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Rksumk. Nous prdsentons la thdone du dkfaut quantique I plusieurs voles dans son forrnahsme

opdratonel amsi que son application au problbme des dtats de Rydberg d'une moldcule

diatomique en champ dlectnque L'analyse thdonque consiste pnncipalement I ddcnre le rapport
dtroit qui existe entre l'opdrateur rdsolvante et la matnce densiti d'dtats qui ddfimt entidrement

)es propndtds du spectre Dans le cas particuher du spectre discret en champ electnque faible, [es

propndtds des dtats lids sont dkduites des p61es de cette matnce Nous donnons un exemple de

l'utflisation de cette thdone dans le cas de Nai mais elle pourrait dtre apphqude aussi bien I tout

autre systbme non hydrogdnoide Des spectres calculds d'dtats de Rydberg de Nai en champs
faibles sont comparks aux donnkes expdnmentales. La prdsence d'extra-raies et l'appantion des

multiplets hydrogdnoides sont discutkes Nous dkmontrons rinfluence des sknes nfA pknbtrantes

sur la forrne des multiplets et en dkduisons l'ordre de grandeur de leurs ddfauts quantiques

Abstract. We present the Multichannel Quantum Defect Theory in its operatonal form and its

application to the problem of Rydberg states of a diatomic molecule in extemal electnc fields.

The theoretical analysis consists m the description of the close connection between the resolvent

operator and the Density-Of-State matrix which defines the whole spectrum In the particular

case of the discrete spectrum in weak electnc fields, bound states are deduced from the poles of

this matnx We give an example of the use of this theory in the case of Nai but it could be applied

to any other non hydrogenic system as well Calculated spectra of Rydberg states of Nai in weak

fields are compared to experimental data The presence of extra-lines and the emergence of

hydrogenic multiplets is emphasized We also show the influence of the penetrating nfA senes on

the shape of the multiplets and estimate orders of magnitude for their quantum defects

1. Introduction.

For a long time [1, 2], electnc fields have been known to act on atoms and molecules, both on

the structure (Stark effect) and on the dynamics [3] of the exalted states (electnc field

ionization and field induced predissociation) The Stark effect and field ionization of atoms

has been widely studied, particularly m the case of simple atoms such as hydrogen or alkali-

(*) Associd au CNRS n° 171.



876
'

JOURNAL DE PHYSIQUE II N 8

metals. Although molecules have been poorly studied in companson, the dominant features

of the molecular Stark effect and electric field ionization are expected to be of the same

nature However, over the last two decades, a lot of new effects have been observed m non-

hydrogenic systems. These are related to the conjugated action of the field and of the ionic

core on highly excited electronic states The most foreseeable of these effects is a decrease of

the lifetime of states by core coupling [4]. On the contrary, interference effects can instead

lead to the stabilization of some states which acquire a very long lifetime [5]. Another kind of

interference effect responsible for a dramatic vanation of the distribution of the oscillator

strength is shown m reference [6]. All these studies involve states which are bound when the

field is zero. Another kind of expenment is concerned with states which are autoiomzing m

zero-field. In this case, the lifetime of these states generally increases when the field is applied
because the mixing induced by the electnc field may reduce the coupling between the quasi

discrete states and the continuum [7] This effect has been also discussed in the context of

dielectronic recombination.

When one goes to molecules, all the above effects can be observed, especially the increase

m lifetime of autoioniztng states as for example m the field-hindered vibrational autoiom-

zation [8] A new effect has been observed which is specific to molecules. It is the rotational

autoionization induced by the field [9], also named forced rotational autoionization [10, 11].
However, quantitative treatments of molecular field effects are often lacking and the purpose

of this article is to present a particular approach of this problem. We present here a

theoretical calculation of the electric field effects on molecular Rydberg states which takes

advantage of the close connection between the resolvent operator and the Density-Of-States
(DOS) matnx As an example, we apply our formalism to the case of the Stark effect of Na~
which has been described m an earlier publication [12]

The s and d Rydberg states of the Na~ molecule have been extensively studied in our group

[13] Because of the large size of the ionic core Nat, the rotation and Rydberg frequencies

may be of the same order of magnitude. This leads to the observability of a resonance

between the nuclear and electronic motions : the « stroboscopic effect
» [14] Further, these

states can be accurately calculated by a zero-field MQDT theory [15-18], and a classical

analog can be denved [19], showing that the coupling between the core rotation and the

Rydberg electron orbit leads under certain conditions to a chaotic motion Some interesting
effects are expected if one adds an electnc field. First, the electron motion contains two

frequencies instead of one, each of which can be resonant with the core rotation frequency.
Further, by coupling the low and high angular momentum values, the field decreases the

average couplings to the core which is maximum m the low I states. The motion could thus be

globally less chaotic at high than at low field

Without any extemal electric field, the hydrogen atom problem can be solved m either

sphencal or parabolic coordinates because of the high symmetry of the Coulombic potential.
lvhen an electric field is applied, the sphencal symmetry is broken but the parabolic

symmetry still survives Hence we have to deal with the parabolic quantum numbers

ni and n~ instead of the pnncipal quantum number n and the orbital angular momentum I

which is no longer conserved. The projection m
of the electronic angular momentum onto the

field axis is the only common good quantum number. The parabolic and spherical quantum
numbers are connected by the relation

ni+n~=n- (m( -I (la)

n,-n~=-n+ (m( +I, -n+ (m( +3,..,n- (m( -I (16)

In the pure Coulomb + Stark potential, i-e- m atomic hydrogen, the pnncipal quantum

number n is still a good quantum number even m the strong field regime. On the contrary, m a
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non hydrogemc system, nis not conserved. The sphencal set of quantum numbers

(nim ) is replaced by the parabolic set (n, n~ m ), although it is sometimes more convenient to

use the set (npm) where p is the separation constant defined m zero-field by [20]

nj =np (jmj +1). (2)

As long as the applied electnc field is weak as compared to the atomic or molecular field

expenenced by the electron, perturbation methods hold true and it is easy to get, for example,

the first-order energy correction m a weak field

E=Eo+
~n(ni-n~)F (3)

where Eo is the unperturbed energy [20] However the influence of the field on highly excited

states of atoms or molecules can no longer be treated exactly by perturbation theory. The

perturbation parameter is determined by the ratio between the width of the Stark multiplet
(3n~F

m atomic units, value deduced from Eq. (3)) and the energy gap between two

successive hydrogemc levels (n ~
m atomic units) [21] This quantity is thus 3 n F The value

