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Abstract. — The dynamics of interface of chemical gels undergoing volume phase transition 1s
studied for one-dimensional geometry Permeation of solvent through the interface 1s taken nto
account It is shown that the rate determining process of motion of interface 1s the permeation of
solvent through the bulk domains Generalization to three-dimensional case 1s also discussed.

1. Introduction.

Gels have been known to exhibit various peculiar phenomena as distinguished from
conventional solids. A notable example 1s the volume phase transition When the temperature
or solvent are varied, the equilibrium volume of a certain gel changes dramatically, typically
by a factor of thousand Many intrnguing phenomena have been reported associated with the
kinetics of this transition Tanaka er al. [1, 2] observed that, during the swelling and shrinking
process, instability takes place on the surface of the gel, resulting in curious wrinkled surface
patterns. This has been analyzed in detail by Hayashi er a/ [3]. Hirotsu [4] observed that the
swollen and the shrunken phases coexist in a gel of cylindrical shape [5]. From the theoretical
side, the hydrodynamic equations of gels have been given [7] for a single phase based on the
local equilibnum assumption. On the other hand the boundary between the swollen phase
and the shrunken phase i equilibrium has been studied [6]

In order to analyze the experimental phenomena mentioned above, one needs, however, a
basic set of equations that describe the deformation of the gel network and permeation of
solvents in the presence of the interface between the swollen and the shrunken phases, and
also an equation which describes the motion of the interface itself The purpose of the present
paper 1s to give such a set of equations by combining the results of the previous two papers
(6, 7}

The organization of this paper is as follows. In section 2, we briefly summarize the results of
hydrodynamics and thermodynamics of gels [7] in order to introduce several notations. In

(*) Temporary address
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section 3, we show an explicit calculation 1 the one-dimensional case, the situation which
may be realized by experiment of permeation through a cyhindncal gel in the two-phase
coexistence region. We also discuss the range of applicability of our theory In section 4, we
discuss the generalization to the three-dimensional case The final section (Sect. 5) 1s for
conclusion.

2. Summary of thermodynamics and hydrodynamics of gels [7].

Results of [7] is summarized 1n order to introduce various notations We assume that solvent
and polymer molecules are incompressible. We denote the specific volume of solvent and
polymer molecules by ¥; and ¥, respectively. We also assume that the temperature T is kept
constant throughout the gel. In such a situation, hydrodynamic equation of gels has also been
proposed by other people [8-10]. See [7] for more general cases. We arbitrarily choose an
1sotropic and homogeneous state of gel, and define this state as a reference state. Each
polymer molecule (in a sense of continuum) is distingwmshed by 1ts position X 1n the reference
state We denote the volume fraction of polymer molecules in this state by ¢, Note that a
given reference volume, say V', includes a constant mass of polymer molecules,
M, = ¢, V'/V,, regardless of actual deformation of gel.

In a deformed state the position x of a polymer molecule is a function of X, the position of
the molecule in the reference state. We introduce the distortion matrx (F) as follows

ax*

) =Fp="2. 2.1

Hereafter we use Greek indices for the Cartesian components in actual space, latin indices for
the Cartesian components in the reference space
The determinant of the distortion matrix

J = det (F) (2.2)

15 the dilation ratio of gel, so that the polymer volume fraction in the deformed state, ¢ 1s
given by

& =doJ. 23

We denote the free energy of the homogeneous gel by 4. Under an 1sothermal condition,
the change of the free energy 1s caused either by the change of polymer mass M, or by the
change of deformation F. We define 4, and I} by

Vo M,
ol

d4 = g, dM,, + (MR 4F?, 2.4

where we adopted Einstein’s convention for repeated indices.
If we introduce free energy per umt reference volume a = A/V’, where V' = M, V ./,
we have the relations

da = (II*RdFy, .5

p (2.6)

3
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The reversible stress II due to deformation of gel is given by the following relation
(I*EF) = g Q.7

