
HAL Id: jpa-00247578
https://hal.science/jpa-00247578

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling laws for some physical properties of the L3
(sponge) phase

G. Porte, M. Delsanti, I. Billard, M. Skouri, J. Appell, J. Marignan, F.
Debeauvais

To cite this version:
G. Porte, M. Delsanti, I. Billard, M. Skouri, J. Appell, et al.. Scaling laws for some physical properties
of the L3 (sponge) phase. Journal de Physique II, 1991, 1 (9), pp.1101-1120. �10.1051/jp2:1991207�.
�jpa-00247578�

https://hal.science/jpa-00247578
https://hal.archives-ouvertes.fr


J Phys. II France1 (1991) l101-l120 SEPTEMBRE 1991, PAGE 1101

Classification

Physics Abstracts

05 40 82 70K

Scaling laws for some physical properties of the L~ (sponge)
phase

G Porte ('), M Delsanti (2), 1. Billard (2), M Skoun (~), J. Appell (~),
J. Marignan (~) and F Debeauvais (2)

(') Groupe de Dynamique des Phases Condensdes (**), USTL Case 26, 34095 Montpellier
Cedex 5, France

f) Laboratoire de Spectromktne et Imagene Ultrasonore, Umversitk Louis Pasteur. 4 rue Blaise

Pascal, 67070 Strasbourg Cedex. France

(Received18 March 1991, accepted10 June 1991)

Abstract. The swollen lamellar phase L~ and the anomalous isotropic phase L~ (sponge) are

presently the only two dilute phases of fluid membranes in anlphiphlhc systems that have been

clearly charactenzed We here deal with the L~ phase. We first recall the scale mvanance

argument leading to the w ~ scaling law for the free energy density of phases of fluid membranes

We extend it further in order to denve scaling laws for several static and dynamic physical

properties of L~ The effects of renorrnahzatlons of the membrane area and of its elastic constants

with scale length are discussed. These predictions are checked against a large set of expenmental
data obtained from light scattenng, electnc birefnngence and flow birefnngence The results

obtained are puzzhng since static quantities exhibit logarithmic corrections due to renorraahza-

t1ons while dynamic ones do not.

Inwoducfion.

The equllibnum state and the physical properties of polymer solutions m the dilute and the

Semi-dilute reg1meS are known to be dominated by the statistics of the bending conformations

of the long flexible unidimensional molecules Although it is very difficult to work out exactly
the corresponding statistical physics, many important insights have been obtained on the basis

of simpler scaling arguments [I].
In the recent years, it has become clear that, under suitable expenmental conditions,

amphiphilic molecules do aggregate m the form of very large flexible 2D-bilayers even in very
dilute solutions [2]. Presently, two dilute phases of such fluid flexible membranes have been

well charactensed m amphiphihc systems : the swollen larnellar phase L~ and the anomalous

(*) Permanent address Servlce de Physique du Sohde et de Rksonance Magndtlque, C E.N Saclay,
91191 G1f sur Yvette Cedex, France

(**) GDR fihns moldculaires flexlbles du CNRS
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isotropic phase L~ (sponge phase). The swollen lamellar phase L~ corresponds to the case

where the infinite bilayers are regularly stacked parallel to each other so as to determine in

the sample a quasi long range smectic order. The L~ phase is isotropic and shows no long

range positional order. Expenmental investigations [3-6] invo1vlng scattenng techniques and

measurements of transport properties have suggested the so called bicontinuous topology for

the L~ structure, the membrane being multiconnected to itself throughout the sample as

schematized m figure 1.

Fig I Schematic drawing of the multiconnected membrane in the L~ structure

The basic charactenstic features of the structure assumed for L~ are i) the mu1tlconnected

membrane separates the 3D space m two eqtlivalent [7] subspaces each of them self connected

through out the sample u) m spite of the absence of a long range positional order, a

charactenstic distance d dearly appears m the scattenng profiles (maximum of S(q)) which

can be identified as the average size of the « passages » in figure 1. The conservation of total

area of membrane A then implies that dmust scale as # where # is the volume fraction of

membrane m the sample. At sufficiently high dilution (small #), dcan
so be made very large

compared to the thickness 3 of the bilayers and also to the range of the repulsive direct

molecular interactions. In that limit the bilayer can be assumed to interact through sew

avoidance only. Just like m the case of semi dilute long polymer solutions, we then expect the

equilibnum state of L~ samples to be dominated by the statistics of the bending conformations

of the flexible membrane. Here again, although it is not possible to compute explicitly the

partition function [8], scaling arguments provide accurate predictions that can be checked

against expenmental data.

