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Abstract. The dynamics of interface of chemical gels undergoing volume phase transition is

studied for one-dimensional geometry Permeation of solvent through the interface is taken into

account It is shown that the rate determining process of motion of interface is the permeation of

solvent through the bulk domains Generalization to three-dimensional case is also discussed.

1. InUoducdon.

Gels have been known to exhibit various peculiar phenomena as distinguished from

conventional solids. A notable example is the volume phase transiuon When the temperature

or solvent are vaned, the equilibrium volume of a certain gel changes dramatically, typically
by a factor of thousand Many mtnguing phenomena have been reported associated with the

kinetics of this transition Tanaka et al. [1, 2] observed that, dunng the swelling and shrinking

process, instab1llty takes place on the surface of the gel, resulung in cunous wnnkled surface

pattems. This has been analyzed m detail by Hayashl et al [3]. Hirotsu [4] observed that the

swollen and the shrunken phases coexist m a gel of cyhndncal shape [5]. From the theoretical

side, the hydrodynamic equations of gels have been given [7] for a single phase based on the

local equilibnum assumpuon. On the other hand the boundary between the swollen phase
and the shrunken phase

m equilibrium has been studied [6]
In order to analyze the expenmental phenomena mentioned above, one needs, however, a

basic set of equations that descnbe the deformauon of the gel network and permeauon of

solvents m the presence of the interface between the swollen and the shrunken phases, and

also an equation which describes the motion of the interface itself The purpose of the present

paper is to give such a set of equauons by combining the results of the previous two papers

[6, 7].
The organizauon of this paper is as follows. In section 2, we bnefly summarize the results of

hydrodynamics and thermodynamics of gels [7] in order to introduce several notations. In

(*) Temporary address
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section 3, we show an explicit calculation m the one-dimensional case, the situation which

may be realized by experiment of permeation through a cyhndncal gel in the two-phase
coexistence region. We also discuss the range of applicability of our theory In secuon 4, we

discuss the generalization to the three-dimensional case The final section (Sect. 5) is for

conclusion.

2. Summary of thennodynainics and hydrodynamic of gels [7J.

Results of [7] is summarized in order to introduce vanous notations We assume that solvent

and polymer molecules are incompressible. We denote the specific volume of solvent and

polymer molecules by Vi and V~ respectively. We also assume that the temperature T is kept

constant throughout the gel. In such a situation, hydrodynamic equation of gels has also been

proposed by other people [8.10]. See [7J for more general cases. We arbitranly choose an

isotropic and homogeneous state of gel, and define this state as a reference state. Each

polymer molecule (in a sense of continuum) is distinguished by its position X m the reference

state We denote the volume fraction of polymer molecules m this state by 4~o. Note that a

given reference volume, say V', includes a constant mass of polymer molecules,

M~
=

#o V'/V~, regardless of actual deformation of gel.

In a deformed state the pos1tlon x of a polymer molecule is a function of X, the position of

the molecule in the reference state. We introduce the distortion matnx ~F) as follows

~F)(
m

F(
m

~~ (2.I)a~

Hereafter we use Greek indices for the Cartesian components in actual space, latin indices for

the Cartesian components m the reference space

The determinant of the distortion matnx

J
m

det ~ll (2.2)

is the dilation ratio of gel, so that the polymer volume fraction m the deforrned state, # is

given by

4
=

4 o/J (2.3)

We denote the free energy of the homogeneous gel by A. Under an isothermal condition,

the change of the free energy is caused either by the change of polymer mass M~ or by the

change of deforrnation F. We define #~ and fl~ by

dA
=

Ji~ dM~ +

~~ ~~ (fl~)( dF(, (2.4)
fbo

where we adopted Einstein's convention for repeated indices.