The pressure p is not included in II. Due to the incompressibility of the system, p is
determined by hydrodynamics, not by thermodynamics The conservation of the mass of
polymer molecules 1s written as

b =-V. [¢x], (2.8)

where x(= 3x(X, ¢)/8?) 1s the velocity of the polymer molecules, and V denotes the gradient
operator 1n the real space Let u; be the velocity of the solvent molecules The volume flux,
i.e. the volume average velocity j, is

jv=>0=¢)ur+ &x. 2.9)
Since the system is incompressible, j, has to satisfy
V.j,=0. (2.10)
We assume that a mechanical balance 1s always attained. This condition 1s expressed by
V.(IT-p1)=0, @.11)

where 1 is a unit matrix. The Gibbs-Duhem relation under 1sothermal and incompressible
condition becomes equivalent to a geometrical identity and 1s therefore not shown. The rate

of irreversible production of entropy per unit (actual) volume, S, which 1s calculated under
the assumption of local equilibrium 1s given as

TSp=—(1-¢)(a—%).p. 2.12)

Assuming a linear relation between thermodynamic force and irreversible flux, we have the
following relation (Darcy’s law),

(1-¢)w—x)=-L.Vp, (2.13)

where L 1s the Onsager kinetic coefficient matrix with pertinent symmetry properties. In
(2.12) and (2 13) (1 — ¢ )(u; — x) is the volume flux of solvent that passes through the gel
network moving at the velocity x. Thus (2.13) means that this flux 1s dnven by the pressure
gradient in gel.

Finally, the following formula [7] will be used later

L3 iy, 2.14)

ach)l{ 'jaXp

where Q is an arbitrary tensor.

3. Solvent permeation in one-dimensional geometry.

3.1 STEADY STATE. — We shall now consider the kinetics of the system which involves the
mterface between the swollen and the shrunken phases. First we consider the following-one
dimensional problem (see Fig. 1). Consider a gel of cylindrical shape placed in a tube. The left
side of the gel 1s free On the nght side of the gel, we put a sohid porous membrane so that the
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z

2(Zo) «(Z) 2(2y) b)
a)

Fig. 1 — A state of gel 1s shown schematically 1n the actual coordinate (z) space (Fig la), and i the
reference coordinate (Z) space (Fig. 1b) Permeation flow 1s 1n the positive z, or Z, direction as shown
by arrows Solvent enters into the gel from the free surface at z(Z,) and goes out through the opposite
surface at z(Z;), where the gel 1s supported by a porous membrane as shown 1n the figure.
z = z(Z,) denotes the position of the interface in z-space, which separates the gel monomers into those
belonging to the swollen phase domamn (Z <Z.) and those to the shrunken phase domain
(Z=2)

gel 1s not pushed out of the tube to the right. We assume that the solvent can flow freely
through this membrane. Now suppose that the pressure py and p, (pq > p,) are applied for the
solvent at the left and the nght end of the tube, respectively. Due to the pressure difference
Po — P, the solvent will flow through the gel, and compress the gel along the tube axs.
Accordingly the volume of the gel will decrease and eventually the system will reach a new
stationary state with constant flow of solvent. The problem we shall consider here 1s the
dynamics of this process 1n the situation that the swollen and the shrunken phases coexist with
each other

For simplicity, we assume that the equilibrium diameter of the freely suspended gel is
always larger than the tube diameter so that the gel diameter 1s fixed at the value of the tube
diameter, while the gel can slip freely at the tube wall (Experimentally there might be a
difficulty in preventing the solvent flow along the inner wall of the tube, but our purpose here
is to consider a situation which 1s convenient for theoretical analysis).

First we focus our attention to the stationary state in which the polymer velocity
x 15 zero We choose the Z-axis parallel to the axis of the tube. Then by symmetry, the
distortion components Fy = F{ are determuned by the ratio between the tube diameter and
the gel diameter mm the reference state, and the off-diagonal components are all zero :

y=++-=0. The only unknown component of distortion 1s F5.