In the first section, we bnefly recall how the # ~ dependence of the free energy density of

phases of infinite fluid membranes can be derived from a very general stand point. Actually,

this scaling law was first derived by Huse and Leibler [8] for the restncted case of swollen
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cubic phases (exhibiting long range crystalline order so that the fluctuations of the membranes

can be expanded into normal modes). Later on [6], Porte et al showed it to be very general,
based on a simple scaling argument with no respect to the presence or absence (like m

L~) of long range order It therefore applies to all cases where infinite fluid membranes

interacts through self avoidance only.
In section 2, the argument is further extended m order to denve scaling laws for other

measurable physical charactenstics of the L~ phase We first recall [6,7] how the

# dependence of the osmotic compressibility is immediately obtained from that of the free

energy density. And we present how the argument can be also applied to the collective

diffusion coefficient, to the electric birefnngence (amplitude and relaxation time) and to the

flow birefnngence.
In section 3, we discuss the effect of renormalizations of the rigidity moduh K and

k due to short wavelength curvature fluctuations of the membranes. Following the views first

reported in [7], we show that they should induce loganthmlc deviations to the scaling laws

denved m the frame of exact scale invanance

In section 4, these predictions are compared to experimental results obtained in hght

scattenng (static and quasi elastic), time resolved electnc birefringence and flow birefnn-

gence.

The static quantities actually exhibit the loganthmlc deviations due to renormalization but

the dynamic ones do not. This puzzling point is emphasized m the discussion of section 5.

1, Free energy density.

Each accessible bent conformation for the membrane subjected to the only restriction of self

avoidance must be weighted by the Boltzmann factor related to the elastic energy to be paid

upon bending. The most general expression for the bending energy density of fluid film has

been worked out by Helfnch [9] In the particular case of membranes symmetncal with

respect to side interchange (symmetncal bilayer) the spontaneous curvature must be zero,

and the bending Hamiltoman is

H
=

1[
K(ci + c~)~ +

kc, ~j
dA (1)

~
2

where ci and c~ are the two pnnciple curvatures of the area element dA. K and

k
are the ngldity moduh respectively associated with the mean curvature (cl + c2) and the

Gaussian curvature (ci c~) of the membrane

Scaling laws are often the result of the invariance of some charactenstic quantity with

respect to a set of spatial transformation. In the present case, the invanant quantity is the

elastic Hanultonian [I] and the spatial transformation is the set of isotropic dilations (I.e.

same change in scale in the 3 directions of space) a dilation of ratio A will transform

dA into A ~dA and each ci and c~ into ci/A and c~/A so that H remains identical

Let us consider two systems [6] (Fig. 2) consisting of respective total area of membrane

A and A'
=

A ~A confined m respective volumes V and V'
=

A V Note that, in the case of

the L~ structure drawn on figure I, the ratio VIA (respectively V'/A') can be essentially

identified with the charactenstic distance d(d')
up to some geometncal prefactor of order

unity. However, the argument is general enough to be applied even in the case of a structure

showing no well defined measurable charactenstic distance So, we work it out keeping

A and V (rather than A and dj
as the parameters defining the considered situation. Apart

from short wavelength thermal npples (wavelength smaller than land 1), any configuration
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r.

~
" W

Fig 2 Dil~tion transformation applied on a gJven configuration of the membrane

of the first system corresponds to a dual configuration of the second system through the

isotropic dilation of ratio A. Dual configurations having the same elastic energy they have the

same statistical weight and therefore bnng the same contnbution to the free energy of each

system. TbJs means that, except for the contnbution of the ignored small npples, the free

energy of fltlid membranes is also scale invariant just bke the elastic energy. Moreover, it is

tnvial to show that, m the limit of high KIT values (ngld limit where the high

q curvature modes of a flat membrane can be assumed independent), the contribution of the

small wavelength thermal ripples is simply proportional to the total area of membrane

A (or A'
=

~ A). This contribution can therefore be entirely incorporated into the standard

chemical potential R~ per unit area of membrane. Putting together these feature with the

extens1vlty of the free energy, we arnve at the following expression for the free energy of a

given sample with area of membrane A confined within the volume V for a phase consisting of

infinite membranes only [10] (such as L~ and L~) :

F
= R~ A + B~ (K, k, T) A ~/V~ (2)

where B~ is an unknown function of K, k and T The second term is both extensive and scale

invariant. A/V being simply proportional to # (#
=

&A/V), [2] can be immediately
translated m terms of the free energy per unit volume of the sample

F/V=R~#+B~(K,k,T).#~. (3)

The first term, linear m #, is tnvial and does not affect the stability and physical properties
of the phase. The second term which scales as

#~ expresses the scale invanance of the

statistics of membranes and plays a central role in the physical properties of the phases : quite

a number of other scaling laws can be straightforwardly derived from it as shown m the next

section

But before closing the present section, we want to stress again the basic conditions required
for the scaling argument to apply. The essential restriction is that the Hamlltonian must be

invanant through simple dilation. It therefore apply to the case of membranes interacting
through self avoidance only In that respect, the d-~ dependence of the effective Helfrich

stenc interaction [I Ii m the swollen lamellar phase indeed arises from the scale invariance