If we introduce free energy per unit reference volume
a m

Al V', where V'
=

M~ V~/#o,

we have the relations

da
=

(fl~)( dF(
,

(2.5)

V~
"~ i ~ ~~'~~
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The reversible stress fl due to deforrnation of gel is given by the following relation

(fl~)(F(
=

JH) (2.7)

The pressure p is not included in fl. Due to the incompressibility of the system, p is

determined by hydrodynamics, not by therrnodynamics The conservation of the mass of

polymer molecules is wntten as

a~w
=

v. j~bxi
,

(2.8)

where I(= ax (X, t)tat) is the velocity of the polymer molecules, and V denotes the gradient
operator in the real space l~et ui be the velocity of the solvent molecules The volume flux,

I-e- the volume average velocity j~ is

jv
=

(1 4 ui + 4x. (2.9)

Since the system is incompressible, j~ has to satisfy

V, j~
=

0. (2.10)

We assume that a mechanical balance is always attained. This cond1tlon is expressed by

V. (fl-pl) =0, (2.ll)

where I is a unit matnx. The Gibbs-Duhem relation under isotherrnal and incompressible
condition becomes equivalent to a geometncal identity and is therefore not shown. The rate

of irreversible production of entropy per unit (actual) volume, $~, which is calculated under

the assumption of local equlhbnum is given as

T$~
=

(l # )(ui k). Vp. (2.12)

Assuming a linear relation between thermodynamic force and irreversible flux, we have the

following relation (Darcy's law),

(1-#)(u~-x)= -L.Vp, (2.13)

where L is the Onsager kinetic coefficient matrix with pertinent symlnetry properties. In

(2,12) and (213) (1 # )(u~ x) is the volume flux of solvent that passes through the gel
network moving at the velocity &. Thus (2.13) means that this flux is dnven by the pressure

gradient in gel.
Finally, the following formula [7] will be used later

3«Q[
"

j/~
lJ(F~ ~)l Qll

,

(2.14)

where Q is an arbitrary tensor.

3. Solvent permeation in on~dimensional geometry.

3,I STEADY STATE. We shall now consider the kinetics of the system which involves the

interface between the'swollen and the shrunken phases. First we consider the following-one
dimensional problem (see Fig. I). Consider a gel of cyhndncal shape placed in a tube. The left

side of the gel is free On the nght side of the gel, we put a solid porous membrane so that the
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POROUS

MEMBRANE

~ i: ~
,

".

, ,
+ Z

Zo Z, Zi

zjio) zji,) zjii)~
~

b)

a)

Fig. I A state of gel is shown schematically m the actual coordinate (z) space (Fig la), and m the

reference coordinate (Z) space (Fig. lb) Permeation flow is m the positive z, or Z, direction as shown

by arrows Solvent enters into the gel from the free surface at z(Zo) and goes out through the opposite
surface at z(Zi), where the gel is supported by a porous membrane as shown m the figure.

z =

z(Z,) denotes the position of the interface in z-space, which separates the gel monomers into those

belongtng to the swollen phase domain (Z«Z~) and those to the shrunken phase domain

(Z
~

Z,)

gel is not pushed out of the tube to the nght. We assume that the solvent can flow freely
through this membrane. Now suppose that the pressure po and pi ~po

~ pi are applied for the

solvent at the left and the nght end of the tube, respectively. Due to the pressure difference

po pi, the solvent will flow through the gel, and compress the gel along the tube axis.

Accordingly the volume of the gel will decrease and eventually the system will reach a new

stationary state with constant flow of solvent. The problem we shall consider here is the

dynamics of this process in the situation that the swollen and the shrunken phases coexJst with

each other

For simplicity, we assume that the equilibnum diameter of the freely suspended gel is

always larger than the tube diameter so that the gel diameter is fixed at the value of the tube

diameter, while the gel can slip freely at the tube wall (Expenmentally there might be a

difficulty in preventing the solvent flow along the inner wall of the tube, but our purpose here

is to consider a situation which is convenient for theoretical analysis).
First we focus our attention to the stationary state m which the polymer velocity

x is zero We choose the Z-axis parallel to the axis of the tube. Then by symmetry, the

distortion components F(
=

F~ are determined by the ratio between the tube diameter and

the gel diameter m the reference state, and the off-diagonal components are all zero;
F[

= =
0. The only unknown component of distortion is F[.