F~ of the field corresponding to the relation 3 n~ F~
=

I is called the Inglis-Teller limit Well

below F~ is the weak field regime. The strong field regime, F mF~, also called n-mixing

regime, is charactenzed by the overlap of the successive n
manifolds which are completely

mixed m any non hydrogenic system The IngJis-Teller limit is about 1200V/cm for

n =

17, but m the vicinity of
n =

50, it is only 5 V/cm Thus, m case of highly excited states

and even with modest fields, as soon as 3 n
~ F

~
l, the perturbation basis must include many

different
n values This causes rapidly an explosion of the perturbation basis, aggravating the

numerical treatment Further, the Coulomb + Stark potential is not bound and all the Stark

states, even below the classical saddle point energy ( 2 fi
m au.) are coupled to the

continuum via tunnel ionization This is the ongm of the divergence of the perturbation
development at high order or near the saddle point This divergence is the major limitation of

perturbation theory m strong fields. In addition, the diagonalization of the total harniltonian

m the spherical basis (matnx elements are not generally computable m the parabolic basis)

does not take any advantage of the separability of the hydrogen Stark hamiltonian.

Therefore, the perturbation methods fail rapidly, even at low values of the field, for high lying

states Hence, the problem of Rydberg states in extemal electric fields requires another

theoretical approach We use the Multichannel Quantum Defect Theory, thereafter noted

MQDT, which has proved to be of great efficiency to treat electron-core interactions in zero-

field problems m the discrete as well as m the continuous spectra.
MQDT was first introduced in atomic physics by Seaton [15] and extended to non-

iOoulombic potentials by Fano [16]. Either for atomic or molecular problems in zero-field, this

powerful tool gave important results. In molecular physics, for example, MQDT can treat

predissociation and autoiomzation on an equal footing [17] General features of molecular

applications of MQDT have been reviewed by Greene and Jungen [18]. The extension of

MQDT to extemal fields was first worked out by Fano [22]. This allowed Harrnin [23] to

extend the theory and to interpret the spectra of alkaline atoms m electric fields This latter

work introduced the fundamental, Density-Of-States matrix, referred to as the DOS matnx,

gathering all the spectral mformations. We have recently placed this matnx m a wider context

known as the operatonal form of MQDT [24]. Using the results of Harmm, Sakimoto [25] has

presented a formulation of MQDT for studying the effects of an electric field on molecules m

highly excited states which differs appreciably from the present work He applied his model to

the case of H~ Unfortunately, no expenmental results could be compared to the calculated

spectra.
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We believe that the present operatonal formalism is more general, although the application

to Na~ m section 5 is restricted to the weak field regime.

We will first deal with this operatonal formalism and recall the main steps of the connection

between the resolvent operator and the DOS matrix. The section ends with the general
formula for this matrix and its relation with the familiar form of MQDT m the particular case

of the discrete spectrum of the Coulombic potential We come to the molecular + electric

field problem m section 3 where we discuss the frame transformation and the related matnx

U~'~ (the superscripts F and Mj stand respectively for the electric field and the projection

along the field axis of the total angular momentum of the molecule, namely J~. The restriction

of our theory to the quasi-discrete spectrum m weak fields is described m section 4 Examples
of calculated spectra of Na~ are shown and discussed m section 5 m companson with

expenmental spectra. We then discuss bnefly the question of extra-lines, hydrogenic
multiplets and especially the problem of penetrating nfA Rydberg senes whose influence on

the shape of the multiplet is determining enough to evaluate orders of magnitude for the

unknown quantum defects.

2. Operatodal formalism of MQDT.

The operatorial formulation of MQDT is based on the close connection between the resolvent

operator and the DOS matnx Let us recall the main steps of such a connection

The problem to be solved is represented by a perturbed harniltonian H related to an

unperturbed hamlltonian Ho through

H
=

Ho + V (4)

where V is a perturbation that contains only the non-Coulombic part of the interaction

between the atomic (or molecular) core and the Rydberg electron In other words, the

potential part of Ho is (m atomic units) the sum of the Coulombic potential I/r plus the

Stark potential F r, i e the hamiltonian of atomic hydrogen m an extemal field F. From

the general scattenng theory [26], one can introduce two resolvent operators, functions of the

complex energy z

Go(Z)
"

(Z Ho)~ (5)

G (z)
=

(z H)~ (6)

These latter functions can be expanded with the help of the spectral densities of states,
Pi and P~ respectively, related to the hamiltonians Ho and H The spectral theorem [26] leads

to

j+«
Pi dE

Go(z)
" fi (7)

+ W p~ d £~
G(z)

=

(8)

w
~ ~

These two functions Go(z) and G (z) may have poles from the discrete part of the spectrum

and a branch cut from the continuous part. The spectral density can be deduced back from the

G operators by

P~
=

£
iG ~- i(E) G ~+ ~(E)1 (9)
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which is to be interpreted as follows If E is on the branch cut of G, we have

G (t )(E)
=

rim G (E ± is (io)

e ~
o.

If E
=

E~ corresponds to a pole of G(z) situated on the real axis, we take

P~
=

(E E~) Res (G (z), E~ ) (I la)
where

Res (G (z), E~
=

lim (z E~ G (z) (I16)

Actually, m the sense of distnbutions, equation (9) is always valid.

We then split Go into two parts, one analytic and the other not. The latter part contains the

spectral information We proceed as follows

We write PI
as

P(= jj (E,t) p(E,t)(E,1( (12)

,

Here, I stands for a set of indices, collectively referred to as a channel, which, together with

the energy, form a complete set of commuting observables The quantity (actually a

distribution) p (E, ii is the density of states

By a suitable renormalization, the wavefunctions E, i ) can be chosen analytic m energy m

most cases The analytic continuation to complex energies is also analytic (at least m a stnp

containing the real axis) and we write the corresponding function (z, t
).