Further more, the argument also works in the high dilution asymptotic limit when the

membranes interact through a net direct repuhive potential decreasing with the distance

d faster that d-~ [12] On the other hand, whatever short its range, a net attractive interaction

obviously breaks the scale invariance of the Harniltonian : even a sticky potential has an
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increasing effect upon dilution (or dilation), presumably leading to a negative @i
~ term m the

free energy density [13]. Another strong limitation of the approach is the idealisation of the

membrane as having only curvature degrees of freedom. In real systems, the possibility of

other intemal degrees of freedom must be questioned. In particular, in many common

surfactant systems, fluid membranes form spontaneously prodded that a cosurfactant is

used : the additional degree of freedom is the local composition of the membrane, possibly
coupled to its local curvature. The contribution of the coupling to the overall Hamiltonian of

the system has no reason to be scale invariant and the argument might fail. In the present

report, two of the three systems investigated m sections below actually involve membranes

made up of mixed surfactant and cosurfactant. Nevertheless, their physical properties are

found to agree with the scaling expectations indicating that, for these two systems at least, the

composition degree of freedom is not too important.

2. Scaring laws.

2.I OSMOTIC COMPRESSIBILITY. Using (3), we immediately denve the osmotic pressure

ar :

"=-

II
+# ~~l(~~~4i~. (4)

Then, the intensity of l1gllt scattered at zero angle (I(q
-

0)) being proportional to the

osmotic compressibility :

1(q-0)~#($) (5)

we expect :

1(q-0)~4-~ (6)

along a dilution line (constant KIT and k/l~.

2.2 KERR CONSTANT. In an electric birefringence expenment, the Sample iS Submitted to a

static electnc field E. Bilayers being locally anisotropic with uniaxial symmetry oriented along
their local norrnal n, they usually exhibit amsotropy of their static dielectric polarizablllty and

therefore a spontaneous tendancy to onent with respect to the electnc field. As a result, the

initially isotropic structure of L~ becomes amsotropic under the field and shows measurable

optical birefringence An :

An
=

BK E ~
o

IA
o

wavelength of light ) (7)

where the proportionality constant BK is the so called Kerr constant. Our purpose is here to

denve the scaling law for BK Let us introduce p the average structural anisotropy induced by
the electnc field We need it to be expressed as a dimensionless quantity, a convenient choice

is

where d~~ and (~
are the « unit cell » dJmensions along dJrections respectively normal and

parallel to the electric field E.
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For weak deformations (p « I we make a Taylor expansion of the free energy around

p
=

0

F(p =o)
=

i~~ +B(p =o).~3j. v (9)

~
AF(p )

=
F(p ) F(o)

=
p 2. B" (o) ~ 3 v (lo)

where

B"(0)
=

f
(ll)

@P fl
=

0

The contribution of the electric field to the total energy of the membrane is :

~.E~.p.3.A (12)

where As is the anisotropy of dielectric constant (at zero frequency) of the membrane,
A is the total area of membrane m the volume V. Minimizing the sum of (10) and (12) gives
the equilibnum value of p :

~
~

~~0j~~~~
V

~

~ ~ ~~ ~~~~

Assuming that the resulting optical birefringence An only arises from the intrinsic molecular

anisotropy of the bilayer we expect

An~4.8~4 ~~,E~. (14)

So finally, the Kerr constant BK should scale as :

BK~4~~ (15)

More generally, we expect all static susceptibilities to scale like #~ m L~.

2.3 RELAXATION TIMES. After having suddenly switched off the electnc field, the

structure will progressively relax back to its isotropic initial state (p
=

0). The rate of free

energy variation during that process is :

4(P,(( =B,,(o).p.j(.~3.v. (16)

Assunung that all dissipation is due to viscous flows of the solvent inside the « cells » and

the « passages », we write for the rate of entropy production :

i lj dv, dv~

j2T. AS
= y~o + dV (17)

2
v ~Xk ~X<

where
y~o

is the viscosity of the solvent and v is the velocity field m the solvent At fixed

deformation rate dp fat, the velocities at corresponding points m a dilation transformation are

indeed proportional to the dilation ratio, but the velocity gradients have the dimension of an

inverse time and remain invariant. On the other hand the velocity gradients are indeed

proportional to the deformation rate dp lat. We therefore expect T. KS to be of the form :

T.is~y~o. V.
(fl

)~ (18)
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independent of the dilution 4 For sufficiently short times, the relaxation process is adiabatic

and no work is exchanged with the outside :

iU=0=iF+TiS (19)

Since iF
is proportional to 4 and T IS

is independent of 4 we immediately obtain that all

relaxation times must scale as :

TR ~ ~fi
~ (20)

2.4 DIFFUSION COEFFICIENT. Indeed S1mllar arguments apply to the dynamics of the

relaxation of concentration fluctuations as measured in a quasi elastic light scattenng

expenment. But the total amount of membrane m the sample is a conserved quantity which

means that the relaxation time r~ must depend on the wave vector q at which it is measured.