The basic equations are the mechanical balance equation (2.11) and Darcy’s law (2 13),
which are respectively written as

0. =d.p (3.1.1)
and Jo=—-Ld.p, 312
where Jo= {0 —-9¢)uj (3.1.3)

15 the volume flux of the solvent, which 1s constant 1n the stationary state, and
L = L* (3 1.1) indicates that the pressure drop 1s counter-balanced by the increase of inner
compressive stress of gel network. By equations (2.14) and (2.7), (3.1.2) 1s rewritten as

_ L(w) d
]v__j(—VV_)ﬁH(W)’ 314
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where we have denoted W = F% = dz/dZ and IT= (II?)Z. Hereafter, we will not explicitly
write the dependence of L, J, and II on the other components of distorion F} or
F%, which are known parameters. The actual form of L(W) and IT(W) are given by
constitutive equations : they may be measured by experiments, or obtained by molecular
theories In any case, we shall proceed our argument assuming that the functional forms of
L(W) and II(W) are known. Thus equation (3.1.4) 1s 2 first-order differential equation for
W(Z)

First we consider the case that the gel 15 in a single phase To solve the equation, we need
boundary conditions at the ends of the gel. At each end there are two conditions ;

(a) Continuity of the stress. The (zz) component of the stress in the gel 1s given by
IT: — p, which must be equal to the external stress at the boundary.

(b) Continuity of the solvent chemucal potential : For an 1sothermal, incompressible flwd,
p corresponds to the chemical potential of the solvent. Thus p has to be continuous at the
interface

Now 1n the present problem, these conditions are written as follows.

i) The boundary at the left end (Z = Z;): Since the pressure of the solvent 1s
Ppo (where we have neglected the pressure drop in the pure solvent region), the boundary
condition becomes ;

IF-p=-p, and p=p, 315

16, IF=0at Z = Z,.
ii) The boundary at the nght end (Z = Z;) Due to the mechanical balance of the gel, the
pressure acting on the gel 1s pg, while the chemical potential of the solvent is p;. Thus

IIl-p=-py, and p=p,. 316)

Using II} = W/J(W) I (see Eq. (2.7)), we can rewnte these conditions as

(W) =0 at Z=2, (3.1.7)
and
am=-2o-py, a z-2z,. (1.8)

If W(Z) 1s a continuous function of Z, then equation (3.1.4) can be integrated for
W(Z). The 1nitial condition 1s W(Z,) = W,, where W 1s a solution of II(W,) = 0. Hence

1 (Y@ L)y srm(w)
N A =7 dw’ 319
Z-% ]J% TV W G19

From (3.1 6) and (3.1 9), we have

! JW'L(W') (W) 4y (3 110)

Z\-Zy=~— | Sl
T T e TV T W

where W, 1s a solution of

J(W)
H(W‘)=__W,_(p°—P‘)' (3.1.11)
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Equations (3.1.10) and (3.1.11) give a relation between the pressure difference p, — p; and
the solvent flux y, in the steady state. In a special case of p, = py, 1 e., 1n equilibnium, there is
no permeation current (7, = 0), and we require I7(#) = 0 everywhere (cf. (3.1.7)) Then the
system has a homogeneous distortion, W(Z) = W,

Next we consider the case that there 1s a phase coexistence between the shrunken phase and
the swollen phase. In equilibrium with a free boundary condition (3.1 7), the phase transition
can occur only at the phase transition temperature 7, [11, 6]. This situation 1s summerized in
figure 2a. If, however, we apply an external osmotic force (— I1°") on the movable boundary
at Z = Z,, we can induce the phase transition even at the temperature T # T, (see Fig. 2b).
On the other hand, in the presence of the permeation current y, > 0, the friction between
solvent and ge! network causes nonzero and inhomogeneous osmotic force within the gel
Thus the phase coexistence between the shrunken phase and the swollen phase may occur
with an interface at Z = Z,, where the distortion jumps form W= W_ to W= W, (see
Fig. 2¢).