The analyticity of the wavefunctions allows to state that the two integrals

Go(z)
=

jj j~~ dE(E,
t

) ~~~)~ (E, t (13a)

, -w
Z

and

I+
w ~ ~Gj~~(z)

=

jj (z, t ) dE ' (z,1 (13b)

, -w
~ E

differ but by an analytic operator Gj~~(z). That is

Go(z)
=

jj (=, t ) C (z,
t

) (z,
i +

Gj~l(z) (14a)

with

C(z,i)= j~~dEP(E,i)
-w

z-E
(14b)

All the spectral information contained m Go(z) comes from the singularities of the

coefficients C(z,
t

), which are now functions rather than operators and thus much easier to

handle Gj~~(z) is the smooth Green function introduced by Greene et al. [27] We now turn

to the total resolvent G(z)
From equations (5), (6) and (7), and skipping the z-dependence, we can write

G (z) as

G=Go+GOVG (15)
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This relation could be the starting point of a perturbation treatment. Here, we introduce the

smooth reaction operator

K
=

V + VG j~~ K (16)

and the smooth wave operators

Q
=

I + Gj~~ K (17a)

Q'
=

I +KGj~~ (17b)

we then get (inserting Eq. (14a) into Eq. (15) and rearranging)

G
=

G j~~ + G j~~ KG j~~ + £ Q z, j ) C (z, j ) (z, j + (z, j VG (18)

J

Projecting on the left on (z, t V and adding (z,
t (, we get, owing to equations (13) and (14)

jj
(&~~

(z,
i

K(=, j ) C(z, j ))( (z, j + (z, j VG
=

(z,
i

Q' (19)

J

The next step is to realize that equation (19) is a linear system of equations with unknown

(z,j + (z,j VG Defining

(K),~
=

(z, I K (z, j ) (20a)

and (c)~j
"

c (Z, I &y

we get

(z, j + (=, j VG
=

jj (I KC )§' (z, i
Q' (21)

which we insert into equation (19) to obtain

G
=

G l~~ + G l~~ KG l~~ + I n z, i I (C- ' K )j lz, J n ' (22)

,.j

Equation (22) requires a few comments. First, the functions (z, i ) are generally unbounded

when r tends towards infinity. On the other hand, V is supposed to be zero for

r > ro. This ensures the existence of products such as Vi z, ii and VG)~~ Second, K is an

analytic operator, provided equation (13) behaves well. Unfortunately, this latter point is

difficult to prove and is the mathematical weakness of our theory. From now on, we assume

that K(z) is analytic. Then, the only singularities of G come from those of (C~ K)~ ~.

Further, the branch cut is only due to that of C

Now, using equation (9), we get

P~
=

£ Q E, t )
D~~

(E, j fl +. (23)

>,J

Note that Q'
=

Q+ on the real axis The D matrix is the Density-Of-State (DOS) matnx

introduced by Harmin [23], and defined more generally here as

2iwD=
(j-K) ~- (j-K)

(24)
C~ C+

with the same conventions as m equations (9)-(11)
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Equation (24) is the starting point for any MQDT treatment

In the particular case where Ho does not contain any long-range potential except the

Coulomb potential (zero-field limit), equation (24) may be developed further Dealing with a

pure Coulomb potential at long distance allows to introduce some simplifications [27]
Without going deeply into details, it consists m taking a suitable redefinition of

(z, ii, the so-called functions normalized by energy unit, and consequently modify the

definition of Gj~~, in such a way that it is no longer analytic, but nevertheless continuous and

smooth

With the above assumptions, we can define the C and K matnces for the Coulomb

potential. As usual for MQDT, we define the channels by the state of the ionic core and the