Assuming simple diffusion we expect :

ri ~(q, #
=

Dc(# q2 (21)

where D~(# ) is the cooperative diffusion coefficient.

Using the same analysis as before (but keeping in mind that a dilation transformation of

ratio A changes the wave vector q into q'= q/A) we simply obtain :

rD(q,
~fi =

To(q/~fi )
~fi

(22)

Combining (21) and (22) gives [14] :

Dc(~
~

~ (23)

2.5 FLow BIREFRINGENCE. A charactenstic feature of the L~ phase is that it shows strong
flow birefnngence upon gentle stimng We guess indeed that it anses from the coupling
between the induced structural anisometry p and the elongational part of the shear stress. In

the low shear rate limit (linear regime) we expect the induced anisometry p to lie m the plane
of both the velocity and the velocity gradient, tilted at OH off the direction of the velocity
gradient The corresponding induced optical birefnngence being of the form :

AJl"Bfl~~y~~.p (24)

where we assume again that the local dielectric constant anisotropy (at optical frequency) only
arises from the intrinsic molecular anisotropy of the bilayer. However, B~~~ cannot be

considered as a susceptibility since it is measured in conditions such that energy is steadily
injected into the structure by the imposed shear rate y. It is in a steady dissipative state, out of

equibbnunl and B~~~ must be considered as a dynamical charactenstic. The induced

amsometry p is related to the finite time r~ necessary for the structure to relax the shear

deformation and we expect accordingly :

P rR y (25)

where the prefactor is of order unity Keeping in mind that r~ scales as 4 (see above) and

comb1nlng (24) and (25) we1mnlediately obtain :

j~ ~ 2 (~~)
flow

The # dependences predicted in this section are reported in table I.

JOURNAL DE PHYSIQUE II T t, M 9 SEPTEMBRE 199t 49
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Table I. Scaling laws for the physical properties of the L~ phase.

Physical lloperty Scaling behavior

Free energy density F/V
= R ~

# + TB (KIT, k/l~ #

Osmotic compressibility I(q
-

O
~

#

Kerr constant B~
~

~ i

Diffusion coefficient D~
~

4

Relaxation time of the Kerr effect r~
~

~ -3

Flow birefnngence B~~ ~ 2

3. Renonnafizations.

Scaling laws for several quantities charactenzing the L~ phase can so be denved as quite direct

consequences of the scale invariance of the elastic energy of fluid membranes. But an

important point of our argument is that the small npples can be analysed as combinations of

independent normal modes (their contnbution to the free energy is then simply proportional

to A) which is an approximation valid m the rigid l1mlt only (K/T » I ). In this limit only can

the increase of area compared to its projected value be neglected and the dilution be

identified with a pure dilation. Perturbation calculations [15-17~ worked out recently, have

shown that the effect of small wavelength curvature fluctuations is to renonnafize the effective

values of A, K and k. Up to the first order in T/K, the following expressions for the

renormaltzed quantities have been obtained [17] :

k T ~
A

=
Ao

1
+

~ ln (27)
4"K a

K(f )
=

Ko ~(~
~

ln
~ (28a)

and
~ ~

k(f)
=

ko
+

~~ ~~ ~in f

12
« a

(28b)

where Ao is the area of the projection of the membrane on its average position,
Ko and ko

are the bare values of the ngldity moduh (as measured at very small scale length), a

is the short wavelength molecular cut off, and f the scale at wl~lch those effective values are

involved. For L~, the relevant scale length is indeed the structural characteristic length
d The main consequence of renorrnalizations is to break up to some extent the scale

invariance of the free energy. Therefore, the ~#
~ dependence of the free energy density in [3]

should be somewhat affected. However, renorrnalizations of A, K and k
are all logarithmic in

d(i.e.
in ~#) and therefore increase very slowly. So finally, for small values of T/K, we expect

for the free energy density a ~# dependence of the form [7] :

(F/v)~~
~

~ 3(1 + c in ~ (29)
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1-e- a main dependence still in ~#~ but w~th a loganthmlc correction, the prefactor

c
being an unknown function of T/K. Consequently, the other scaling laws derived ~n the

preceding section should be as well affected by corrections loganthmic in ~# [7j.

It must be emphasized at this point that (27) (28a) and (28b) are first order corrections (in

powers of T/lt~ in perturbation theory. They are quantitatively reliable in the semi ngid

regime only i-e- for situations where the charactenstic distance 1is much smaller than

persistence length fK of the bilayer

4«Ko~~~~~~~~~)

where a is a molecular size ~presumably of the order of the membrane thickness 20 h). For

two systems investigated below (namely CPCI and AOT see next section) recent

measurements of Ko [22] (Ko (CPCI) l 5 k~ T and Ko(AOT ) 3 k~ T) yield f~ values

(fK(CPCI) 2 x
10~ h and fK(AOT

~

6 x
10~ A ) much larger than dat all dilutions so that

we expect to remain in the first order perturbation regime all along the dilution line The

situation is less clear for the third system (betain, see next section) for which we have no

reliable data for Ko. but we have good reasons to guess that its ngldity is somewhat lower so

tllat the semi ngld regime is questionable. Th~s point is discussed further in the next section

for the purpose of analysis of the electric birefnngence data obtained for this later system.

