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Rksumk. La dkcroissance en temps des corrklations de concentration dans les solutions sernl-

diludes de polydimdthylsiloxane a dtd mesurde I l'aide du spectromdtre I dcho de spin de neutrons

au Laboratoire Lkon Bnllouin pour diflbrentes valeurs du transfert de vecteur d'onde

L'expknence a ktk effectude successivement sur un dchantillon homogdne et sur un dchantillon

composk de deux parts kgales de chaines deutdnkes et non deutbnbes, I contraste moyen nul

Nous donnons les relations de dispersion assocides au mouvement browmen des chaines, au

voisinage de l'inverse de la distance de malllage, I/f. Pour des valeurs de q supkrieures I

I/f, les rdsultats des deux expdriences sont identiques, mais lorsque q est infdrieur I

1If, its difllrent On observe alors un mode coopkratif et un mode inter-diflusif Les valeurs des

coefficients mesurks sont compardes aux thkones de milieu effectif et de solution dtluke

Abstract. Relaxation times of concentration fluctuations in sernl~dilute solutions of polydi-
methylsiloxane, have been measured at several values of the reciprocal wave vector q, with the

neutron spin echo spectrometer of the Laboratoire Lkon Bnllouin The expenment has been

carned out successively on a solute of identical chains, and on a solute divided in equal parts
between labefled and non labelled chains at zero average contrast We report observations of the

dtspersion relation associated with the Browman motion of the polymer chains, in the vicinity of

the inverse mesh stze 1If For values of q which are greater than 1If, the two expenments give
identical results but when q decreases below I/f, the dispersion curves associated with each

expenment are different A bifurcation occurs at I If and two distinct transport processes become

observable, which are related to cooperative diffusion and to inter-diffusion respectively. The

observed coefficients are cdmpared wtth predictions of the effective medtum and the dilute

solution theories

1. In"oduction.

Polymers in semi~dilute solution form a characteristic state [I] of condensed matter, which has

been thorougly studied [2] dunng these last years. In particular, concentration diffusion has

received great attention because it obeys a simple Fickian law, and because its coefficient has

interesting scaling properties. The dynamics of seml~dilute solutions is in fact a very rich field,

in which characteristic features of dilute solution and polymer melts are found [3]. On the

(*) CERMAV, DomaJne Unlversitaire, Saint-Martin-d'Hdres, 38400 Grenoble, France
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whole, three types of diffusion have been identified and charactenzed, namely cooperative
diffusion, selLdiffusion and inter-diffusion

Observation of these transport phenomena has been acuieved in various ways analysis of

the time dependence in the correlation function [4, 5] use of labelling techniques in forced

Rayleigh scattenng [6] and in neutron scattering [7j
Recently, Benoit et al. [8] improved the observation techniques, using an appropnate

labelhng strategy. Namely, dividing the solute in two fractions with different refractive index,
and matching the solvent index so as to be intermediate between the two solute indices, a

situation is obtained in which the average contrast is zero [9]. Under this condition the mter~

diffusion process can be isolated and detected m the scattenng experiment.
Tuis technique was applied with success to the determination of the mter~diffusion mode m

temary systems, Duval et al. [10] studied mixtures of two homopolymers m a solvent, using
quasielastic light scattenng. Benoit et al. II ii studied dilute solutions of diblock copolymers

using neutron spin echo. As regards the expenment on the temary polymer solution [10], the

radiation source was light. the wave vector range is therefore limited to

q « q~~~ =
2 x 10~ A~ ', and typically to q =

I /R~, where R~ is the radius of gyration of the

polymer chain. An obvious extension of this investigation is to explore inter~diffusion at

higher wave vector, i-e m the range qR~> I, and especially around qf
=

I, where

f is the mesh size of the solute in the semi~dilute solution It will be of interest to determine

what inter~diffusion exactly means at these higher values of q. Obviously, as q increases

beyond I If, all diffusion processes merge into the same process, associated with the motion of

the chain internal mqdes. However, as q decreases below I If, the chain overlap effects will

become dominant and the observed dispersion relation between relaxation time and wave

vector will depend upon the labelhng structure

Expenmental evidence for this process can partially be found in earlier observations [12]
made with the neutron spin echo spectrometer, on samples containing a small fraction of

labelled chains.