1] il 1z

[z | 0
0 w 0 w 0 654 : W
W;W W W\

a) b) c)

Fig 2 — The osmotic force vs the distortion 1s shown n three situations of phase coexistence mn a
cylindrical gel (a) Global equilibrium coexistence with a stress-free boundary condition By the
Maxwell’s construction rule, the two shaded regions are of the same area. (b) Global equilibrium
coexistence under an externally applied osmotic force (— II%) (c) Local equlibrium coexistence under
the permeation flow j, The values of distortion, W_ and W, , are such that the two shaded regions are of
the same area The interface 1s situated where the internal osmotic force 1s equal to the corresponding
value |H(W.)| The distortion at the free boundary, W, 1s determined such that II(W#;) =0

Below we shall describe 1n detail how we can determine the position of the interface, as well
as the boundary values of W at both sides of the interface.

In our treatment of gel from the macroscopic viewpoint, the interface is regarded as an
wmfinitely thin object. First we assume that in the presence of such imterface the local
equilibrium assumption 1s still a good assumption. (The validity of this assumption will be
discussed afterwards in this subsection) Let us consider a very thin hypotheucal layer which
includes the interface. Under the local equilibrium assumption we claim that the ther-
modynamic quantities characterizing the state of this thin layer obey the relations in
equibhbrium. It means that the values of W on both sides of the interface, W_ and
W, , 1s determined by the equilibrium coexistence condition [6], which 1s given as follows in
the present notation,

da(W.) da(W,) a(W.)-a(W,)
aw___ —aw, =~ w.-w,

(3.1.12)
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or by using I = da/dW (see (2 5) and the defimtion of IT given just below (3.1.4)),

I(w_) =I(W,), (3.1.13)

Jm [T(W) — II(W.)]dW = 0. (3.1.14)
w_

Equations (3 1 13) and (3.1.14) correspond to the Maxwell construction for the coexistence
condition of the two phases. W, and W_ correspond to the specific volumes of the swollen
and shrunken phases (except for a common constant factor). Since our equulibrium condition
1s Jocal, we do not require W_ to satisfy II(W_) = 0 (cf. (3.1.7)). The boundary condition at
the interface between the swollen and the shrunken phase becomes :

W(Z=2Z.-0)=W_.; W(Z=Z+0)=W,. (3115)

It 1s important to note that, as long as we adopt the local equilibrium assumption up to the
interface region, there 1s no room for the flux j, to play a role In other words we have
neglected the effect of finite permeation current on the interface region.

Now we summarize the recipe by which W(Z) 1s calculated 1n the system with the interface
between the shrunken phase and the swollen phase. First we assume that the temperature 7T is
chosen such that the gel 1s in the swollen phase 1n equilibrium This assures that even under
the permeation flow the swollen phase with W = W is established ar the free surface (see,
(3.1.7)) Under the permeation current, the profile of W(Z) in the swollen region
(Zy<Z < Z_) is determuned mmplicitly by (3.1.9). The coordinate Z, of the interface is
determined from (3 19) and (3.1.15), giving the result :

1 (% Lwysr(w')
—Zy = — — —=_J. -\ 4w, 3116
ZC ZO Jv J‘WO J( Wv) an ( )
If the calculated value of Z_ exceeds Z,, the Z-coordinate of the fixed end of the sample, 1t
indicates that the whole sample of gel 1s still in the swollen phase. Once we found the value
Z.(< Z,), the profile 1n the shrunken region (Z, < Z < Z,) 1s given by

zZ-Z, =

1 JW L(W')slI(W") dw’ . (3.117)

_; v, ———J(W') = A

The value of W at the fixed boundary at Z = Z|, which we denote by W), 1s then given by
substituting W = W, and Z = Z, into the above equation (3.1.7) with W(Z,) = W;, and
(3.112) ~(3 1.17) are summarized in figure 3 The values of W and |l/| = — (ITR)? at the
same coordinate Z are related via the equilibrium thermodynamic relation II = IT( W), which
has been shown 1n figure 2¢c. Once the distortion W 1s determuned as a function of reference
coordinate Z, the actual position of polymer molecules 1s given by integrating the relation
dz = W(Z)dZz.