4. Experhnents.

Three different systems have been investigated. the quasi binary system AOT/bnne [18], the

temary system n-dodecylbetain/pentanol/water (betain system) and the quasi temary system

cetylpynd1nlum chlonde/hexanol/brine (CPCI system).
The AOT system was investigated with light scattering (elastic and quasi elastic) in order to

check the scaling predictions for the osmotic compressibility and the cooperative diffusion

coefficient D~. All data are collected using a standard AMTEC goniometer with a

Brookhaven digital correlator The scattered intensity is collected for each sample as a

function'of the wave vector q. For dilute samples, appreciable q-dependences are observed

(see e g, Fig. 3) which are very well fitted with the theoretical expression proposed by Roux

et al, in reference [7] :

1(~)
=

A
B

+ ~~qlllli'~~ (30)

5

1(q)

4

3
~ ~ ~~~

q IA-1)
~ ~~~

Fig. 3. q-dependence of the light scattered intensity for the AOT sample vnth 4
=

0 487 The full

line correspond to the best fit using relation [30] as proposed m [7~
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where the correlation length f~~~ is that of the thermal fluctuations beyond the average I/O

(inside/outside) symmetry. From those fits, accurate values of I(q
-

O ) can be determined

for each dilution ~# In order to exhibit possible loganthmlc deviations beyond the expected

ma~n ~# dependence for I (q
-

O ), we have plotted in figure 4 [4 I (O ) ]~ versus

In ~#. A stra~ght line is obtained showing that the osmotic compressibility is of the form [7] :

1(q-o)~ (~.in( ~~
(31)

consistently w~th the scaling approach corrected by the renorrnalizations

For all samples the relaxation of concentration fluctuations as measured by quasi elastic

light scattenng is a single exponential with a characteristic time rD proportional to

q~ (simple diffusion process see Fig. 5) [23] from which a cooperative diffusion coefficient

D~(~# ) can be defined

ri i(q, ~ )
=

Dc(~ q
2 (32)

2000

('lq-o) al -1

~ b Is

i coo

12 0 -1.6 -1 2 .0 8 0 6 12

log(O) q 2 jl 0 lo
cm -2)

Fig 4 Fig 5

Fig 4 [WI (O )] versus in 4 for the L~ phase of the AOT system

Fig. 5 q dependence of the inverse relaxation ume ri~ for several L3 samples in the AOT system.

Different samples vnth volume fractions ranging from 4
=

0 0487 and 4
=

0 397

The vanations of D~(~# versus 4 are plotted in figure 6. The observed evolution is simply

linear :

D~(~b ) ~b
(33)

the intnguing point being that no logarithmic deviation is observable for that dynamic

charactenstic quantity (in contrast w~th the conjugate susceptibility i-e- the osmotic

compressibility) An interesting point is that the order of magnitude for D~ is s1mllar to that of

disc like objects of average size
1(see Tab. II).

Electnc birefnngence measurements are performed on the L~ phase of the beta~n system

j19]. For that system the membrane is uncharged at pH 7 and the solvent is pure deion~zed

water and therefore non conducting. The samples can thus be submitted to an electnc field m
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u

Djio7cm2js)

00 02 04

O

Fig 6 Evoluuon of D~ versus 4 for the AOT system

Table II. Quasi elastic light scattering data for the AOT system. dare from neutron

scattering data reported1n reference [15] The hydrodynamic length f~ is derived from
D~ using the classical relation D~

=
k~ T/6 « ~o f~ where ~o is the viscosity ofbrme. Note that

f~ is of the order of1at all dilution.

~ J(I)
D~ (io-7cm2s-') fH (Al

0 0479 605 0 205 200

0 0704 412 0 259 940

0.0952 305 0.294 830

0.l19 243 0.368 663

0.143 203 0.477 51

0.167 174 0 627 389

0.188 154 0.661 369

0.230 126 0 706 346

0 287 101 06 230

0.383 76 1.14 216

the range 400 ~E~1700V/cm w~th no important charge transport. For all investigated
samples, the induced optical birefnngence is linear in

E~
:

An
-

E ~ (34)

Whlch means that we are in the linear reg~rne where the induced structural anisometry
fl is small : fl « I. Time resolved analysis of the An evolution has shown that the rise bme of

An upon switching on the field and the decay time after sw~tchlng off are identical (Fig. 7)
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w

»
4l
I
c~
I
o
~'

~
>

d g
« -

a

~
~
o

z

G
fl
~
Fig.