angular quantum numbers I,
m

of the Rydberg electron The effective quantum number

~~
(~,

z )
~~~~

is associated to each channel E~ is the energy of the ionic core in channel I. Then C is given by

(C),
=

" ~°~ ~" ~~~ ~~~ ~~ ~~
"

~~ ~~~~~~~~~ ~~~~~~'~~
(26)

± I (Re (z E,
>

0, z =

E ± is (continuum)

and K is related to the familiar R matrix by

wK=-R.

In the discrete region of the spectrum, the poles of D are the values of z
for which the matrix

tan (wv)+R

is singular, that is

den (tan (arv + R )
=

0 (27)

Equation (27) is the ongmal equation of Seaton [15] The resolution of this equation gives the

entire discrete spectrum m the absence of any extemal field

3. Frame transformadon and matrix transformation in an electric field.

3.I INTRODUCTION It is customary in MQDT to use another basis m channel space,
where the R matrix is diagonal, instead of the C matrix One usually imposes the basis

transformation to be unitary. Thus the problem amounts to find the (unique within phase
factors) transformation U such that U~ RU is diagonal However, R, C and D behave like

scalar product matnces, not like operators. That is, for any transformation

lZ, £Y
)

=

£ a~~ (Z, )
,

(28)

the p [Eq (12)], C [Eq (20b)] and D matrices transform as

(C)all
"

(~~~)~a (C)g (~~ ~)i

That is

C~~l
=

a~ C~~~(a~ ~)+ (29a)
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while K and R transform contragrediently

R~~~
=

a+ R~'~
a.

(29b)

The basis transformations which diagonahze R are therefore not unique and not necessary

unitary The purpose of this section is to describe such a basis change in the non-zero-field

case, which allows to use the zero-field quantities. Detailed calculations may be found m the

papers by Harrnm [23], and Sakimoto [25]

3.2 RELATION BETWEEN THE K MATRICES WITH AND WITHOUT FIELD.

3.2.I Solutions of Ho First, we have to specify the set of indices, appropriate to the

description of the eigenfunctions of Ho Since Ho is the sum of a core hamiltonian and of the

outer electron Coulomb-Stark hamiltonian, the wavefunctions are the product of a core

wavefunction and an electron wavefunction solution of the hydrogemc Stark problem. The

core is specified by its rotational quantum numbers N+ and MN.. Here and in the following,

we do not consider the core vibration The electron is specified by the first parabolic quantum

number ni, and the projection of the angular momentum onto the field axis m. The whole

molecule is charactenzed by the total angular momentum J (J
=

N+ +
I and its projection M

onto the field axis M is the only quantum number stnctly conserved m the field. This

decomposition of the total wavefunction is typical of the Hund~s case (d). The total energy is

z=EN-+e=E~.
~

(30)
2 vN-

where E~
+

is the rotational energy of the core and e
the binding energy of the electron relative

to the channel N+ Hence, the wavefunction z, i ) may be written as the following product :

(z, ii
=

(N+ MN. v~. ni m) (31)

The ket N+ MN~ is the rotational wavefunction of the core and the ket vN. ni m
) is the

product of the parabolic eigenfunctions [23]

where

f
= r + z (33a)

q = r z
(33b)

q =
Arctan ~y/x) (33c)

are parabolic coordinates (here z stands for the third coordinate, not the complex energy)

The function £~~ is a solution of

(~~f~+£~~+))
Eni(f)"PEnj(fl (34a)

where e may be replaced by -1/2 vi
..

The effective potential along the f axis is

Vi (f)
=

~ ~
+ fF (34b)

8 f ~ 2 f 8

Vi(() is always bound
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Equation (34) possesses solutions only for a discrete set of p (the separation constant

introduced in Eq (2)), which we label by the integer nj m increasing order of p For

definiteness, we specify that £~~(f) behaves as

2~nj(I)
~

i' ~' ~~~~ (35)

when f
-

0

The function Y~~(q is a solution of

l~(1(+£-§-~(~)
Yni(1)" (1-p) Ynj(1) (36a)

The effective potential along the ~ axis is

V~(~)=f-~~~-~~F
(36b)

8~ 2~ 8

This potential is not strictly bound and tends towards oJ as ~ increases Under certain

conditions, this potential supports discrete states that are affected by tunnel ionization

When ~ -
0, the function Y~~(~) behaves as

Y~~
(~ )

= ~
~' + "~ (37)

3.2.2 Connection between parabolic and spherical coordinates Similar to all MQDT

treatment, the key idea is to partition the space into several regions corresponding to different

dominating potentials.
The ability to relate the K matrices with and without field relies on the presence of a region

m space where one can neglect both the extemal field and the detailed structure of the core.

This region lies at distances r from the core compnsed between r~, the range of the non-

Coulombic V interaction (r~ =10 a-u ), and r~, the distance at which the external field

becomes non negligible as compared to the nuclei field, rF«F~~'~ (=2000 a-u for

F =1000 V/cm) In this region, one can choose

(i) the Hund's case (d) parabolic functions (z, i
) to be linear combinations of the Hund's

case (d) functions m
spherical coordinates at zero-field (z, ~c ), because these functions are

solution of the same partial differential equation Here, ~c stands for the set of indices

(N+, MN., I,
m

), and by expanding (z, ii onto the sphencal harmonics [22, 23], we have

(=,1)
=

£a,~(z,R) (38)

(u) the analytic operator Gj~~ to be the same with and without field, by a suitable choice of

the coefficient C(z,
t ) [23, 25].

The K operator is thus independent of the field, and the (R)~~, matrix m sphencal
coordinates is the same as m zero-field. In parabolic coordinates

(Rl'~'
~

£ b$ (R)pp'b~'@' (39)

H-H'

The b coefficients are related to the a's by

N,
b,~

= a~~ (40)
N~
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where N~ and N~ are the normalization coefficients which normalize the wavefunctions per

unit of energy [20]. At low field, and m the vicinity of
v = n, b,~ can be satisfactorily

approximated by the Clebsch-Gordan coefficient [20]

b,~
=

,

~,
,'~~ ~ ~

(im) (41)
2 2 2 2

where

k=ni-n~=2ni+ (m( +I-n (42)

is the electric quantum number and ni vanes from 0 to n (m I by steps of unity.

3.3 THE TRANSFORMATION MATRIX. We have now to perform the transformation from

the spherical uncoupled (z, ~c ) basis to the close coupling (z, a
) basis where R is diagonal.

However the set of indices
a is already known [18]. It stands for the Born-Oppenheimer

quantum numbers

I, the total angular momentum of the electron

A, the projection of the electronic angular momentum onto the molecular axis

J, the total angular momentum

M, the ( component (M
=

MN. + m
).

The function (z, a) is then

~' ~
~~

electronic
~~ ~~

rmt<on
~~~~

and is a Hund's case (a) coupling wavefunction.

The transformation from (z, ~c to (z, a
) is thus performed m two stages

(i) coupling off and N+ to gtve J The transformation coefficient is simply the Clebsch-

Gordan (N+ MN. im (JM~
(iii coupling of I onto the molecular axJs The transformation coefficient is

U(~.
~ =

iAJ A N + 0 )

Actually, I
is not stnctly a good quantum number m a molecule, even at zero-field.

However in most of the molecular Rydberg senes and particularly m Na~, it has been shown

to be conserved m the core interaction [28]

The total panty of the core is (- 1)~' The total panty of the molecule is the product of the

panty of the electron and that of the core, (- 1)~'+ Since the total panty and I
are not

affected by the electron-core interaction, so is the core panty. Hence, the core panty is a good

quantum number for all the interactions, because the core itself is not supposed to be affected

by the field For example the field by itself does not mix the various N+ components because

the matnx element of the dipolar electric hamiltoman between states having different

N+ is zero. Nevertheless, electron-core interactions (?-uncoupling) mixes the states with

different values of N+ The conservation of the panty decreases by roughly a factor of two the

number of channels to be considered. To take advantage of this fact, we use (A( and the

A'IA panty p [29] instead of A as a close-coupling quantum number The core panty can also

be expressed as (- 1)~ + + P. The transformation coefficient Ujfi
~

m point (ii) above becomes

now

U(~-
o =

(I 0 J 0(N+ 0) if A
=

0

U(k
~ =

(iAJ A N + 0 ) + (- Y (I AJA N + 0 ) if A # 0 (44)
/
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The total transformation coefficient a,~ (see Eq (28)) is then the product of the three

coefficients above

a~~ =
b,~ (N+ MN.

,

im (JM~ Ufi
~

(45)

where I, ~c, a stands for the set of indices

t =

(N+ MN. n i m :
Hund's case (d) parabolic basis

~c =

(N+ MN. im
: Hund's case (d) spherical basis

a =

(iJAfiI~
: Hund's case (a) basis

and we have M
=

MN+ + m as a conserved quantum number. The transformation matrix

a~~ is m pnnciple of infinite dimension, because the values of J and N+ are not restncted by

any strict selection rule. However, this matnx can be drastically truncated as descnbed m

section 5. Whatever it is before, the a~~ matrix is not unitary after truncation. As shown

before, this is not a problem since all the matrices considered transform as m equation (29).