However, using the zero average contrast technique, the data which are presented here

should give an improved insight into the problem,

2. Description of the experiment.

We descnbe here the polymer samples, the spectrometer and the fornlahsm used to interpret
the expenment.

2.I The polymer solution is made of polydimethylsiloxane (PDMS) and toluene (T) The

molecular masses and the concentration are given in table I. Two samples are examined. The

first sample (no. I) is a solution of (non deuterated) polydimethylsiloxane (PDMS~) chains of

N monomers, in deuterated toluene (Ts) The second sample (no. 2) is a solution trade of a

mixture of fully deuterated polydimethylsiloxane chains (PDMSO) and non deuterated chains

(PDMS~) (each of N monomers) in a blend of deuterated and non deuterated toluene

(T~, T~). Tue number of (PDMSO) chains, rid/2, is equal to the number of (PDMS~) chains,
the number rid being the total number of chains in experiment I, as well as in expenment 2.

The fraction
a

of deuterated toluene in sample 2, corresponds to the condition of zero-

average contrast of the solute. This is detailed in the next section,

2.2 SCATTERED INTENSITIES. As a definition for the (coherent) scattered intensity

I(q, t) related to sample I, we use the following relation ;

1(q, t )
=

b2 c2H(q, t ) (1)
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Table I. Description of the samples and the polymer solutions Solvent. Toluene. Viscosity

~~ =
0,59 x

10~~
poise, fl ~~ =

l.46 x 10 '~ cm~ 3
s Solute Polydimethylsiloxane (PDMS).

Non deuterated Deuterated

M~ 45 000 44 000

p(= M~/M~) 1.22 1.22

N 610 550

Solution Polydimethylsiloxane
m toluene

Sample1 (100 9b sample) Sample 2 (50 9b sample)

Mass concentration p~ =

0.2 g/cm3 pH "
0 g/cm3

pD =
0.I g/cm3

Solvent deuterated toluene mixture of deuterated and

non deuterated toluene

(a (deuterated fraction)
=

32 9b)

Contrast of b
=

7.06 x
10-'~

cm bz
"

3.I x 10~ '~
cm

monomer in solvent (zero average contrast condition)

Other important overlap concentratioi p *
=

0 068 g/cm~
lliiiiienifi~ R~(p

-
0 )

=
73 $ from reference [22]

x~D =
7 x

10~'

where b is the contrast length between monomer and solvent molecules

~
"

~bmonomer f6
~monomer

solvent
~~°'Vcnt

(2)

where C is the concentration in monomers, v~~~~~~~ the partial molar volume of the monomer

and
v~~j~~~~

that of the solvent molecule

C
=

~~.
(3)

Thls is related to the mass concentration p (Tab. I) C
= p

~
(A, Avogadro number,

m

m, molecular mass of the monomer).
The « intermediate

» structure function H(q, t) is defined by

~ N N N

H(q, t)
= ~~~~

£ £ £ fa,,bj (q, t) (4)

fa~~ bj
(q, t )

=
sle ( (exP (iq (ra~ (0) rbj (t))) (5)

JOURJ'AL DE PHYSIQUE tt -T I, M 3, MARS lwl 17
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where a, b are chain indices (a, b
=

I,.,., rid )
where i, j are monomer indices Ii, j

=
I,

.,

N )
where r~,(0) is the position vector of monomer i chain a, at time t

=
0.

The vector q is charactenzed by the scattenng angle o and has a modulus

q =

~ " sin o/2 (6)
A

which is the elastic momentum transfer (A is the wavelength of the incident neutron

radiation).
It will be useful to introduce the decomposition [2]

H(q, t)
=

HI(q, t) + HIT(q, t ) (7)

Where

H~(q, t )
=

(
~

( (
fa,,

bj
(q, t ) (8)

is the self contribution to the structure function (the dynamical form function of the chain)
and where

H~~(q, t )
=

)
~

( ( (
fa,,

bj
(q, t (9)

is the distinct contribution.

Note that [2]

H(q, o
= ld3r e,q., lC(r[j(°)I i (io)

where C(r) is the local concentration m monomers at point r.

