a strong upward deviation beyond the linear
expectation. Just like in the case of I(¢g — O ), we wonder whether this deviation is consistent
with the loganthmic correction due to renormalizations. If this 1s so, the field induced
amisometry should rather have the form:

-1
B~ [¢2.1ni*] . E? (39
3
mstead of (13) and using (37) we finally rather get:
d) -1
B~ ¢l 2 | (o d) “0)
oK
which gives a relation of the form :
bo—¢ ¢
— ~ln - 41
¢ .Byg ( .33 ) “n

where ¢ 1s the concentration where intrinsic and form birefringences compensate. We check
this expectation in figure 10. The expected linear behavior is actually observed which means
that the effective scaling law for By indeed involves the logarithmic correction due to
renormalization.

Dy - @
Bk (10%cm V2) @B (@u.)
04
8 1 o
o
o
41 o o
o 02 o
0- #
of
o™ ° dk
-4 T T
00 g T
0 10 20 ot © 175 075
Log @
Fig. 9 Fig 10

Fig 9 — By versus ¢ ~' for the L; phase of the betan system

bo— ¢
¢ .Byg

Fig 10 — versus In ¢ for the L, phase of the betain system.
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However, although the plot of figure 10 seems convincing, one should wonder whether the

most dilute samples (with larger d) are not too far from the perturbation regime This
possibility 1s actually suggested by the shight downward curvature of the experimental
evolution, the lower points (where the experimental accuracy 1s best) being somewhat below
the average straight hine. We may consider this behavior as an indication of the onset of higher
orders (in T/K) corrections beyond first order

On the other hand, for most samples, the relaxation of the induced birefringence after
switching off the field appears very close to a single exponential. In figure 11, we have plotted
this relaxation versus time 1n the double logarithmic representation approprnate for
investigating plausible stretched exponential behavior. The evolution is actually linear with a
slope (0.94) very close to 1. Simular behaviors are observed for all samples with concentrations
far enough from the compensation pomnt (¢é,). The behavior 1s farther from a simple
exponential for the samples closer to ¢, but we guess that this 1s related to the fact that the
signal is low so that other munor contributions to the birefringence become wvisible having
different dynamics (local molecular reorientation for instance...). So finally in most cases the
Kerr relaxation time 1s well defined and 1ts variations as function of ¢ ~2 are plotted 1n
figure 12 m order to check its scaling law (7 ~ ¢ ~%) We actually observe the expected hnear
behavior. In particular the points corresponding to the lower volume fractions are also very
well aligned along the ¢~ scaling indicating no detectable slowing down of the relaxation
process at low ¢ So, here again the dynamic quantity shows no logarithmic deviations
beyond the mean field scaling law, while the corresponding susceptibility (Bg) clearly does.

In(-ln(An))(AU.);E

r
:y‘*
¥

-1.398 i
-6 59

Int(ms) -3.90

Fig. 11. — In (- ln (An)) versus In ¢ for the L; sample with ¢ = 0215 in the betan system.

Tr {Us) Log (tr (us))
500 3

250 1

0 T 0 T
0 5000 .3 10000 -15 -10 05
@ Log ®
a b

Fig. 12 — a) 74 versus ¢ ~° for the betain system b) same data as in 12 a) using loganthmic plot. The
full line correspond to the slope 3.



1116 JOURNAL DE PHYSIQUE II N9

The samples investigated 1n flow birefringence are from the system CPCI/hexanol/brine
which we formerly characterized extensively using mainly neutron scattenng technique (see
Ref. [3]). The geometry of the flow birefringence experiment 1s that of a classical Couette cell
with outer rotating cyhnder, the light beam propagating through the sheared sample along the
direction perpendicular to both the velocity and the velocity gradient. The gap between the
cylinders is 0.7 mm. And the optical path through the cell 1s 7 cm long so that the sensitivity of
the experiment 1s very good The observed induced umaxial birefringence 1s 1n all cases found
to have its axis titled 7/4 off the direction of the velocity gradient as expected for the linear
regime (low shear range). The vanations of the phase difference A8 between the ordinary and
the extraordinary light versus the shear rate y are plotted in figure 13 for samples of various
concentrations. For all sample A# 1s indeed proportional to ¥ on the entire investigated shear
rate range. Here again we observe a change 1n sign of the induced birefringence which we also
interpret in terms of intrinsic birefringence and form birefringence. For the CPCI system, the
compensation concentration ¢, 1s 0.18, confirmed by optical observation of the swollen
lamellar phase L,. The sign of the induced birefringence (Tab.IV) positive at low
¢, 1indicates that the membrane preferentially aligns along the direction of the elongational
part of the shear stress as expected indeed. Due to this effect, we have to modify the expected
Bg,,, ~ ¢ ~2 scaling law (denived for the case of intrinsic birefringence only) which rather
becomes of the form :

Bﬂow~A¢_2+B¢—l (42)

To check that, we have plotted n figure 14, ¢ 2 By, versus ¢. The expected linear behavior
gives reasonably good agreement with the experimental data (although not excellent). Here
again, the scalng behavior of this dynamical quantity shows no clear evidence of any
loganthmic deviation related to renormalizations

8(°)

20 _ @2 B (107'%)
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00
o
04 T T
00 01 02 03
o
-100 )
0 Y(s') 1100
F
Fig 13 ig 14
Fig 13 — The phase difference between ordinary and extraordinary light versus the shear rate

v 1n the flow birefringence experiment on the L, phase of the CPCI system Several samples ranging
from ¢ =00213 to ¢ =0225

Fig. 14 — ¢ By, versus ¢ for the CPCI system
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Tableau IV. — Flow bwrefringence data for the CPCI system.