The basic equations are the mechanical balance equation (2.ll) and Darcy's law (213),
which are respectively wntten as

a~f
=

a~ p (3.I.I)

and j~ =
-L3=p, (312)

where j~
=

(I # ) u) (3.1.3)

is the volume flux of the solvent, which is constant in the stationary state, and

L
m

L~". (3 1.I) indicates that the pressure drop is counter-balanced by the increase of inner

compressive stress of gel network. By equations (2.14) and (2.7), (3.1.2) is rewritten as

Jc--lllll£H(~J/~ (3141
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where we have denoted Wm F[
=

dz/dZ and am (fl~)f. Hereafter, we will not explicitly

wrJte the dependence of L, J, and H on the other components of distortion F( or

F§, which are known parameters. The actual form of L(JVl and H(Wl are given by
constitutive equations : they may be measured by expenments, or obtained by molecular

theories In any case, we shall proceed our argument assuming that the functional forrns of

L(Jl'J and 0(JVl are known. Thus equation (3.1.4) is a first-order difEerential equation for

W(Z)
First we consider the case that the gel is in a single phase To solve the equation, we need

boundary conditions at the ends of the gel. At each end there are two conditions ;

(al Continuity of the stress. The (zz) component of the stress in the gel is given by
lf~- p, which must be equal to the external stress at the boundary.

(b) Continuity of the solvent chemical potential : For an isothernlal, incompressible fluid,

p corresponds to the chemical potential of the solvent. Thus p has to be continuous at the

interface

Now in the present problem, these conditions are wntten as follows.

I) The boundary at the left end (Z=Zo): Since the pressure of the solvent is

po (where we have neglected the pressure drop in the pure solvent region), the boundary
condition becomes

H) p = p o
and p = p o

(3 1.5)

1-e
,

f
=

0 at Z
=

Zo.
ii) The boundary at the nght end (Z

=
Zj) Due to the mechanical balance of the gel, the

pressure acting on the gel is po, while the chemical potential of the solvent is pi. Thus

H(-P=-Po and p=pj. (316)

Using Hj
=

W/J(JVl H (see Eq. (2.7)), we can rewnte these conditions as

H( W~
=

0 at Z
=

Z
o

(3.1.7)

and

H(JVl=-~~~~°~po-pj),
at Z=Zj. (31.8)

If W(Z) is a continuous function of Z, then equation (3.1.4) can be integrated for

W(Z). The initial condition is W(Zo)
=

Wo, where Wo is a solution of H(Wo)
=

0. Hence

z zo
=

l~~~ Ill] ~lS'~ d W (3.1 9)

From (3.16) and (3.19), we have

Zj Zo
=

j~ ~~'~ ~~~'~
dW'

,

(3 10)
Jv q

J(W') aW'

where II§ is a solution of

J(Wj)
H(Wi)

= ~
~po -Pi) (3.I.ll)
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Equations (3.1.10) and (3.I.ll) give a relation between the pressure difference po pi and

the solvent flux j~ in the steady state. In a special case of po = Pi, i e., m equlhbnum, there is

no permeation current Q~
=

0), and we require H(w~
=

0 everywhere (cf. (3.1.7)) Then the

system has a homogeneous distortion, W(Z)
=

Wo.
Next we consider the case that there is a phase coexJstence between the shrunken phase and

the swollen phase. In equilibrium with a free boundary condition (3.1 7), the phase transition

can occur only at the phase transition temperature (, [I1, 6]. This situation is sumnlerized in

figure 2a. If, however, we apply an extemal osmotic force (- H~~~) on the movable boundary

at Z
=

Zo, we can induce the phase trans1tlon even at the temperature T # Ti, (see Fig. 2b).
On the other hand, m the presence of the permeation current j~ »

0, the fnction between

solvent and gel network causes nonzero and inhomogeneous osmotic force within the gel
Thus the phase coexJstence between the shrunken phase and the swollen phase may occur

nith an interface at Z
=

Z~, where the distortion jumps form W= ll~ to W= W~ (see
Fig. 2c).