For the case of sample 2, equation (I) wntes

~2
1(q, t )

= ~
lbl HOD(q, t ) +

bl H~~(q, t ) + 2 bD b~ HD~(q, t )i

+ (~bTH ~bTD)~ "
(l a ) ~T(g, t ) (I1)

Indices D, H refer to the deuterated, non deuterated monomer index T refers to the toluene

molecule. The contrast lengths are given by the equation

~~~
"

~~~ ~"~TD + ~i
«

) am)
~IMS.

~~~~

The second term in (I I) is the « Laue » contnbution to the scattered intensity, caused by the

presence of two solvents, with different indices. (This contribution is neglected).
Following equation (4) we write

~DH (j~j)2 ~~'~J~~~' ~~' ~~~~

aeDbeHieajeb

Zero average contrast implies bD
=

b~
=

bz : tuis is obtained when
a =

0.32 in (12).

Equation (11) now becomes

~2 ~2
Iz(q, t )

=

~ IHDD(q, t ) + HHH(q, t) 2 HDH(q, t)) (14)
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We introduce the decomposition (7), which writes here

The self contnbutlon will be expressed in the normalized form

H[(q,
t )

=
h (q, t ) (16)

where h(q, t ) is the dynamical form function of the polymer chains. It obeys the condition

h(0, t) ml.

We assume that this function is independent of labelhng. Finally

~Z(g, t)
"

b~
j~

(~ ~~ ~(g, t + (~%D +
~#H ~ ~%H)) (l~)

If we assume that the interaction between D and H chains is identical to the interaction

between D and D chains (and between H and H chains), then equation (17) simplifies and we

obtain

Iz(q, t )
=

bl CNh(q, t )/2 (18)

Tuus with zero average contrast, the scattered intensity is directly proportional to that
scattered by a single chain, for static as well as for dynamic case.

Equation (18) will be used to interpret the data obtained with sample (2). The information

is here complementary to the one denved in the first experiment. We note that
bz in (18) and b in (2) have the same magnitude (see Tab.1).

2.3 NEUTRON sPiN ECHO SPECTROMETER. The scattered intensities relative to samples (I)
and (2) are measured with the neutron spin echo spectrometer newly built in the Laboratoire

Ldon Bnllouln. A detailed report of the expenmental method is given in reference [13].
Polansed incident neutrons undergo Larmor precession while flying inside a first set of

magnetic coils, interact with the sample, are reversed in spin before flying in a second set of

coils. Interaction with sample produces a change of energy of the neutrons, that is a change of

speed. It leads to a difference between the number of precessions before and after the sample

as the field integrals Hdf
are exactly opposite on the two sides. The resu1tlng orientation

8p of the spin is analysed on a mirror which gives an intensity Pi
=

P, cos 8p
For a given value of the wavelength A of the incident neutron, sum over all energy transfers

w
gives :

Pi
=

P, lS(q, w cos 8 p dw
=

P, S(q,
w

) cos (wt(A )) dw

a Founer transform in time which can be wntten

p
~

I(q, t )
I (q, ° )

where the Founer time is

t(A) (s) =1.8635 x10~'~ A~ (A) lHdf (Oe,m) (19)
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The spin echo allows the use of a large distnbution of wavelengths. The mean value is here

A
=

6 54 A
; with a scattenng angle interval

2°<o<5°

this gives

3.3 x
10~~ A~ '

< q <
8.5 x 10 ~~ A~ '

Here the half width of the wavelength distribution is AA IA 8 9b and the angular collimation

by two holes of 25 mm at 6 m give the q resolution :

~~
=

~~ ~

+
~~ j ~~~

=

0.0064
+ ~'~~~

~~.
(20)

q A o 0

The intensity scattered by the solvent alone is found to be negligible for both samples.

3. Expected behaviours for send-dilute solutions.

The time dependence of the dynamical structure functions H(q, t) (Eq (7)), is given by the

Browman motion of the polymer chains. The diffusion coefficient related to a dynamical

process described by a function H(q, t ), can always be defined formally by considering the

first cumulant approximation [16]

H(q, t )
=

H(q, 0 exp (- °r~ t) (21)

where °r~ is the inverse of the relaxation time. We can write

°r~
=

°Dq ~ (22)

which defines an apparent diffusion coefficient. This coefficient can be q dependent. In

polymer solutions, there are several diffusion processes, and to each of them a diffusion

coefficient is ascnbed A detailed presentation is found in references [16] and [19]. Here we

give a summary of the important diffusion types of transport in semi-dilute solutions

3.I DIFFUSION oF A MAss POINT. Self diffusion of a mass point is defined by the velocity
v(t) autocorrelation function

j w

D«ir
= j dt Iv (°) v (t)) (23)

lifts definition applies in particular to the center of mass of a polymer chain. For semi-dilute

solutions the expression for the center of mass self diffusion is [19]