4. Quasi-discrete specmlm in weak electric fields.

4 GENERAL FORM oF THE D MATRIX Since K is analytic, it is defined on the real axis,

and there, it is hermitian. The non-analytic matrix C is discontinuous on the real axis, and we

write

C
=

h iH above the real axis

C
=

h + iH below the real axis

where both h and H are defined and hermitian on the axis Then we have the DOS matrix

~
2

w 11
~

l
~

~~~~

h+iH h-iH

A few algebraic manipulations would lead to the expression of D gtven by Harmin [23] Here,

we take advantage of the numerous zero diagonal elements of the K matnx m the

(a ) basis. These diagonal elements are zero if the corresponding quantum defect is zero.

This is the case for I
>

3 if one consider Na~ for example Taking P as the projector onto the

non-zero space of K, and Q
=

I P, we have

~ ll
~

~ ~
l -~CK ~~

P
~PKP ~~ ~~~~

~

because QK
=

KQ
=

0

Then the D matrix is gtven on the space of non-zero quantum defects by

WPDP
=

~
(48)

(P KPh
~

(P hPK + KPHPK

We thus need only the PhP and PHP matnces. In its general form, equation (48) is a new

result.
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In the particular case of Na~, P projects on the s, p, d, f channels only It is the major

advantage of this theory with respect to a perturbation theory to exploit the particular

symmetry of the Stark hamiltonian m order to reduce the size of the calculation

4.2 CASE oF THE QuAsi-DISCRETE LEVELS. Harrnm [23] gave general expressions for the

matrices h and H m a WKB approximation Here we consider only states situated well below

the potential barrier in the ~ coordinate (see Fig. I) In other words, we limit our analysis to

the case where the electric field may be considered as weak, i-e a small fraction of the Inghs-
Teller limit F~

=
1/3 n~ Note however that, at this point, the present theory is not limited to

the weak field regtme but may be used m any case provided that the matrix h and H are

calculated without any approximation. The departure from the general case anses when we

limit the discussion to the states well below the classical saddle point energy (- 2 fi) In

fact, this condition is less restnctive than F « F~ One need only to have F « 1/16 n~
m order

to be well below the saddle point The stronger restnction relative to F~ will anse later. In this

case, the resonances m the spectrum are so narrow that they can be considered as discrete

which is equivalent to neglect the matrix H Thus we assume now that H
=

0. In that case,

equation (48) cannot be used as is. The calculation of the Stark spectrum is therefore

completely different. Instead of having a D matnx without poles on the real axis that gtves a

continuous spectrum consisting of many lines with finite widths and complex profiles, we get a

discrete spectrum corresponding to the poles of the D matrix like m the zero-field problem. A

discrete state is at an energy E~ such that h~ K is singular, and the projector onto this state

is

P~
=

jj Q z, a Res (z, p Q' (49)

~_ p E E~ h~ K ap

If one chooses to start from functions normalized per energy unit, the matrix h, which is

diagonal m the
t =

(N+ MN. nj m) basis is [23]

h= wcotA

or

h~~ = w cot A v N. n i m
~~

(50)

where A is the WKB phase shift accumulated m the potential well V~(~ ) of figure1

A +
"

=

~~~~k(q) dq (sla)
2

~m>n

with

k(~)
=

-$+ ~~~~~ ~
+ (F(q)l~ =

j(
2 V~(~) (slb)

4 ~ ~ 4 vN.

~

when the field is low, one can expand A to first order m F, which gtves, if vN. is m the vicinity

of
n

A(VN+, fl,'ll )
" "

(VN° ~) "kV~+ l~ (52)

where the electric quantum number k is gtven by equation (42). This second approximation

limits the present discussion to the regime F «F~
=

(3 n~)~' where one can neglect the
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v~