(n(
'~' (Q(

(flex(

0 li~

a) b) c)

Fig 2 The osmotic force vs the distortion is shown m three situations of phase coexistence m a

cylindncal gel (a) Global equllibnum coexistence with a stress-free boundary condition By the

Maxwell's construction rule, the two shaded regions are of the same area. (b) Global equilibnum

coexistence under an extemally applied osmotic force (- 1I"~) (c) Local equlhbnum coexistence under

the perrneatlon flow j~ The values of dlstortlon~ lI~ and W~, are such that the two shaded regJons are of

the same area The interface is situated where the internal osmotic force is equal to the corresponding
value lI(lI~ ) The distortion at the free boundary, H§, is determined such that 1I(H~)

=

0

Below we shall descnbe m detail how we can determine the position of the interface, as well

as the boundary values of W at both sides of the interface.

In our treatment of gel from the macroscopic viewpoint, the interface is regarded as an

infinitely thin object. First we assume that m the presence of such interface the local

equilibnum assumption is still a good assumption. (The validity of this assumption will be

discussed afterwards m this subsection) Let us consider a very thin hypothetical layer which

includes the interface. Under the local equilibnum assumption we claim that the ther-

modynam1c quantities characterizing the state of this thin layer obey the relations in

equibbnum. It means that the values of W on both sides of the interface, lI~ and

W~, is determined by the equilibrium coexistence condition [6], which is given as follows in

the present notation,

da(ll~) da(W~) a(lI~)-a(W~)

dW_ dW~ lJ~-W~ '

~~'~'~~~
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or by using lT
=

da Id W (see (2 5) and the definition of lT given just below (3.1.4)),

H(W_)
=

lI(W~), (3.1.13)

w~
[lT( W~ lT( llQ )] dW

=

0. (3.1.14)
<

Equations (31 13) and (3.1.14) correspond to the Maxwell construction for the coexistence

condition of the two phases. iI'~ and II~ correspond to the specific volumes of the swollen

and shrunken phases (except for a common constant factor). Since our equlbbnum condition

is local, we do not require II~ to satisfy lT( II~
=

0 (cf. (3.1.7)). The boundary condition at

the interface between the swollen and the shrunken phase becomes :

iI'(Z=Z~-0)= iI'_; iI'(Z=Z~+0)= iI'~. (3115)

It is important to note that, as long as we adopt the local equilibrium assumption up to the

interface region, there is no room for the flux j~ to play a role In other words we have

neglected the effect of finite permeation current on the interface region.
Now we summarize the recipe by which iI'(Z) is calculated m the system with the interface

between the shrunken phase and the swollen phase. First we assume that the temperature T is

chosen such that the gel is in the swollen phase m equibbnum This assures that even under

the permeation flow the swollen phase with iI'= iI§ is established at the free surface (see,
(3.1.7)) Under the permeation current, the profile of iI'(Z) in the swollen region

(Zo<Z<Z~) is determined implicitly by (3.1.9). The coordinate Z~ of the interface is

determined from (319) and (3.1.15), giving the result :

zc zo
=

ll Iii] ~lS'~ dW (3 161

If the calculated value of Z~ exceeds Zi, the Z-coordinate of the fixed end of the sample, it

indicates that the whole sample of gel is still m the swollen phase. Once we found the value

Z~(< Zi ), the profile m the shrunken region (Z~
~

Z
<

Zj) is given by

z zc
=

II Ill] ~lS'~ dH/ (3.1 17)

The value of w at the fixed boundary at Z
=

Zj, which we denote by Wi, is then given by
substituting W

=
wj and Z

=
Zj into the above equation (3.1.7) with iI'(Zo)

=
iI§, and

(3.1 12) (31.17) are summarized m figure 3 The values of W and ii
=

(n~)f at the

same coordinate Z are related
via the equilibnum thermodynamic relation n

=

lT( W~, which

has been shown m figure 2c. Once the distortion iI'is determined as a function of reference

coordinate Z, the actual position of polymer molecules is given by integrating the relation

dz
=

iI'(Z) dZ.