~~~~
6 ~~ p R (c /c *)(2 v)/j3

v
-1)

~~~~

where
Y~~ is the solvent viscosity, R~ the hydrodynamic radius,

v
the swelling exponent and

C* the overlap concentration (C*
=

~

,

where 11~ is the radius of gyration at zero
23/2 j~j

concentration). This coefficient is determined by scattenng expenments in the range

qR~
<

I

The case of a mass point belonging to a
flexible polymer chain requires a more detailed

analysis. Here namely the mass point belongs to a fractal structure and this structure diffuses
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in Euclidean space. A geometrical transformation is required and this implies a formulation of

the diffusion constant in combination of elementary units which is different from the

conventional one. In the free draimng limit (« Rouse »
regime), one defines the coefficient

Ii 6j

where ( is
the

fnction of a monomer. In the case

is (« Zimm »
regime),

5~ = ~

These coefficients appear naturally in the incoherent cross section. They are also found in the

coherent cross section which we consider here.

3.2 RELAXATION oF THE POLYMER FORM FUNCTION.- Here we consider asymptotic
behaviours and first cumulant approximations.
In the range qg « I, excluded volume and hydrodynamic interactions are screened. We

expect, for sample (2) and qR~ »1

~ ~~~ ~ ~~' ° ~~P
~ (~r~ )~'~)

where

w

(27a)

~r~
=

l~q~.

In the first cumulant approximation (21), °r~
=

~r~.
In the range qg m I, the observed mass points behave as if they belonged to an isolated

chain in the dilute regime The hydrodynamic interaction is here fully developed. We expect
for sample (2)

h (q, t )
=

h (q, 0 exp 35 (~ r~ t )~'~ (27b)

where

~r~
=

d~q~

In the first cumulant approxJmation (21), °r~
=

~r~.
Equation (27b) also modehzes the dynamics of sample (I) for qg m I, and we wnte

CH(q, t )
=

Nh (q, t )

The other diffusion processes involve more than one chain and are therefore cooperative.

3 3 COOPERATIVE DIFFUSION soLuTE AGAINST SOLVENT The concentration diffusion of

the total monomer concentration is charactenzed by a diffusion coefficient [18, 19]

D~~~~ =

~"
= in units (cm ~/s) (28)

~ 3C 6 Wl/s iH j3

where ( is the fnction coefficient and w the osmotic pressure, (~ being the hydrodynamic
mesh size.
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With sample (I), and for qg~ « I, we expect to observe

H(q, t )
=

H(q, o ) exp (- rq t) (29)

with r~
=

D~~~ q~,

as for a Fickian » process.

3.4 INTERDIFFUSION. -This is the object of our complementary expenment (sample (2)).
The quantity given by (17) is actually the Founer transform of

(lc~(r
=

o, t
=

o) c~(r
=

o, t
=

o )j jc~(r, t c~(r, t)j) (30)

where C~(r, t) and CD(r, t) are the local concentration of monomers of species H and D

respectively at time t Interdiffusion is exactly descnbed by tills expression [20] In the limit

q -
0, it is characterized by a diffusion coefficient, which gives the flux associated with the

concentration gradient of a given solute fraction It will be of interest to observe what the

interdiffusion process means in the vicinity q =
I lg.

Since however we consider here that both polymer species are physically identical, it is easy

to see that interdiffusion amounts to self-diffusion

4. Results.

We first report the results of small angle scattenng experiments aimed at the determination qf

the static structure function of samples (I) and (2). These results are of interest by themselveK,
but they also give us an expenmental proof that sample (2) satisfies the zero average contrast

condition (14).
Subsequently, we give the time dependences of the dynamical structure functions observed

on samples (I) and (2), which is the main purpose of this paper.

4,I STATIC STRUCTURE FUNCTION.- Scattered intensities were measured at the spec-

trometer PACE of the Laboratoire Lbon Brillouin. In figure I, after substraction of the

background, intensities I(q, 0 ) (Eq. (I)) and Iz(q, 0 (Eq. (18)) are plotted against q. These

two curves correspond respectively to sample (I) and (2).
The form of Iz(q,0) matches a «Debye» function, with one unknown parameter,

11~, the radius of gyration. ~llfis function reads
~

(e~~- I +x),
x

=q~Rl.) We find
x~

11~
=

70 ± 3 h.

The form of the function I(q, 0 is Lorentzian, with one unknown parameter, the screening
length g. (The function reads (q~ + I ~~)~ ' ) The best fit gives g

=
10 ±1h.

The ratio I(q, 0 )/Iz(q, 0) satisfies a sum rule, which writes [2]

11(([Il,I(= Ill ~ii')11)~
(3')

where v, F~, rare charattenstic universal coefficients and where b, bz are given in table I.