i

E/2

Fig I Effective potential along the ~ axis For a state at a given energy E, ~~,~ and

~~~~ are the boundanes of the elliptic integral A [Eq (51)]

overlap between different n manifolds Once again, there is no formal impediment to a

complete calculation of H and of the elliptic integral A which would extend the validity of our

theory to the strong field regime at the expense of an inflation of the numencal calculation

Equation (52) is fundamental m the sense that if the matrix His neglected, the integral A is

the only quantity where the field strength is introduced.

It is customary to use the R matrix instead of the K matrix with the relation

R=-7rK

The R matrix is diagonal m the a =

(iAJfiI~ basis The diagonal matnx elements are related

to the eigenquantum defects ~ci~ by

R~~
=

tan jWHiAl &all ~~~~

4.3 QUANTIZATION OF THE ENERGY AND TRANSITION INTENSITIES IN THE QUASI-DISCRETE

SPECTRUM. The transition intensity from an initial state (0) towards the state of energy

E~ is proportional to

1
=

(0( TP~ T(0) (54)

where P~ is given by equation (49) and T is the dipole operator The quantities

(0 TQ z,a )
=

T~ are difficult to calculate exactly and are assumed to be constant over the

whole spectrum. The set of non-zero T~ is generally extremely restncted For example, m the

case of Na~ discussed m the next section, the initial state (0) is a pi state. Then,

T~ differs from zero only for I =0 and 2 and A=0 and I Only three parameters

(T~~, T~~ and T~n) are required They have been determined expenmentally [13, 28]. The

transition intensity is then

1= £ T~ T$ Res
~

(55)

a, fl E E~ h~ K
a p

If the T~'s are zero for zero quantum defects such as m the application discussed below, one
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can use equation (47) to restrict the calculation to the projected matnx, which can also be

written as

P P
= w cos ma Pq~ PhP (56)

h~ K

for computational ease, with q gtven by

q =
P cos ma P + Pa+ cot (A) a sin ma ) (57)

The energies E~ are solutions of the equation

det q =
0 (58)

Equation (58) is the weak field analogue of the fundamental equation of MQDT m zero-field

(see Eq (27)).
If we introduce a non-zero vector (A) solution of

q (A )
=

0 (E
=

E~ (59)

then the intensity of the transition towards the state (A) is given by

I
=

£ T~ T$ A~ A$ cos (w~c~ cos (w~c
~

) (60)

a fl
"~

with a normalization factor JC given by (assuming dR/dE
=

0)

~3
Jf

=
(A (sin (wa) a+

~ a sin (wa)(A) + 0(F) (61)
sin A

The v matrix is diagonal m the t =

(N+, MN., ni, m) basis

v~~ = v~. &~~. (62)

Equations (55) to (62) allows the complete deternunation of the Stark spectrum m the weak

field approximation

4.4 EXPANSION ON THE PARABOLIC BASIS. Once the intensities have been obtained, it is

often desirable to get the parabolic content of a gtven state. Up to now, we have managed to

calculate and use only the expansion coefficients on the non-zero quantum defects

eigenchannels. However, it is easy to obtain the other coefficients from P(A) since

(A) must satisfy also

icos (ara + a+ cot (A) a sin (ara )i Aj
=

0 (63)

and we obtain the components Q(A) by

Q(A)
=

Qa+ cot (A) a sin ma (A
,

(64)

using the fact that sin ( ma is non-zero only on the space spanned by P, and cos ma )
=

I on

the space spanned by Q. Then the parabolic basis coefficients (B) are gtven by

(B)
=

acos (7ra)(A) (65)
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5. Calculated spectra of Na~ Rydberg states.

Because of the vanous approximations made m the previous section~ we will restrict the

application of our theory to the quasi-discrete spectrum of Na~ Rydberg states m weak electric

fields. Working m the weak field limit allows us to perform drastic truncations on the different

basis which include m pnnciple an infitiity of channels N+ or J. The frame transformation

described m section 3 as well as the equations denved m section 4 will be used m straight way.
First of all, let us recall bnefly the expenmental techniques used to record the Stark spectra

of Rydberg states of Na~.

5.I EXPERIMENTAL SPECTRA oF Na~ RYDBERG STATES A detailed descnption of our

experimental set-up is available m references [12], [28] and [30]. The Na~ molecules are

produced m a free expansion molecular beam which interacts at right angle with two counter-

propagating laser beams The spectral width of the two pulsed tunable dye lasers is about

0.2 cm~ ~. The Rydberg states are populated by a two step resonant excitation The first laser

is tuned to a selected u', J'rovibrational level of the intermediate A ~2] state This state has a

strong 3p character. The second laser is scanned to explore the ionization region. Owing to

the 3p character of the A state, the Rydberg states excited m zero-field are almost pure nd

states with J
=

J'or J' ± I and u
=

u' (oft-diagonal vibrational transitions are negligible) The

rovibrational interactions among these series have been analyzed m the framework of MQDT
[13, 28]

In the interaction region, a DC electric field is applied between two circular plates I cm

apart perpendicularly to the molecular and laser beams Photoelectrons produced by auto- or

field-ionization are extracted through a grid at the center of the positive plate and detected by

a secondary electron multiplier. The electron signal is averaged by a boxcar integrator before

being stored m a microcomputer as a function of the second laser photon energy In the

presence of an electric field, I is no longer defined but the intensity of the transitions depends
essentially on the nd component, and to a negligible extent on the ns component, of the Stark

states

The u'
=

4, J'= 6 level of the A state has been selected to record the two experimental

spectra displayed m figure 2 Both spectra are taken m the vicinity of the n=17,

u =
4 Rydberg states The bottom spectrum was recorded with a field of 400 V/cm and the top

spectrum with a field of 600 V/cm. The ratio F/F~(= 3 n~F) is respectively 011 and 017,

compatible with the weak field regime described above (F « F~) In both spectra, the width

of the observed line exceeds the laser bandwidth, indicating that an unresolved structure is

underlying However the charactenstic 3 nF spacing [12] is clearly visible m the spectrum
recorded with F

=
600V/cm (3nF=13 cm

~') The unresolved and complex internal

structure of each individual line is due to the electron-core rotation coupling The companson

between experimental and calculated spectra is thus reduced to

(i) the splitting between the observed lines

(u) the relative intensities of these lines and especially the envelop of the n =
17 manifold

(iii) the appearance of extra-lines

As far as the envelope of the n =
17 manifold is concerned, its effective width is symptomatic

of the non hydrogenic behaviour of Na~ m weak fields. In the top spectrum (F
=

600 V/cm)
of figure 2 for example, only 4 lines of the multiplet are intense. In the quasi-hydrogenic
approximation, one would expect a fully developed Stark manifold with (n I ) components

and a smooth vanation of the relative intensities as a function of
n i.

The weakness of the lines

corresponding to the extreme values of nj (nj
=

0 and ni = n is revealing of the incomplete
I-mixing at moderate fields The numerical application described below, shows that this effect
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z F
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Ena~gy (cm~~)

Fig 2. Expenmental spectra of Nai Rydberg states recorded m the vicinity of
n =

17 (v
=

4) with

the intermediate level v'
=

4, J'
=

6 at F
=

400 V/cm (bottom) and 600 V/cm (top) The total width of

the hydrogenic multiplet (3 n~ F) is respectively IS and 22 cm-I while the observed width is only about

5 cm-I All energies are relative to the bottom of the ground state potential well

anses from the relatively large value of the nf senes quantum defects which precludes the

complete I-mixing at moderate field where nf states are still separated from the hydrogenic
multiplet.

5.2 BASES AND TRUNCATIONS We have to deal with two infinite basis sets : the spherical