Two remarks are 1n order

i) In the above formulae, the coordinate Z 1s always accompanmied by the flux
Jv Thus if the relation j,(Z, — Zy) = 7 ,(Z, — Zy) 1s satisfied for the two setups, say

Gvw Zo» Z;) and (J,, Zy, Z,), then the distortions W(Z) and W(Z) are related as

W(Zy+ (Z)— Zy) 0) = W(Zy+ (Z, - Z,) 6), (3.1.18)
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w |z
o, W
W_ 4
W 1
Wi 1T (W)] 1

0 2 z ‘ d 0 z

° Z L4 =T R T
° ! Zy Z. Zy
a) b)
Fig 3 — Dastortion W (a) and longttudinal osmotic force | IT| = - (IT?)Z (b) are schematically shown

as functions of reference coordinate Z

where 6 is an arbitrary parameter between 0 and 1. Also the pressure drop p, — p; is the same
m the two setups. In the other way to describe this similarity relationship, we can show that

for a given pressure drop p, — p,, distortion 1s wntten W(Z) = W((Z - Z)(Z, — Zy)),

where W(6) 1s a function of a dimensionless variable 6. If, for example, we prepare two gel
rods with lengths L and 2 L otherwise under the same condition, and if we perform an
experiment under the same pressure drop p, - p;, then the permeation current 1n the shorter
rod will be twice as large as that in the longer one, while the partition ratio into the two phases
will be the same for both samples

1) If the temperature is made very close to the volume phase transition temperature

T,, of the present geometry, the difference W_ — W, becomes very small Then we can show
that we have

W -Wy=A(T-T,), a |T-T,| -0, (3.1.19)

where the proportionality constant 4 depends on the partial derivatives of IT with respect to
W and 7 1n a complicated way, since W_ and W, are determuned through imphcit equations
(3 113) and (3.1 14). We will not show the exphcit expression of 4 Only we note that the
above asymptotic linear relation holds either under the fixed permeation current (j,) or under
the fixed pressure drop (py — p,). Since the integrand of (3 1 16) is a non-singular function of
1ts argument near W = W_, we expect that the following approximate relationship among
Z.—Zy j,and T - T,

Zc—zoocjlu_:m, as  |T—T,| -0 (3 1.20)
v

Since dz = W(Z) dZ = Wy|, _,

region 1s also proportional to |T — T, | near the phase transition temperature. Experimentally
this relationship may be tested Especially 1f the thickness of the swollen phase region
Z. — Z, becomes extremely thin as |T — T;,| — O, the free surface of gel may not be actually
1n a swollen phase, and our macroscopic description cannot be apphed

The above formalism was based on the local equilibrium assumption. Here we shall
examine the validity of this assumption following the van der Waals theory of the interface.
We shall regard the interface as a small region of fimite thickness across which W vanes
continuously from W_ to W, Since the osmotic compressibility (871/8 W) becomes negative

dZ m this swollen region, the actual length of the swollen
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between W_ and W, , such a structure can be stabilized only when an additional nonlocal
term 1s assumed 1n the free energy density [12]. The nonlocal term depends on the distortion
gradient dW/dZ. With this term the free energy 1s now given by

— 2 K(W) ( >
@=a(M+éa—— (33 ) > (3.1.21)
where §e2q K (W) is a coefficient related to the second order elasticity of gel network, and we
have explicitly factored out the equilibrrum thickness of the interfacial region, ¢4, which acts

as smallness parameter. The total free energy A4 1s gaven as the integral 4 = | & AV’ over the

reference volume of gel (It 1s assumed in (3.1.21) that the higher order gradients of the
distortion field W(Z) are negligible. Thus is not unconditionally acceptable assumption partly
because in the interface region this term 1s not smaller than the bulk term (a), and partly
because ¢, may be of the order of the typical screening length of concentration fluctuation of
gel network. Here, however, as a case study, we shall adopt the above model and draw only
qualitative conclusions from 1t.) From (2.5) II? 1s now defined as the functional derivative
8 A/8F. In the one-dimensional case, this gives

n=§8wj [ a(W)+ €2 K(W) (dZ )2]
[ a (W) — £4 == K(W) (dZ )2] (3.1.22)

where integration by parts has been performed once and a chan-rule

(dW/dZ)~' d/dZ = d/dW has been used. (Note that the procedure is simlar to that one

obtains with Euler-Lagrange equation from Lagrangian [13], and also note that d/d ¥ and

d/dZ are usually not interchangeable since W(Z) 1s generally a nonlinear function of Z)
Hence 1n place of equation (3 1.4) we have

Jo=-E d d d [ a(W) - ¢4 K(W)(dz)] (3.1.23)

This second order differential equation with respect to Z determunes the profile of
W(Z) across the interface.