The theoretical value of the above ratio is 0 092 In order to test equation (31) we have to

normalize I and Iz with respect to each other. This was achieved by superimposing the tails

(q
»

0.I h ' ). The value of the ratio (31) obtained in tills manner is 0.085 ± 0.02. Thus the

results displayed in figure I prove that sample (2) satisfies zero average contrast.
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iiq,o)

i

l~

ii i ii iii iii iii iii

q
$'1

Fig I.- Results of the small angle scattenng expenment Intensities Iz(q, 0) corresponding to

measurements obtained in two different q ranges (symbols o and +, (Iz)) and I(q, 0 ) (symbol ., (1~) are

plotted against q in arbitrary units The furl line is the Debye function which fits the data for the zero

mean contrast solution (sample 2) while the dashed line is the Lorentzlan form which fits the data of

sample I. The solution is semi-dilute both in cases I and 2. The quantities denved from these fits are

respectively the radius of gyration 11~ of one chain and the screening length fat the same concentration

p =
0 2 g crr~~

4.2 DYNAMIC STRUCTURE FUNCTIONS TIME DEPENDENCE OF THE CORRELATION FUNC-

TIoNs. The correlation functions tend to zero as t - co : the nature of the decay reveals the

dynamics of the polymer chains. Depending on the diffusion process, the decay may be

represented by a single exponential, a sum of exponentials or a stretched exponential
We represent the results I(q, t )/I(q, 0 ) as a function oft in different ways, in order to point

out the specific behavlours which are observed. Differences arise in relation to the nature of

the samples I) and 2), and the wave vector range (qf w I or m I).

Figures 2a, 2b display :

a) the relaxation function I(q,t)/I(q,0)
=

H(q,t )/H(q,0) associated with the total

monomer concentration diffusion in the range qf<I (sample (I), Eq.(I)). In these

conditions the relaxation corresponds to a Fickian diffusion process [19]. We therefore expect

this function to be exponential and in tills case, log I(q, t) is a linear function of t (see

Eq. (21))

b) the relaxation function observed on sample (2), at the same values of q is not of the

exponential type It is expected [19] to that the dynamics of the single chain in the solution is

described by a « Rouse »-like motion in an effective medium (see Eq. (27a)) Therefore, the

data are compared to a stretched exponential decay, with exponent 1/2.

Figure 2c displays the relaxation functions which are observed on samples (I) and (2), for

q =
0.074 h (in the range qf

»
I). The observation is now made at a scale within the mesh

size f. We expect to observe, in both samples, the diffusion of the polymer intemal modes.

here H~~(q, t ) does not contribute and as a consequence

1(q, t )/I(q, o )
=

h (q, t ) (32)

Equation (27b) predicts a stretched exponential decay of h(q, t) with an exponent 2/3 for
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q=0042 k~
ii

Ilq.t1 100%
1(q,01

f

t

i

50% PDMS (H ) t
50% PDMS(D )

o-1
q =

°.°7' A

' ~~

t (nsl
~' $

100 % PDMS (HJ
a) q

q=0 067~

iiq,ti loo% pDMs(HJ

iiq,oi

i I '

t

i

50 % PDMS (H )

50% PDMS (HJ 50 % PDMS (D )

50 % PDMS (D

ii

t~~~
li

i

i

t
,

,
i

16 it ' ' 16 it

t Ins t In sl

b) cl

Fig. 2 Observed time decay of correlations in polymer concentration fluctuations a) Observations

on sample (I) and (2) at a same value of q (0 042 1-'). (.) observed values of In I(q, t )/I(q, 0 ) plotted

against t, (-) exponential decay, (- -) stretched exponential decay with exponent 1/2. The model

curves which are superposed to the data tend to show that the exponential decay better fits the data on

concentration diffusion (sample (I)), and that the stretched exponential (exponent 1/2) better fits the

data on inter-diffusion (sample (2)) b) Observations on sample (I) and (2) at a same value of q

(0 067 h-I) Same remarks as in la) c) Observations on sample (I) and (2) at a same value of q

(0 0741-') (.) observed values of In I(q, t )/I(q, 0 plotted against t, (-) exponential decay, (---)
stretched exponential decay with exponent 2/3 There is a change in behaviour with respect to a) and b)

The model curves which are superposed to the data tend to show that the stretched exponential with

power 2/3 best fits the data associated both to sample (I) and (2)
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lq,t q =
0 083 I"

@
i So % PDMS

So % PDMS (D )

al

i i

i t 11 16

t(ns)

i i

'"K~, ~'~
b) '~

i

i i~ ii
~~~