Hund's case (a) one, represented with the notation (a ) and the parabolic Hund's case (d)

one represented with the notation (I The complete quantum descnption of both basis has

already been given m section 3 We have now to perform truncations m order to achieve

computations
As seen above, the (a set can be reduced to the few states with non-zero quantum defect

Thus, according to previous results [13, 31], we have to consider states with I
« 3 and so

A « 3 as well. To ensure the presence of the rotational structure m spectra, we have to keep
at least the three J values J'- I, J', J'+ I where J'is the total angular momentum of the

initial state which is well descnbed with a single sphencal Hund's case (a) wavefunction [28]
This is obviously a minimal set since these three J values are those present m the zero-field

spectrum Because the (a ) basis is mostly relevant to short-range electron-core interactions

where the Stark field is of minor importance, the zero-field set (J' I, J', J' + I ) is a reliable

first order truncation. Moreover, the introduction of additional J values m some selected

cases has shown that it does not introduce significant effects This is a major difference with
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respect to a perturbative treatment [32] where one has to introduce explicitly all the J values

compatible with the relation I
+ N+

=
J. The extension of the range of J values to include

high order phenomena is of course possible but the number of channels would increase

proportionally and strongly slow down computations These phenomena are also too weak for

our purpose In order to compare our model with the expenmental spectra of figure 2, we

have chosen the J'= 6 level of the A '2] state as initial state Hence the set of 48

wavefunctions is finally reduced to 24 if we take into account the core panty which is odd

because the initial state has a strong p2+ character [28] and an even J'value

The channels we have used are

J
=

5, 7 ns2+ npH~ nd2+ ndH+ ndA + nfH~ nfA~ nf4

J
=

6 np2 + npH+ ndH~ ndA~ nfi+ nfH+ nfA+ nf4 +

The truncation of the I set is performed on the three quantum numbers m, k and

N+ We use the electnc quantum number k, difference between nj and n~ for commodity The

m and k quantum numbers are related through equation (42), k ranging from n + m + I

to n
(m I by step of two. We have to note that m, as projection along the field axis of

the electronic momentum I,
is confined (though not conserved) to the few values

(m( w3 because only s, p, d and f levels have non-zero quantum defect But for each

(m, k set we may have an infinity of N+ values. With respect to the accessible J and I values,
and the odd core panty of the initial state, we can assume that N+ ranges from

J'- I I to J'+ I
+ I and is odd For J'

=
6 it yields

N+ =3,5,7,9.

This set is exactly the set of N+ values present m the zero-field J'
=

6 spectra However, the

justification of this truncation is quite different from the J's truncation Indeed, the electric

field is not responsible for any direct coupling between different N+ values (see Sect 3 3) and

thus the truncation to the zero-field (t basis is not so restrictive Once again, adding other

N~ values does not change significantly the calculated spectra.
Finally, as noted in section 3, M is the only good quantum number. However, since it is not

selected m the initial state, one has to add several calculated spectra to get the equivalent of

an experimental spectrum. The splitting of the Stark states as a function of M is the main

ongln of the unresolved sub-structure of the observed fines.

The set (t )
=

(N+
=

3, 5, 7, 9, m =
0, ± 1, ± 2, ± 3 k

= n + (m + I,

n + (m + 3,
...,

n m I ) still holds 428 wavefunctions Finding the poles of the DOS

matrix (Eq. (58)) consists m finding the zeros of a 24 x 24 determinant and dealing with a

24 x 428 transformation matrix

5 3 QUANTUM DEFECTS Once settled with the various bases and the frame transform-

ation, the question of the zero-field energy levels arises Rotational interactions are

automatically taken into account owing to the suitable choice of the frame transformation

We have then to approach the problem of quantum defects These quantities may be

reasonably considered as constants over the whole spectra and independent on the J value and

on the panty Assuming all the series with I
>

3 as hydrogenic (~c
=

0), we have to input m

our computations 10 parameters among which only 4 are known [13, 28] There are

~c~~ =
0 40 ~c~~ =

0.21

~c~n=-001

~c~~=042
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As opposed to many atoms and small molecules, the quantum defects of the nf series of

Na~ are far from being negligible. This is mainly a consequence of the large spatial extension

of the Nat core which renders these senes penetrating. Thereby, these parameters cannot be

set to zero and cannot be estimated by a multipolar expansion relevant to the non-penetrating

case. The magnitude of the f senes quantum defects is crucial because the mixing between the

nd states that bear all the oscillator strength and the hydrogenlc complex (I
>

3) occurs via

the nf states The ~ci~'s determine the aspect of the Na~ Stark manifold at weak field On the

other hand, the p series quantum defects are also unknown. Finally, the quantum defects of

the high I series (I
>

3 can be neglected because they are probably less than 0.05 and they
do not have any important effect as soon as the nfA quantum defects are larger

Let us now discuss the np senes quantum defects. In a small molecule like H~, it is possible

to deduce the quantum defects of the high n states from those of the lowest members of the

same senes. In Na~, the A and B states form the first pair of pi and pH states. Their quantum
defects are 0 90 and 0 61. However, nothing can be deduced from these values. Indeed, if we

examine the results of Schawlow et al about the low nd Rydberg states of Na~ [33], we find

that the quantum defects of the 4d3~ and 3dH~ states are respectively 0.02 and

0 51, which have nothing to do with the high n values of 0.21 and 0.01 respectively.
Hence, it is clear that m Na~, it is irrelevant to extrapolate quantum defects of the lowest

states to the high Rydberg states. Similarly, ab tnttto calculations are only available for low n

states, mostly of gerade symmetry [34], and no acceptable values are known for the high
Rydberg states, even for the ns and nd series. Nevertheless, few expenmental results gtve

some indications about the np senes, We have reported a previous work where nucrowave

transitions between Na~ Rydberg states were performed [31]. Several lines were recorded and

a Rydberg senes, np2 or nf2, was found to have a quantum defect of 0 14. We have decided,

after many calculations, to affect this quantum defect to the nf2 Rydberg senes because the

np2 should have a much stronger quantum defect. Anyhow, this is only an assumption that is

convenient to fit correctly the expenmental spectra We could obviously try the other choice

but this would lead to theoretical spectra generally more different from the experimental

ones The second quantum defect we already know comes from a detailed assignation of the

lines of Stark spectra. Figure 3 shows an ensemble of spectra recorded with u'=2,

J'= 6 as intermediate level near n =
21 and for vanous field values ranging from 0 to

120 V/cm. The appearance of extra-lines arranged in a Rydberg series (when compared with

other n values) with a quantum defect of 0.23 is clearly visible The quasi quadratic Stark

effect of this state at low field is also visible in figure 3 Considering the intensities of these

extra-lines and their evolution with the field, we have assumed that it was a nfH Rydberg

series. For the other series included m the calculations we have taken empincally fitted

values. A set of quantum defects that gtves acceptable agreement with the expenments is

~c~~=035 ~ca=014

~c~n =
0 20 ~c in =

0.23

~cu=018

pm =
-0.06.

Obviously this choice is not unique because many sets of coefficients may produce acceptable

theoretical spectra.