¢ By, (107 105)
0.0265 719
0.0561 106
0.0794 46.6
0102 222
0.126 124
0.149 69
0.228 —4.48

5. Discussion.

The main purpose of this experimental study was to check the validity of the scaling approach
based on the scale invanance of the elastic energy of flud membranes. We have found that
the main dependences are indeed what is expected from the scaling approach for the two
static susceptibilities and for the three dynamic properties However, static and dynamic
properties behave differently with respect to the marginal loganthmic deviations related to
renormalizations of the area and of the rigidity moduli of the membranes. For the two static
quantities, the expected logarithmic corrections have to be introduced 1n order to obtain good
quantitative fits. On the other hand, for the three dynamic quantities no deviations from
simple scaling behavior could be detected. This difference 1s actually not a matter of
experimental accuracy. Although varying slowly with ¢, the expected logarithmic deviations
correspond to marginal slowing down diverging at finite ¢ value (¢ *) instead of
¢ = 0 as predicted from the mean field approach Such an effect should be specially easy to
evidence on the variations of relaxation times which scan more than two orders of magmitudes
over the investigated ¢ range. The puzzhng difference in behavior between static and
dynamic quantities is therefore a real experimental fact. But at the present time, we have no
interpretation for it.

One point needs to be underlined : for each static susceptibility, the observed loganthmic
corrections 1nvolve a particular value ¢ * for the volume fraction (see Figs.4 and 10)
However ¢ * must not be identified to the concentration at which the measured susceptibility
actually diverges (1.e. «critical volume fraction »). It only arises from the first order
correction 1n 7/K beyond the mean field behavior which diverges at ¢ = 0. Before reaching
¢ *, higher order terms will also mcrease and eventually dominate leading to an effective
divergence at a different concentration. Even more, since ¢ * corresponds to a first order
correction only, it has no particular reason to be the same for two different susceptibilities
measured for the same given system along the same dilution line.

Otherwise, the measured values of D, for the AOT system and of 7y for the betain system
happen to be quite close to what 1s expected for an assembly of disc like objects of lateral

extension of order d (see £;; 1n Tabs. II and III) Similar results have been obtamned by Miller
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et al. [21] for a different system, and they argued of that as an mdication of L; being an
assembly of discrete discs rather than consisting of a multiconnected membrane. Both models
indeed lead to the same scaling laws provided that the diameter of the discs is slaved to be of
the order of their separation distance at all dilutions as they propose. Moreover, the
prefactors should be also very similar provided that, in the connected model, the
K rigridity of the bilayer 1s of the order of kg 7 as is indeed the case for the present systems (we
have estimated K ~ 3 ky T for the AOT system and K ~ 0.5 k3 T for the betain system). So,
clearly, 1t 1s very difficult to discriminate between these two models since they both involve
one only characteristic distance d. However, we underlined in section 4 that the electric
birefringence relaxation is remarkably well fitted by a single exponential. In the discrete disks
model, this would suggest a very monodisperse population which seems unrealistic for a
reversible self assembling process leading to particles of very large sizes. On the other hand, a
single relaxation process seems more plausible in the multiconnected model. Anyway, the
only truely discriminating procedure 1s to probe directly the connectivity of the membrane by
measuring transport properties of the amphiphilic molecules that are slaved to diffuse into the
bilayer [4].

Another point deserves to be discussed further. Following the point of view of Milner et al.
i reference [14], we expect two separate time ranges for the dynamics of L,. Withun very
short times, the spontaneous thermal fluctuations (light scattering) or the field induced
deformations (electric birefringence) correspond to structural changes keeping constant the
topology of the structure Within much longer times, the topology may have relaxed leading
to a wider set of structural fluctuations or deformations. The characternstic time separating
those two ranges 1s the topological relaxation time 7, it corresponds to the average life time
of one given passage in the L, structure. According to [14], the most plausible scenario for the
disappearance of one passage involves two steps as described along figure 152 b -

1) shrinking of the passage with a relaxation time rg of the order of the time required for
the membrane to move on a distance of about d (1.e. 7g =~ Tg)

1) local fusion of the membranes through an activation barrier E5. So finally the time
7y, should be -

E,
Ty = Tr €X —_— .
n=rrexp 2t (43)
pinching fusiov
" AEZA
Fig 15 — Plausible mechanism for the spontaneous annihilation of a « passage » [11]

The bilayer being a very stable local structure, we expect E, to be much larger than
kg T and therefore 7, should be orders of magmtude larger than 7. In that picture we do
expect 1 an electric birefringence experiment two different behaviors depending on the
duration ¢ of the electric square pulse. If 7 is 1n the range 74 < t < 7, the structure 1s deformed
at fixed topology and we basically measure a single relaxation process with the charactenstic
time 7g. If on the other hand the pulse duration 1s very long (¢ > 7,) then the relaxation



process will involve two successive steps First, the structure deforms at fixed topology in the
time 7 and then deforms further and accomodates a new topological complexity in the time
The

To check that picture, we have submutted the most concentrate sample (¢ = 0.215 so that
7g 15 very short 7g = 5 x 10~ %) to an electnic pulse of long duration (z = 10 ms). We still
obtained a single relaxation response with the characteristic titme 7z. We see only two
possibilities to explain that puzzling result. Either the topological time 1s much larger than
10 ms which implies E, > 7 kg 7. Or the amisometry B8 and the density of topologcal
complexity # (number of handles per unit volume) are not coupled (1.e. 3°F/38 9k = 0) in the
L, structure Since there 1s no particular symmetry reason for the second possibility to be true,
we rather guess that E, 1s very large. T-jump experiments are presently 1n progress in order to
check that dehcate point
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