i~

t la u1

~l~~[I(q,tljj~
'(q,°I

i

c -i

-t
i i t

In t

Fig 3.- Observed time decay of correlations in polymer concentration fluctuation Sample (2)

q =

0.083 1~ ' Here we try to determine the power law associated with the stretched exponential decay
of the correlations a) Plot of In I (q, t )/I(q, 0 ) against t (.) observed values

,

(-) exponential decay

b) Plot of In I(q, t )/I(q, 0 ) against t~'~. (.) observed values (-) stretched exponential decay with

power 2/3 c) Double loganthmic plot. The slope a is found to be 0.73 ± 0 05.

qg
»

I. We therefore represent In (I(q, t )/I(q, 0 )) as a function of t~'~ and, for comparison,

as a function of t (Fig. 3).
We find that it is thus possible to discern the specific time correlation decay functions,

which are associated with each type of polymer Brownian motion. In the next sections, we test

in more detml the quantitative predictions of the models.

4.3 DISPERSION CURVE OF THE RELAXATION TIMES The decrease of the correlation

function with time t is charactenzed by one or several relaxation times. The relaxation times

depend on the wave vector transfer q, and this dependence forms the dispersion relation. We

wish to show, on a single figure, the dispersion relations obtained from expenments on the

two samples. For this, we fit the data to the first cumulant approximation (Eq. (21)) which

appears to be the only unified description, by taking the slope at the origin.

In figure 4 we plot °r~/q~ agmnst q The quantity °r~/q~ has the dimension of a Fickian

diffusion coefficient. We note in figure 4 three charactenstic domains for the dispersion
relations.
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1) The domain, limited by qg«I, of the results obtained with sample (I). Here

°r~/q~ is a constant. It is associated with the concentration diffusion (Eq. (29)) and it is

identified with the cooperative diffusion coefficient, Q~~~.

2) The domain, limited by qg m I, for the results obtained with sample (I) and sample (2).
We notice that the experiments carried separately on the two samples, coincide. In this range,

° r~/q~ increases with q following equation (27b).

3) The new complementary result is found in data obtained with sample (2) (the zero

average contrast sample), for qf w I, >where equation (27a) is predicted. This is in agreement
with the fact that in figure 4 the upper part of the dispersion curve, qf

<
I, splits into two

branches as qf
=

1.

ii"
ql$~l

Fig 4 Disper~ion relation of the relaxation times observed on samples (I) and (2) Observed values

of °r~/q~ are plotted against q (x) sample (I) PDMS(H), (o) sample (2) PDMS~IJ) + PDMS(H)

A, B : guide to the eye, C : dispersion curve estimated from formula (27a). Branches A, B correspond

to I(q, 0 m figure I. Branches C, B correspond to Iz(q, 0 ) in figure1.