Slemrod [14] analyzed a somewhat similar problem 1n the case of hiquid-gas interface In the
hquid-gas system there is no counterpart of the permeation current, but the mass current
through the interface dnves off the system from equlibrium He proved that there exists a
nonequilibrium mterface profile, which tends smoothly to the equilibrium profile as the mass
current through the interface goes to zero We assume that this tendency of the interface
profile 1s also the case in our problem of gel permeation, and that, if the permeation current
Jv is sufficiently small, the profile of W(Z) in the interface region 1s nearly the same as that of
the equilibrium state and that, therefore, the thickness of the interface is O(&.)-

Now we shall seek for the characteristic magnitude of the permeation current 7, = 7;f below
which the relations (3.1.12) ~(3 1.15) are a good approximation for the macroscopic
description of interface :

First we argue that the above assumption for £, i1s consistent with our macroscopic
boundary condition (3.1 12) ~ (31 15) If the interface thickness is O(£,;), we can neglect
the §eq-term on the right hand side of (3 1 23) as long as we are far from the interface, and
thus we find that 7, = O (¢ eq) On the other hand 1n the interface region, we find that the right
hand side of (3.1.23) is 0(§;‘1‘) (note that d/dZ ~ §e‘ql 1n this region), while the left hand side
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18 0(52c1 ). Thus the balance must be established basically between the two terms on the nght
hand side of (3.1.23) in the interface region. This means that in the dominant order of
¢, the interface profile obeys the equilibrium equation with j, =0 in (3.1.23). For
7y =0 1t 1s easy to show [14] that (3.1.23) wields the relations (3 1.12) ~ (3.1.15) as the
condition for W far from the interface as measured n the length scale of £

The above argument does not hold if the interface thickness is large (or, alternatively, the
current j, is large) so that the left hand side of (3.1 23) becomes comparable to the nght hand
side even 1 the interface region. The magnitude of the night hand side of (3.1.23) in the
mterface region can be estimated by the contnbution from the first term in the square
bracket -

LW d de(W) L) Ea (W)
JW) dZ —dw §eq dW?
D

coop

§cq ’

~

(3.1.24)

Here D, 1s the cooperative diffusion constant of gel network [15] and we have noted that
d’a (W)/d W2 is proportional to the osmotic compressibility of gel and that L( W) 1s related to
the friction constant between solvent and monomer.

Thus we obtained the characteristic current j;* = D yop/é,q If the permeation current
exceeds 7.¥, the interfacial profile 1s substantially influenced by the permeation current and,
consequently, the boundary condition (3.1.12) ~ (3.1.15) is not applicable. If we admit the
scaling relation Dgyop ~ T/§eq [15], we have jF oc § e_qz near the crnitical point of the volume
phase transition Under a permeation flow j, > j ¥ the interface thickness, however, may not
become indefimtely large, because the spatial gradient of W imposed by the mutual friction
between solvent and gel monomers will suppress the equilibrium density fluctuation.

3.2 MOVING INTERFACE. — We shall now consider the nonsteady state. Beaning in mind the
discussion in the last part of the previous subsection, we here consider only the case where the
permeation current j, is sufficiently smaller than ;. In the bulk region of each phase, the
motion of polymer 1s governed by Darcy’s law (2.13),

(1-¢)(uf-32(Z,t))=—-L3,p. (3.2.1)
In the one-dimensional case, the volume flux
IO =(1-@)uE+¢d.z (3:22)

1s independent of Z due to the incompressibility constraint (2.10). Using equation (3.2.2) and
the mechanical balance equation (31 1), we have

L(W) 8

Ju() =8z =— TW) 3Z

II(wy. 3.2.3)
Since W = 8z(Z, t)/8Z, equation (323) is a parabolic partial differential equation for
z(Z,t) If W(Z,t) is a continuous function of Z, this equation can be, in principle, solved
under given external conditions such as equations (3 1.7) and (3.1.8) If there 1s an interface
of the swollen phase and the shrunken phase, W(Z,:) becomes discontinuous at
Z.(t), and a special consideration is needed for the motion of the interface.