7
- Dynamic

of

that
the

ume and the decay ume are
idmtical

indicating that there is no permanent dipole effect ~purely induced dipole effect). This is

further checked making an abrupt reversal of the electric field (E
-

E) : nothing noticeable

happens on the birefringence signal. The Kerr constant BK(~# can thus be defined safely and

measured accordingly, the obtained data being plotted in figure 8 (see also Tab. III) : the

Kerr constant is negative at high ~#, comes to zero around ~# =
0.07 and becomes positive at

low 4's. That change in sign upon dilution is specially mtrigmng, since it seems to suggest that

the structural anlsotropy induced by the field has opposite sign depending on the

concentration I-e- that the dielectric anisotropy of the membrane is
~# dependent. Th~s

unrealistic possibility can be discarded from observations m polanzed light of monocr~stalline

onented smectlc samples of the swollen larnellar phase L~ of the same system. Their optical
birefringence also changes sign at essentially the same volume fraction ~#o =

0.07, indicating
therefore that tl~ls is a purely optical effect for both L~ and L~ phases. We interpret it

according to tile explanation proposed by Barois and Nallet [20]. Two contributions to the

optical birefringence of the samples have to be considered
:

the first one is indeed related to

the molecular anisotropy of the membrane (this is what we have assumed m tile scaling
approach of BK m the preceding section) and tile second would be present even in absence of

any molecular anisotropy of the membrane and arises from the part~tiomng of space into

BK (10"~cm V"~

8 a

a

4
~

ia
°aaa

~ ~ ~ ~ ~
4~

~'~

Fig. 8 B~ versus 4 for the L3 Phase in the betaln systenl
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Table III. Electric birefringence data for the betain system. 1is estimated from neutron

scattering data obtained for thg L~ phase. f~ is derived from r~ using the classical relation

rj
=

6 k~ T/8
« ~

il. We here only report data far enough from #
o

where r~ 1s unambigously
defined by a single exponential fit of the relaxation.

w ~ a
(l~S) f

H
(i) J(1)

~~_~ ~]~

0.0483 467 800 100 7.72

0.0501 416 770 5.69

0.0552 298 690 3.44

0.0603 274 670 770 1.91

0.0654 208 61 02

0.137 16A 262 92

0.156 10A 225 2.05

0.175 6.87 196 2.00

0.215 4.89 175 180 2.36

altemate slices of different optical dielectnc constants (membrane and solvent). That second

contnbutlon being usually called the fern bhefHngence. The resulting total anisotropy
fig of dielectric constant (at optical frequency) has been calculated by Barois and it has the

form [20] :

~# (1 4 )(Es E~j )(Es E~
~

+ ~#Es(E~j E~
~~~

~ ~" ~~ ~

~b Es + (i ~b EM1
~~~~

where the subscnpt f and I stand for the directions respectively parallel and normal to the

director of the lamellar sample, Es is the dielectnc constant of the solvent and s~j and

E~
~

are the dielectnc constants of the membrane relative to the direction of the director of

the sample. The first term in the numerator of [35] corresponds to the form contnbution and

the second term to the intnnsic contribution In general we expect the form contribution to be

negative (Es
~ E~ j and E~ ~) and the intnnsic contribution to be positive and a change in sign

is observed at finite 4. Finally, the optical birefnngence An~~ of a lamellar sample should

vary as

AnLa
=

A~b + Ed ~ (36)

(A and B
>

0 are unknown specific constants) at small ~#.
Anf for a L~ sample with finite field induced structural anisometry fl :

An~~(fl )
=

(- A~ + B~ 2) p (37)
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instead of (14) and the scaling law for BK (15) must be modified in the form

aK
~~

~ i ~~ ~~~ ~~~ ~
~ ~

~~ ~~~~

assuming reasonably that the bilayers preferentially align parallel to the electric field E (in
order to minimize the depolarization field : fl

~
0).

The prediction (38) is checked against the expenmental data m figure9 where

BK is plotted as function of ~# We clearly see a strong upward deviation beyond the linear

expectation. Just like in the case of I(q
-

O ), we wonder whether this deviation is consistent

w~th the loganthrnlc correction due to renormalizations. If this is so, tile field induced

anisometry should rather have the form :

~ -1

fl ~#
~ ln

~
E~ (39)

i~K

instead of (13) and using (37) we finally rather get :

~ -1

BK ~# ln
~

(aK bK ~# (40)
ib

K

wh~ch gives a relation of the form
:

where ~#o is the ncentration where intrinsic and form compensate. We check

th~s xpectatibn m figure 10. The xpected linear behavior is actually observed which
means

that

8

a

D

4
~

a

E9

~ a9

~aaa°

4li

~~
0 10

~ og W

Fig 9 BK versus
4~~ for the L~ phase of the betaln system

Fig 10
~° ~

versus In 4 for the L~ phase of the betain system.
4. B~
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However, although the plot of figure 10 seems convincing, one should wonder whether the

most dilute samples (with larger dj
are not too far from the perturbation regime Th~s

possibility is actually suggested by the slight downward curvature of the experimental
evolution, the lower points (where the experimental accuracy is best) being somewhat below

the average straight line. We may consider this behavior as an indication of the onset of l~lgher
orders (in T/lt~ corrections beyond first order