Thls splitting is also consistent with the prediction [14]

°~~'~~
"

h11 '
@

~ ~~~ ~'~~

where q2 is the volume fraction of-the chains (q2
=

0.2 ). The parameter X lab. I) accouni~ [or

the specific H-D interaction. The quantity q~
xN/2 is here of the order of 0.I (see Tab. I) and

we shall neglect the effect of this interaction. As a result

°r/~~
=

fi
=

i~~
(qR~)~, qR~

»
(34)

We now study the vicinity of f~ in greater detail.
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4.4 EVALUATION oF THE DIFFUSION BOEFFICIENTS. Here we abandon the first cumulant

approximation for more precise definition of diffusion coefficients, each one corresponding to

a specific case.

The relaxation associated with cooperative diffusion is correctly given by the exponential
decay function. Here the values °r~/q~ should be independent of q and this is not

incompatible with the data (Tab. II). Averaging the expenmental values we find :

D~~~~ =

°r~/q~
=

1.63 x 10- ~ cm~ s- (35)

For the relaxation process related to the intemal diffusive modes (qg
»

I ), we use the

interpolation formula (27b) and we find by averaging values of table II :

~~~~~~ ~
6

~i~
fl

~'~~ ~ ~~ ~~ ~~~
~ ~~~~

For the interdiffusion
or self-diffusion in the range qg « I, related with sample (2), we use

the formula (27a) and (25).

Table II. Experimental results

Inverse relaxation ttmes

q 3 3 4 2 6 7 7.5 8 3 [10-2 1-1]

°1~/q2 1.7 ± o 34 1.59 ± o.16 6 ± o 2

io-~ ~~ jo-~ ~~ ~-> io-~ ~~
zr~/q3

=
13 47 ± o 23 67 ± o.21

io->3 cm3 io->3 cm3 s-i

Rr~/q4
=

13 3.052 ± o 7 2 13 + o.28

io-~o ~4 io-~o ~4

~°°~~~~~~~~ ~~~~"°~' ~~°°P
6 w/~ pi

~~ ~ ~~ ~~~~~

Self and inter-diguqon : D~tz(p
~

0
=

2.I x 10~ ? crr~ s~ ' [40]

j(P
~

0)
=

5.2 x lo- ? cm~ s- ' 141]

D~tzip
=

0 2 g cm ~)
=

5.7 x 10 ~ cm~ s~ ' [29]

From the relation ~r~/q~
=

l~
=

RI ~D~jr and table II, we expect the value of ~D~jr, the

center of mass diffusion constant in the Rouse » regime :

~D~jr(p
=

0 2 g/crn~)
=

5 7 x 10~ ~ crn~ s~ '

5. Dhcussion.

Our main results are shown in figures 2, 3, 4 which account for the dynamics of the polymer
solution in the vicinity of g- ~. The new complementary information is given by branch C in

the dispersion relation and the corresponding time dependences of the correlation function

(Fig. 2a, b). We now examine the consistency of these results with theoretical prediction.
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5.I TIME INTERVAL ASSOCIATED WITH STRETCHED EXPONENTIAL BEHAVIOUR.- In the

theory [19] of polymer dynamics in dilute solutions, the decay of the correlation function

appears as a stretched exponential, in an interval

(r~)- i
« t ,R2jD~jr. (37)

In the « Rouse regime, i-e- for sample (2) and q =

6.7 x
10~~ h, this condition becomes

(pee tab. II)

Rrj i(= lo- 8 s) « t «
lo- 3

s (38)

In the « Zimm regime », i,e for samples (I) and (2), and q =
7.5 x

10-~ h~
~, this condition

becomes

~rj~(=10~~ S) St
«10~~

S

The fact that stretched exponentials are observed in the time intervals of figures I and 2, is

therefore not in contradiction with theory. However we notice that the fits are good on larger

ranges than predicted by (37) and (38).

5.2 The dispersion relation in figure 4 displays a cross-over between charactenstic behaviours

in semi-dilute and dilute regimes (branches A and B in Fig. 4). The cross-over takes place at

an inverse distance, I /f~, which is smaller than the result iii defined from the static structure

function. Also, the cross-over is much sharper than predicted by the calculations based on the

mode decoupling theory [19].
This astonishing fact, already observed in several expenments, has not received iny

explanation.

5.3 The last part of the discussion concerns the values of the diffusion coefficients derived

from expenmental data.

If we admit that the viscosity of the solvent does not effectively change as concentration

increases, then the correlation length f can be denved from the cooperative diffusion

D~oop (Eq. (28))

~~°°P
6

Y~~
flg~

~~ ~ ~~ ~ ~~~
~ ~~~~

and this gives g~
=

22 A. This result is different from observations of the static correlations