Two remarks are m order

I) In the above formulae, the coordinate Z is always accompanied by the flux

Q~, Zo, Z,) and f~, 20,
2,),

then the distortions iI'(Z) and $i£(Z) are
related

iI'(Zo + (Z, Zo)
=

$fl(20 +
(2, 20) @), (3.1.18)
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W (D(

Wo

W-

W+

WI lfi(W~)I

°
Zo Z~ Zi

~
0 Z

Zo Z~ Zi

a) b)

Fig 3 Distorfion W (a) and longitudinal osmotic force in
=

(n~)f (b) are schematically shown

as functions of reference coordinate Z

where 0 is an arbitrary parameter between 0 and I. Also the pressure drop po pi is the same

m the two setups. In the other way to descnbe this s1mllanty relationship, we can show that

for a given pressure drop po pi, distortion is wntten iI'(Z)
=

fir((Z- Zo)/(Z, Zo)),

where li~(0 is a function of a dimensionless variable 0. If, for example, we prepare two gel
rods with lengths L and 2L otherwise under the same condition, and if we perform an

experiment under the same pressure drop po pi, then the permeation current m the shorter

rod will be twice as large as that m the longer one, while the partition ratio into the two phases
will be the same for both samples

ii) If the temperature is made very close to the volume phase transition temperature

Ti~ of the present geometry, the difference lI~ Wo becomes very small Then we can show

that we have

lI~ iI'o
=

A ( T Ti~)
,

as T T~~ -
0

,

(3.1.19)

where the proportionality constant A depends on the partial denvatives of n with respect to

Wand Tin a complicated way, since iI'_ and iI'~ are deternuned through implicit equations
(3 13) and (3.1 14). We will not show the explicit expression of A Only we note that the

above asymptotic linear relation holds either under the fixed permeation current @~ or under

the fixed pressure drop ~po pi ). Since the mtegrand of (3 16) is a non-singular function of

its argument near iI'= IJ~, we expect that the following approximate relationship among
Z~ Zo, j~ and T T,

Z~ Zo «

$
T T~~

,

as T Ti~
-

0 (3 1.20)
Jv

Since dz
=

W(Z) dZ
=

Wo(
~_ ~

dZ in this swollen region, the actual length of the swollen

region is also proportional to
T~-

T~~ near the phase transition temperature. Expenmentally
this relationship may be tested Especially if the thickness of the swollen phase region

Z~ Zo becomes extremely thin as T Ttr
-

0, the free surface of gel may not be actually

m a swollen phase, and our macroscopic description cannot be applied
The above formalism was based on the local equihbnum assumption. Here we shall

examine the validity of this assumption following the van der Waals theory of the interface.

We shall regard the interface as a small region of finite thickness across which W vanes

continuously from ll~ to W~ Since the osmotic compressibility (d1I/d lJ/~ becomes negative
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between W_ and W~, such a structure can be stabilized only when an additional nonlocal

term is assumed in the free energy density [12]. The nonlocal terra depends on the distortion

gradient diI'/dZ. With tills term the free energy is now given by

&
= a

(W~ +
f( ~~~

(~~') ~, (3.1.21)

where fj~ K(W~ is a coefficient related to the second order elasticity of gel network, and we

have explicitly factored out the equilibnum thickness of the interfacial region, f~q, which acts

as smallness parameter. The total free energy A is given as the integral A
=

I dV' over the

reference volume of gel (It is assumed m (3.1.21) that the higher order gradients of the

distortion field iI'(Z) are negligible. Th1s is not unconditionally acceptable assumption partly
because m the interface region this term is not smaller than the bulk term (a ), and partly
because f~~ may be of the order of the typical screening length of concentration fluctuation of

gel network. Here, however, as a case study, we shall adopt the above model and draw only
qualitative conclusions from it.) From (2.5) n~