5 4 COMPARISON BETWEEN EXPERIMENTAL AND CALCULATED SPECTRA. Assuming the

bases truncations and the quantum defects descnbed above, we have calculated the two

spectra of figure 4. These spectra correspond to the expenmental data presented m figure 2

(1e. u'= 4, J'= 6, n =

17, F
=

400 and 600 V/cm). One spectrum is calculated for each
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Fig 3 Expenmental spectra of Nai around
n =

21 (v
=

2) recorded using the intermediate level

v'
=

2, J'
=

6. Field strength ranges from 0 to 120 V/cm The extra line near 39 546 cm-' (quantum
defect

=
0.23) is indicated by an arrow This state is located below the ionization threshold at

F
=

2 V/crn (v°
=

0, N+
=

3 level of the ion, lowered by 2 fi,
see Ref [9]) but almost 15 crn-'

above this threshold at F
=

20V/cm at which it is not yet visible. The intensity of this extra line

increases with the field and it is repelled quadratically towards low energy

possible M value, the summation over M and the convolution with a 0 2 cm-' width are done

afterwards. The overall features of the expenmental spectra are correctly reproduced by the

calculation, namely

(I) the appearance of extra-lines on the red side of the manifold,
(ii) the 3 nF splitting between the observed intense lines, and

(iii) the relatively low number of intense lines that gtves the apparent small width of the

manifold.

However, the exact energies and intensities of the observed transitions is very sensitive to

the npA and nfA unknown quantum defects but the precise determination of these quantities

is nonetheless impossible and the agreement is only qualitative The relatively large number

of varying parameters (the 10 quantum defects of which only 4 are known undoubtedly)
combined with the heaviness of the calculation preclude the optimum fitting of such
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Fig 4 Calculated spectra corresponding to the expenmental parameters used to record expenmental
spectra of figure 2 (1e v'

=

4, J'
=

6, n =
17, F

=
400 V/Cm (bottom) and 600 V/cm (top)) Calculated

spectra are convoluted with an expenmental width of 0 2 cm' Agreement with expenmental data is

only qualitative owing to the many unknown quantum defects. However, the general aspects of the

spectra of figure 2 are correctly reproduced

parameters. Nevertheless, the correct descnption of the most prominent aspects of the Na~
Stark spectra demonstrates the high capability of our theory to analyze molecular Stark effect,
especially in a case where a perturbative treatment would require a prohibitively large

number of rotational (N+ and J~ and electronic (I and even n) channels.

For example, the general shape of the expenmental spectra, without any strong extra-fine

on the blue side of the multiplet, indicates that the unknown quantum defects should be

positive, and their relative distance from the multiplet accounts for a rather high absolute

value of the np defects as discussed in the preceding chapter A detailed assignment of the

extra-lines cannot be performed because the wavefunction, though completely known

numencally, is spread over the whole basis whatever it is, the sphencal Hund's case (a) or the

parabolic Hund's case (d) basis set In other words, the Stark states are neither well described

by a dominant I,
ni or N+ quantum number

The second point to discuss is the hydrogemc multiplet The parabolic Hund's case (d)
wavefunction is a product of an electronic part, the subset (m, k and an ionic core part. We

are then expecting as many hydrogemc multiplets as there are N+ values. Because of the

truncations, only four are explicitly present, two being more intense, N~ =5 and

N+
=

7, because the rotational level of the 1nltial state is J'= 6 These sublevels of the

muluplets are interpenetrating themselves, forming only one pattem with a regular
3 nF structure already observed m atomic spectra [35]. Since the initial A state has a strong 3p
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character, only the low m components are involved m our spectra Although
m is not a good

quantum number, the non degeneracy of the I
« 3 states gives nse to the (quasi-) degeneracy

of the various m components (m fact of their various combination) as noted before m non

hydrogenic atomic systems [35] This degeneracy induces the 3 nF structure instead of the

hydrogemc 3/2nF structure present when odd and even m levels are populated Such a

pattern is supenmposed to the zero-field rotational structure of the 17 dH state. Although
rotational structure gradually fades away as the electric field is increased [12], its reminiscence

for the field values of 400 V/cm and 600 V/cm is the signature of penetrating nfA Rydberg

senes with relatively high quantum defects. Nevertheless, the one corresponding to the

nf4 series is allowed to be much weaker because this Rydberg series is not coupled to the

nd states by any electric dipolar coupling. The numencal parameters used m the present
calculations are in complete agreement with these assumptions

Conclusion.

The operational formalism of the Multichannel Quantum Defect Theory is shown to be a well

suited formalism to recast m a wider context the Density-Of-State matrix It is shown how

closely related this DOS matrix and the resolvent operator are and how the whole spectrum

arises from its singularities We emphasize that, at this stage of the work, the problem is not

reduced to the Stark problem but could take into account other long range potential.
This formalism has been applied to the Na~ molecular Rydberg states in weak electric

fields

Although we have considerably shortened the basis sets involved m the calculations,
simulated spectra m good agreement with expenmental data have been obtained.

The truncation of the vanous bases has been proved to be of minor consequence, at least m

the weak field regime, and allows numencal calculations of reasonable size

Provided the H matrix and the elliptic integral A are explicitly calculated, the high field

regime may be efficiently treated with the same formalism The n-mixing as well as the line

profiles could be simulated with a high accuracy at the cost of a slightly larger computation.

As compared to a perturbative treatment, our MQDT operatonal formalism possesses the

following advantages :

(I) it reduces the size of the computation by chmmatmg the zero quantum defect channels,

(it) reasonable truncations allow the reduction of the number of the N+ and J values to be

taken into account~ m order to describe correctly electron/core coupling,
(iii) if H and A are explicitly calculated, this formalism is not limited to the quasi-discrete

spectrum as the perturbative approach is, and line positions, line profiles and ionization rates

may be predicted even above the classical saddle point energy.

However, one has to recognize at least two advantages m favor of the perturbation theory :

(i) its simple and familiar formalism,

(u) only one large matrix has to be diagonahzed to calculate one region (one or several n

manifold) of the spectrum instead of the step by step search of the successive poles of the

DOS matnx m the quasi-discrete spectrum (H
=

0) or of the calculation of the photoiom-

zation cross section as a continuous function of the energy m the general case (H# 0)

In the specific case of Nai~ the MQDT operatorial formalism has proved to be the best

suited to analyze and simulate Stark spectra becausc of the large number of N+/J values

needed m a perturbative treatment On the contrary, m the case of the H~ molecule, other

results [32] show that, owing to the fact that the zero-field states are almost pure case (d)
states (with N+

=
I, which limits drastically the size of the perturbation basis), the

perturbative treatment is more appropnate
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However, tnatomic hydrogen is certainly not a typical example and the formalism

presented in this paper is certainly more general and more adapted to complex situations than

any perturbative model
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