In general, the motion of the interface involves (a) the local volume change of the gel at the
interface, and (b) the solvent permeation toward the interface. Generally the first process (a)
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accompanies a mutual friction among the gel monomers and might be a cause of the violation
of our assumption of local equlibrium. Below, however, we simply neglect thus additional
friction at the interface by the following reason . the process (a) 1s a local process, and its
speed 1s independent of the gel size Z; — Z,. On the other hand the process (b) involves the
transport of the solvent over the length of the gel size, and becomes very slow for a
macroscopic gel. Thus as long as the gel 15 not extremely small, we may assume that the
motion of the gel is hmited by the bulk permeation of solvent, and that the molecular
conformations at the interface are the same as those in the steady state, which are 1n turn the
same as those in the equilibrium state as we assumed j, <}
Hence we have the boundary condition

W(Z,(t) = 0,2) = W_; W(Z()+0,2) = W, , (3.2.4)

where W, and W_ are defined by equations (3.1.12), (3.1 13) and (3.1.14).

" Now for a moving boundary, another condition 1s needed to determine the position of
Z.(2). Ths 1s obtained by the condition that the gel 1s not ruptured at the mterface. Notice
that at the interface, the deformation W(Z, t) = 3z(Z, t)/9Z and the velocity of a gel point
9z(Z, t)/dt are generally discontinuous (For example if the swollen region 1n Z < Z.(?)
moves towards the shrunken region in Z = Z (1), W(Z.(t) —0,t) = W(Z.(t) + 0, t), and
9z(Z, t)/ot|, _ Z-0 =< 9z(Z, t)/ot|, _ Z.(5)+0 ) The velocity of the mterface dz(Z.(¢), ¢)/d¢,
however, must be common to both phases, and the derivative dz(Z.(z),t)/dt =
W dZ_.(z)/dt + 9z/dt evaluated on each side of the interface must agree. Hence

dz, (¢ dz (:
420 ez _w, 3O e (3.2.5)
d: 1 |z=2,(m)-0 dr ot lz=z@)+0
or
[5]
dZ_(: kY]
0 __Lal (3.2.6)
dz W]
where the double square bracket [QT] denotes the difference across the interface ;
el =0z zm+0~Clzozw-0- 3.2.7)
Using equations (3.2.3) and (3 2 4), we can rewrite equation (3.2.6) as
dz, AT LW oIl oW
dr gl [[ JW) aW oz ||’ (3-2.8)

where we have noted that 7,(7) 1s continuous at the interface Since the values of W at both
sides of the interface are fixed at W, and W_, equation (3 2 8) 1s written as

dz, oW )4
‘- _K, = K — , 3.29
d: * Z Z=Zc(t)+0+ T 8Z |z=z -0 ( )
where
1 L(W) an)
- hduin .10
Ke=w—w (J(W)a wow, (32.10)
and ;
1 L(W) an)
K= W, — W_ ( JW) aW Jw-w = (3:2.11)
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Equations (3.2.4) and (3.2.9) are the boundary conditions for the moving interface. In the
steady state of dZ_(¢)/d¢ = 0, this condition of course reduces to the condition of (3 2.4). The
velocity of the interface in the real space is wntten as

dz(Z.(1), 1
EEOD s w kW cw, kW

22 . 3.2.12
0Z lz=2z(+0 0Z lz=2z -0 ( )

4. Moving interface in the three-dimensional geometry.

4.1 BOUNDARY CONDITIONS AT THE INTERFACE. — Having seen the basic physics, we shall
now discuss the boundary conditions in the general three-dimensional case.