is now defined as the functional denvative

3A/3F. In the one-dimensional case, this gives

~= j~zja~wJ+<iK~~~°
llil~l

~~~'

2

=

j
[a w~ fl~ ~(~° Ii

~

~~'~'~~~

where integration by parts has been performed once and a chain-rule

(dW/dZ~~ d/dZ
=

d/diI'has been used. ~Note that the procedure is similar to that one

obtains with Euler-Lagrange equation from Lagrangian [13], and also note that d/diI'and
d/dZ are usually not interchangeable since iI'(Z) is generally a nonlinear function of Z~

Hence in place of equation (31.4) we have

TbJs second order differential equation with respect to Z determines the profile of

iI'(Z) across the interface.

Slemrod [14] analyzed a somewhat similar problem in the case of liquid-gas interface In the

liquid-gas system there is no counterpart of the permeation current, but the mass current

through the interface dnves off the system from equllibnum He proved that there exists a

nonequilibnum interface profile, which tends smoothly to the equibbnum profile as the mass

current through the interface goes to zero We assume that this tendency of the interface

profile is also the case in our problem of gel permeation, and that, if the permeation current

j~ is sufficiently small, the profile of iI'(Z) m the interface region is nearly the same as that of

the equilibrium state and that, therefore, the thickness of the interface is O(f~~).
Now we shall seek for the characteristic magnitude of the permeation current j~ = j i below

which the relations (3.1.12)-(31.15) are a good approximation for the macroscopic

description of interface :

First we argue that the above assumption for f~~ is consistent with our macroscopic

boundary condition (3.1 12) (31 15) If the interface thickness is O(f~q), we can neglect
the fj~-term on the right hand side of (3 23) as long as we are far from the interface, and

thus we find that j~ =
O (f~). On the other hand m the interface region, we find that the right

hand side of (3.1.23) is O(fj~) (note that d/dZ fj~
m this region), while the left hand side
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is O (f( ). Thus the balance must be established basically between the two terms on the nght

hand side of (3.1.23) in the interface region. Th1s means that in the dominant order of

f~ the interface profile obeys the equllibnum equation with j~=0 in (3.1.23). For

j~ =
0 it is easy to show [14] that (3.1.23) yields the relations (31.12)~(3.1.15) as the

condition for iI'far from the interface as measured m the length scale of fz~.
The above argument does not hold if the interface thickness is large (or, altematively, the

current j~ is large) so that the left hand side of (3.1 23) becomes comparable to the nght hand

side even in the interface region. The magnitude of the nght hand side of (3.1.23) in the

interface region can be estimated by the contnbution from the first term m the square

bracket

_L(w~£da(w~ ~wd2a(w~
J(w~ dz dw <~ dw2

~~°°~
(3.1.24)

feq

Here D~~~ is the cooperative diffusion constant of gel network [15] and we have noted that

d~a ( W~ Id iI'~ is proportional to the osmotic compressibility of gel and that L( lk~ is related to

the fnction constant between solvent and monomer.

Thus we obtained the characteristic current ji
=

D~~~~/f~ If the permeation current

exceeds ji, the interfacial profile is substantially influenced by the permeation current and,

consequently, the boundary condition (3.1.12)
~

(3.1.15) is not applicable. If we adrift the

scaling relation D~~~ T/f~ [15], we have ji «
fj~

near the cntical point of the volume

phase transition Under a permeation flow j~ ~
ji the interface thickness, however, may not