On the other hand, for most samples, the relaxation of the induced birefringence after

switching off the field appears very close to a single exponential. In figure I I, we have plotted
this relaxation versus time in the double loganthmlc representation appropnate for

investigating plausible stretched exponential behavior. The evolution is actually linear w~th a

slope (0.94) very close to 1. Similar behaviors are observed for all samples w~tl1concentrations

far enough from tile compensation point (~#o). The behavior is farther from a simple
exponential for the samples closer to ~#o but we guess that this is related to the fact that the

signal is low so that other minor contributions to the birefnngence become visible having
different dynamics (local molecular reorientation for instance...). So finally m most cases the

Kerr relaxation time is well defined and its variations as function of ~#~~ are plotted m

figure 12 in order to check its scaling law (r~ ~# ~) We actually observe the expected linear

behavior. In particular the points corresponding to the lower volume fractions are also very

well aligned along the ~#
~~ scaling indicating no detectable slowing down of the relaxation

process at low ~# So, here again the dynamic quantity shows no logarithmic deviations

beyond the mean field scaling law, while the corresponding susceptibility (BK) clearly does.

1.454

.1.398

'~ ~~
In t ms

'~°~~

Fig. II. In (- In (An)) versus In t for the L~ sample with 4
=

0 215 in the betain system.

~r (~S) Log (~R ~~LS))

3

2

250

o 5000 ~.3 Ioooo -1 5 -1 o -o 5

~ ~
Log W

Fig. 12 a) r~ versus 4 for the betain system b) same data as in 12 a) using loganthmic plot. The

full line correspond to the slope 3.
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The samples investigated in flow birefringence are from the system CPCI/hexanol/brine
wl~lch we formerly charactenzed extensively using mainly neutron scattenng technique (see
Ref. [3]). The geometry of the flow birefringence experiment is that of a classical Couette cell

with outer rotating cylinder, the light beam propagating through the sheared sample along the

direction perpendicular to both the velocity and the velocity gradient. The gap between the

cylinders is 0.7 mrn. And the optical path through the cell is 7 crn long so that the sensitivity of

the expenment is very good The observed induced un~ax~al birefringence is in all cases found

to have its axJs titled «/4 off the direction of the velocity gradient as expected for the linear

reg~me flow shear range). The vanations of the phase difference ho between the ordinary and

the extraordinary light versus the shear rate y are plotted m figure 13 for samples of vanous

concentrations. For all sample ho is indeed propomonal to y on the entire investigated shear

rate range. Here again we observe a change in sign of the induced birefringence which we also

interpret in terms of intnnsic birefnngence and form birefringence. For the CPCI system, the

compensation concentration ~#o is 0.18, confirmed by optical observation of the swollen

lamellar phase L~. The sign of the induced birefnngence (Tab. Il§ positive at low

~#, indicates that the membrane preferentially aligns along the direction of the elongational

part of the shear stress as expected indeed. Due to this effect, we have to modify the expected
B~~~ ~#

~~ scaling law (denved for the case of intnnsic birefnngence only) which rather

becomes of the form :

B~~~
~

A~# ~
+ B~# (42)

To check that, we have plotted in figure 14, ~# ~B~~~ versus ~#. The expected linear behavior

gives reasonably good agreement with the expenmental data (although not excellent). Here

again, the scaling behavior of this dynamical quantity shows no clear evidence of any
loganthmlc deviation related to renormalizations

o (°)

20 W~ B (10"~°s)

~
04

.20

.40

.60

00 01 02 03

.80
4l

-loo

° ( s"' ~~°°

Fig13
Fig14

Fig 13 The phase difference between ordinary and extraordinary light versus the shear rate

y in the flow birefnngence expenment on the L~ phase of the CPCI system Several samples ranging

from 4
=

00213 to 4
=

0225

Fig. 14 4~Bn~~ versus 4 for the CPCI system
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Tableau IV. Flow birefringence data for the CPCI system.

'fi Bflow (io~ ~° S)

0.0265 719

0.0561 106

0.0794 46.6

0 102 22 2

0.126 124

0.149 6 9

0.228 4.48

S. Discussion.

The ma~n purpose of this expenmental study was to check tile validity of the scaling approach
based on the scale invanance of the elastic energy of fluid membranes. We have found that

the main dependences are indeed what is expected from the scaling approach for the two

static susceptibilities and for the three dynamic propemes However, static and dynamic
properties behave differently with respect to the marg~nal loganthmic deviations related to

renormalizations of the area and of the ng~dity moduh of the membranes. For the two static

quantities, the expected loganthmlc corrections have to be introduced in order to obtain good
quantitative fits. On the other hand, for the three dynamic quantities no deviations from

simple scaling behavior could be detected. Th~s difference is actually not a matter of

expenmental accuracy. Although varying slowly with ~#, the expected logarithmic deviations

correspond to marginal slowing down diverg~ng at finite ~# value (~#*) instead of

~# =

0 as predicted from the mean field approach Such an effect should be specially easy to

evidence on the variations of relaxation times wh~ch scan more than two orders of magnitudes

over the investigated ~# range. The puzzling difserence in behavior between static and

dynamic quantities is therefore a real expenmental fact. But at the present time, we have no

interpretation for it.