First 1t should be noted that in the three-dimensional case, a new problem may arise due to
the curvature of the interface. It is known that in a system of hquds, the curvature of the
mterface generally affects the chemical potential of the molecules, and changes the
coexistence condition. As it was argued, however, 1n the previous paper [16], the driving force
for the morphological change of gels predominantly comes from the bulk energy, and the
interfacial energy 1s negligible unless the gel is extremely small. We shall therefore neglect the
effect of curvature of the interface and the interfacial energy in the subsequent discussion.

Consider a point X, on the interface 1n the reference space. Since the distortion near the
interface can be regarded as locally one-dimensional with an arbitrary shear deformation, the
distortion x(X) of a point X near X  can be wntten as (ime argument 1s temporarily
suppressed) :

x =x(X)+ X(N- (X —X))+F - 1-RN)- (X -X,), (41)

where N is the umt vector normal to the interface in the reference space, and
X(7) 1s a function describing a sharp change of distortion across the interface. For simplicity
we have defined X(0) = 0 F7 is a constant matrix which describes constant distortion on the
interface (Fig. 4) (In the next order approximation Ff will be replaced by a function
¥ (1), which varies smoothly at 5 = 0.)

From (4 1) the distortion F 1s given as

F=93N+F§-(1_NN) 4.2
dn
F
pu .
X x

Fig 4 — Dastortion of gel near the interface 1s shown schematically both 1n the reference space (a) and
in the actual space (b). The mterface position is denoted by a plane bounded by thick lines The cross
sections parallel to the interface does not change their shape across the interface This corresponds to
the continuty of F} across the interface m the next
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Since the argument given 1n section 3.1 should also be vahid 1n the three-dimensional case, the
boundary condition at the interface 1s the same as for the equihbrium case [6] In the present
notation, it 1s written as -

[N-TI*R] =0, 4.3)

[[a_N.nR._]]=o, 44)

where [O] denotes the jump of Q across the interface, i.e.,
[21=Cl,..0-Cl,. o> @.5)

and a and ITI? have been defined in the previous section. N.II® and d%/dn respectively
correspond to I and W in the one-dimensional geometry. If we introduce the notation

P=N-TI® and W = d%/d7, (4.3) and (4.4) can be rewntten 1 a way that corresponds to
(3.1.13) and (3.1.14),

P(W,)=P(W_), (4 6a)
fW* [P(W) — P(W_)].dW =0, (4 6b)

w_

where W, denotes Wln=Io This may be regarded as the vector version of Maxwell
construction, and the integral in (4.6b) can be shown to be path-independent.

4.2 INTERFACE VELOCITY. — The bulk of the domains of each phase obeys equations (2.8),
(2.10), (2.11) and (2.13) supplemented with the boundary conditions (4.3) and (4.4). The
interface velocity 1s determuned in the manner similar to that in the one-dimensional case

Suppose that in the reference space, X () 1s a moving point which stays on the interface
The local velocity of interface V, is given as

Ve = N-X (1), 47

where N is the umit normal at time . Using the condition that the time derivative
dx_(2)/dt = dx(X.(¢), ¢)/df must be the same in both phases, we have

[F] -X.()+ [x] =0 (4.8)

If we denote by i the unit normal vector of the interface in the actual space,
N can be expressed as

-F
-F|

=

N = 4.9

=

(Here F must be evaluated on either one side of the interface.) Thus from (4 7), (4.8) and
(4 9), we obtain the interface velocity ¥V,

___La-x] @ 10)

Vie =
[la-F|]
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5. Conclusion.

We have discussed the dynamics of interface of gels undergoing volume phase transition.
Permeation of solvent through the interface has been taken into account. It was shown that
the rate determining process of motion of interface is the permeation of solvent through the
bulk domains and, consequently, that an equibhbrium phase coexistence condition applies to
the interface region as long as the permeation current 1s sufficiently small. The threshold
current 1s estimated to be 1 = D ,o5/€eq, Where D, is the cooperative diffusion constant of
gel network and £, 15 the equibbrium thickness of the interface. We found that, near the
equilibrium phase transition temperature 73, (but still in the side of the swollen phase), the
thickness of the swollen phase region under permeation current should behave like

oc]l |T - T,| Ths prediction may be tested experimentally Generahization to three-
v

dimensional case 1s also discussed.
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