become indefinitely large, because the spatial gradient of iI'imposed by the mutual fnction

between solvent and gel monomers will suppress the equilibrium density fluctuation.

3.2 MOVING INTERFACE. We shall now consider the nonsteady state. Beanng in mind the

discussion in the last part of the previous subsection, we here consider only the case where the

permeation current j~ is sufficiently smaller than ji. In the bulk region of each phase, the

motion of polymer is govemed by Darcy's law (2.13),

(1 w )(uj a~z(z, t))
=

L a~ p (3.2.1)

In the one-dimensional case, the volume flux

j~(t)
=

(i w) uj + a~z (3.2.2)

is independent of Z due to the incompressibility constraint (2.10). Using equation (3.2.2) and

the mechanical balance equation (31 1), we have

Since W= dz(Z, t)/dZ, equation (323) is a parabolic partial differential equation for

z(Z, t) If W(Z, t) is a continuous function of Z, this equation can be, in principle, solved

under given extemal conditions such as equations (3 1.7) and (3.1.8) If there is an interface

of the swollen phase and the shrunken phase, W(Z,t) becomes discontinuous at

Z~(t), and a special consideration is needed for the motion of the interface.

In general, the motion of the interface involves (a) the local volume change of the gel at the

interface, and (b) the solvent permeation toward the interface. Generally the first process (a)
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accompanies a mutual friction among the gel monomers and might be a cause of the violation

of our assumption of local equllibnum. Below, however, we simply neglect this additional

fnction at the interface by the following reason. the process (a) is a local process, and its

speed is independent of the gel size Zi Zo. On the other hand the process ~b) involves the

transport of the solvent over the length of the gel size, and becomes very slow for a

macroscopic gel. Thus as long as the gel is not extremely small, we may assume that the

motion of the gel is limited by the bulk permeation of solvent, and that the molecular

conformations at the interface are the same as those in the steady state, which are m tum the

same as those m the equihbnum state as we assumed j~ « ji
Hence we have the boundary condition

w(z~(t) o, t )
=

w_ w(z~(t) + o, i
=

w~
,

(3.2.4)

where iI'~ and lI~ are defined by equations (3.1.12), (3.1 13) and (3.1.14).
Now for a moving boundary, another condition is needed to determine the position of

Z~(t). This is obtained by the condition that the gel is not ruptured at the interface. Notice

that at the interface, the deformation W(Z, t)
=

dz(Z, t)/dZ and the velocity of a gel point
dz(Z, t)/dt are generally discontinuous (For example if the swollen region m Z~Z~(t)

moves towards the shrunken region in Z ~Z~(t), W(Z~(t) 0, t)
~

W(Z~(t) + 0, t), and

dz(Z, t ) fat
~ ~ ~~~ ~ ~

dz (Z, t fat
~ ~~~~~ ~ ~

The velocity of the interface dz (Z~ (t), t )/dt,

however, must~ be common to both phases, and the derivative dz(Z~(t),t)/dt=
iI'dZ~(t)/dt + dz/dt evaluated on each side of the interface must agree. Hence

dZ~ (t) az dZ~(t) az
~

dt
~

at z z~(i) o
~~'~ dt

~
at z z~(t) + o

~~'~'~~

or

dz

dZ~(t) fi

dt [WJ '

~~'~'~~

where the double square bracket [Q] denotes the difference across the interface

iol Q(Z=Zc(t)+0 Q(Z=Z~(t)-0' ~~'~'~~

Using equations (3.2.3) and (3 2 4), we can rewrite equation (3.2.6) as

where we have noted that j~(t) is continuous at the interface Since the values of W at both

sides of the interface are fixed at W~ and IJ~, equation (3 2 8) is wntten as

~~ ~~ ~~ )z
z~(t) + o

~ ~~ ~~ z

z~ji) o
'

~~'~'~~

where

K~
=