One point needs to be underlined : for each static susceptibility, the observed loganthmlc

corrections involve a particular value ~#* for the volume fraction (see Figs. 4 and 10)
However ~# * must not be identified to the concentration at which the measured susceptibility

actually diverges (i.e. «cntical volume fraction»). It only anses from the first order

correction m T/K beyond the mean field behavior wh~ch diverges at ~# =
0. Before reach~ng

~#*, h~gher order terms will also increase and eventually dominate leading to an effective

divergence at a different concentration. Even more, since ~#* corresponds to a first order

correction only, it has no particular reason to be the same for two different susceptibilities
measured for the same given system along the same dilution line.

Otherwise, the measured values of D~ for the AOT system and of r~ for the betam system
happen to be quite close to what is expected for an assembly of disc like objects of lateral

extension of order1(see f~ in Tabs. II and III) Similar results have been obtained by Miller
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et al. [21] for a different system, and they argued of that as an indication of L~ being an

assembly of discrete discs rather than consisting of a multiconnected membrane. Both models

indeed lead to the same scaling laws provided that the diameter of the discs is slaved to be of

the order of their separation distance at all dilutions as they propose. Moreover, the

prefactors should be also very similar provided that, in the connected model, the

K rig~dity of the bilayer is of the order of k~ T as is indeed the case for the present systems (we
have estimated K 3 k~ T for the AOT system and K 0.5 k~ T for the betain system). So,
clearly, it is very difficult to discnmlnate between these two models since they both involve

one only characteristic distance 1 However, we underlined in section 4 that the electnc

birefringence relaxation is remarkably well fitted by a single exponential. In the discrete disks

model, th~s would suggest a very monodisperse population which seems unrealistic for a

reversible self assembling process leading to particles of very large sizes. On the other hand, a

single relaxation process seems more plausible in the multiconnected model. Anyway, the

only truely discriminating procedure is to probe directly the connect1vlty of the membrane by
measuring transport properties of the amph~ph~lic molecules that are slaved to diffuse into the

bilayer [4].
Another point deserves to be discussed further. Following the point of view of MiIner et al.

in reference [14], we expect two separate time ranges for the dynamics of L~. Within very

short times, the spontaneous thermal fluctuations (light scattering) or the field induced

deformations (electnc birefnngence) correspond to structural changes keeping constant the

topology of the structure Within much longer times, the topology may have relaxed leading

to a wider set of structural fluctuations or deformations. The charactenstic time separating
those two ranges is the topological relaxation time r~ it corresponds to the average life time

of one given passage in the L~ structure. According to [14], the most plausible scenano for the

disappearance of one passage involves two steps as described along figure lsa b

1) shrinking of the passage w~th a relaxation time rs of the order of the t~rne required for

the membrane to move on a distance of about I (i.e. rs =
rB~

ii) local fusion of the membranes through an activation barrier EA. So finally the time

r~ should be

r~=r~exp
) (43)

~pinching fusion

~ -

~R ~~A

~ ~~
Fig 15 Plausible mechanism for the spontaneous annihilation of a « passage »

ii ii

The bilayer being a very stable local structure, we expect EA to be much larger than

k~ T and therefore r~ should be orders of magnitude larger than r~. In that picture we do

expect in an electric birefringcnce cxpcnmcnt two different behaviors depending on the

duration t of the electric square pulse. If t is in the range r~ « t « r~ the structure is deformed

at fixed topology and we basically measure a single relaxation process with the charactenstic

time r~. If on the other hand the pulse duration is very long (t » rh) then the relaxation



process will involve two successive steps First, the structure deforms at fixed topology in the

time r~ and then deforms further and accomodates a new topolog~cal complexity in the time

r~.

To check that picture, we have submitted the most concentrate sample (#
=

0.215 so that

r~ is very short r~ =
5 x 10~ ~ s) to an clcctnc pulse of long duration (t

=
10 ms). WC still

obtained a single relaxation response with the charactenstic time r~. We see only two

possibilities to explain that puzzling result. Either the topolog~cal time is much larger than

10ms which implies EA»7k~ T. Or the amsometry fl and the density of topological
complexity h (number of handles per unit volume) are not coupled (i.e. a~flafl ah

m
0) in the

L~ structure Since there is no particular symmetry reason for the second possibility to be true,

we rather guess that EA is very large. T-jump expenments are presently in progress in order to

check that delicate point
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