length, which is g
=

10 h. Introducing this value into (39) gives

D~~~~ =
3.6 x

10~~ crn~ s~ '

Another discrepancy is found in the values of the inverse ofthe intemal mode diffusion. We

have denved from the data

5~
=

~r~/q~
=

1.5 x 10~ ~~ cm~ s~ (40)

whereas the calculation gives

j~
=

Zr~/q~
= =

3.6 x 10~ ~~ crn~ s~' (41)
6 «~~ p

We note that this discrepancy and the preceding one are s1mllar The introduction of the

hydrodynamic length g~ and R~ should thus correspond to the introduction of an effective

viscosity Y~[
which replaces

Y~~ in equation (41)
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Finally we discuss values of the self-diffusion coefficient extrapolated from data. In the

range qg w I, and in semi-dilute solution, the dynamical structure function of the single chain

has a charactenstic behaviour, different from the one observed in isolated chains. Our data

are consistent with the prediction that the hydrodynamic interaction is screened [15, 19], and

that the chain moves in an effective medium [19] it obeys a « Rouse equation in the time

interval (37). ~This is at variance [21] with earlier results [12].)
Now, for times longer than considered in (37), entanglements are predicted to charactenze

the diffusive motion. This effect can be evaluated, by companng the self-diffusion in the

effective medium to the self-diffusion of the chain in pure solvent. For this we determine

D~jr(p
-

0)
~

j~
Using for ~r~/q~ either equation (40) or (41), we obtain the two

q j~G

values, given in table II, from the data of branch B in the dispersion curve. Using also the

value of D~jr(p
=

0.2 g/cm~) the data of branch C, we expect (Eq (24)) the ratio

Dscir(P
-

0 ) ~ ~j4

Dscif(P
=

0.2 g/cm~) C *
~

~'~

This number is not far from the two expenmental values obtained from table II.

In conclusion, the observations made on the two semi-dilute solutions at same polymer

concentration but at different isotopic fractions, show distinct transport behaviours on each

side of the inverse of the «
dynamic » mesh size q =

gp~.
Inter-diffusion exists as such not only in the natural range qR~

=
I, but also in the entire

interval qf « I. In this expenment inter-diffusion coincides with the self-diffusion. The

situation will be different in a bidisperse system, made of longer and shorter chains

Finally, it is of interest to compare the effects of repulsive and attractive interactions on the

dispersion curve of the inter-diffusive mode. In the repulsive case, which we have discussed

here, the inter-diffusive branch is below the cooperative branch. On the contrary, in the

attractive case of copolymer, which are attached together and represent a kind of attraction

(Ref [[[J), the inter-diffusive branch is above the « cooperative » branch.
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Note added in proof. A companson with former data can first be made dJrectly of the

lower plots of figures 2a and 2b with figure 9 of reference [12], correspondJng also to

measurements of H~(q, t ) with a solvent of similar viscosity. For concentrations ca 20 9b, the

decays are s1mllar Parameter l~
=

~r~/q~ (Eq. (27a)) can be compared within a factor 36, to

parameter of W«~ (Eq. (2) of Ref. [12]). W is an elementary frequency and « an elementary

time, but conceptually the relevant quantity in the Rouse model is the product W«~. It is

found equal to 3 x 10~~ A~
s~

=
30 x 10~ ~° cm~ s~ in pure melt, 100 x 10~ ~° cm~ s~ ' for

509b polymer, and 650 x10~~°cm~s~~ for 20 9b using the c~~ law found by the authors

between 1009b and 509b Dividing by 36 gives a value 6times larger to our

l~=3xI0~~°cm~s~~ Values in the Zimm regime [12] of w~/q~=150~LeVA~
=

2 3 x 10~ ~~ crn~ s~ ' corresponds to 1.5 x 10~ ~~ cm~ s~ given here for l~
=

~r~/q~
(w~

~

°r~
=

~r~). Values of D~~~~ can be found in reference [23] : 4 x 10~ ~ cm~ s~ for 20 9b,

to be compared with our value 2 x 10~ ~ crn~ s~ ~, slightly lower. The crossover value between

the regime A and B, g~ ~, is the same one.
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