~~~° ~~
(3 2.10)

iI'~ iI'_ J(W~ dW w= w~

and

K-
= w~ w

§)~ S
~ ~

(3.2.i1)
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Equations (3.2.4) and (3.2.9) are the boundary conditions for the moving interface. In the

steady state of dZ~(t)/dt
=

0, this condition of course reduces to the condition of (3 2.4). The

velocity of the interface in the real space is written as

~~~~~~~'~~
= j~ W K~ ~~') + iI'~ K ~~ (3.2.12)

dt dZ z
=

z~(ii + o z
=

z~o) o

4. Moving interface in the three-&1nensionaJ geometry.

4. I BOUNDARY CONDITIONS AT THE INTERFACE. Having seen the basic physics, we shall

now discuss the boundary conditions in the general three-dimensional case.

First it should be noted that in the three-dimensional case, a new problem may anse due to

the curvature of the interface. It is known that m a system of liquids, the curvature of the

interface generally affects the chemical potential of the molecules, and changes the

coexistence condition. As it was argued, however, m the previous paper [16], the driving force

for the morphological change of gels predominantly comes from the bulk energy, and the

interfacial energy is negligible unless the gel is extremely small. We shall therefore neglect the

effect of curvature of the interface and the mterfacial energy in the subsequent discussion.

Consider a point X~ on the interface m the reference space. Since the distortion near the

interface can be regarded as locally one-dimensional with an arbitrary shear deformation, the

distortion x~X) of a point X near X~ can be written as (time argument is temporarily
suppressed) :

x =
x(xc) +

I(R (x xc)) + Ft (i AR) (x xc), (4 1)

where fl is the unit vector normal to the interface in the reference space, and

I(y~ is a function describing a sharp change of distortion across the interface. For simplicity

we have defined I(0)
m

0 F) is a constant matnx which descnbes constant distortion on the

interface (Fig. 4) (In the next order approximation F) will be replaced by a function

F) (y~), which vanes smoothly at
y~ =

0.)

From (41) the distortion F is given as

F
=

~~ i
+ F) (I ill) (4.2)

dy~

i
i

X x

Fig 4 Distortion of gel near the interface is
shown schematically both m the reference space (a) and

in the actual space (b). The interface pos1tlon is denoted by a plane bounded by thick lines The cross

sections parallel to the interface does not change their shape across the interface Thls corresponds to

the continuity of F) across the interface m the next
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Since the argument given m section 3. I should also be valid m the three-dimensional case, the

boundary condition at the interface is the same as for the equlhbnum case [6] In the present
notation, it is wntten as

[I n~]
=

0, (4.3)

la -fl.n~. ~~
=0, (44)

dl~

where [Ql denotes the jump of Q across the interface, I-e-,

lot
=

Ql~=+o Ql~=-o, (4.5)

and a and n~ have been defined m the previous section. fl. U~ and dildy~ respectively
correspond to Hand iI'in the one-dimensional geometry. If we introduce the notation

Pm fl n~ and W
w

dildy~, (4.3) and (4.4) can be rewntten m a way that corresponds to

(3.1.13) and (3.1.14),

POV~
=

POV_ )
,

(4 6a)

~'~
iP~W) P(w= )i dw

=
o

,

(4 6b)

where W± denotes W[~~_~ Th1s may be regarded as the vector version of Maxwefl

construction, and the integral m (4.6b) can be shown to be path-independent.

4.2 INTERFACE VELOCITY. The bulk of the domains of each phase obeys equations (2.8),
(2.10), (2.I I) and (2.13) supplemented with the boundary conditions (4.3) and (4.4). The

interface velocity is determined in the manner similar to that m the one-dimensional case

Suppose that in the reference space, X~(t) is a moving point which stays on the interface

The local velocity of interface V~~~
is given as

vint
"

fl' xc(t)
,

(4 ?)

where it is the unit normal at time t. Using the condition that the time derivative

dx~(t)/dt
m

dx(X~(t), t)/dt must be the same in both phases, we have

[F] X~(t) + [k]
=

0 (4.8)

If we denote by fi the unit normal vector of the interface m the actual space,

fl
can be expressed as

&
=

~ '~ (4.9)
lfi F1

(Here F must be evaluated on either one side of the interface.) Thus from (4 7), (4.8) and

(4 9), we obtain the interface velocity V~~~,

V~~~ =

~~ '~~
(4 10)

[[fi.F[]
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5. Conclusion,

We have discussed the dynamics of interface of gels undergoing volume phase transition.

Permeation of solvent through the interface has been taken into account. It was shown that

the rate determining process of motion of interface is the permeation of solvent through the

bulk domains and, consequently, that an equihbnum phase coexistence condition applies to

the interface region as long as the permeation current is sufficiently small. The threshold

current is estimated to be ji
w D~~~~/f~~, where D~~~ is the cooperative diffusion constant of

gel network and f~~ is the equihbriuln thickness of the interface. We found that, near the

equilibnum phase transition temperature T~ (but still m the side of the swollen phase), the

thickness of the swollen phase region under permeation current should behave like

« T- T~[ Thls prediction may be tested experimentally Generalization to three-
Jv

dimensional case is also discussed.
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