
HAL Id: jpa-00247520
https://hal.science/jpa-00247520

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Drift instabilities of cellular patterns
S. Fauve, S. Douady, O. Thual

To cite this version:
S. Fauve, S. Douady, O. Thual. Drift instabilities of cellular patterns. Journal de Physique II, 1991,
1 (3), pp.311-322. �10.1051/jp2:1991170�. �jpa-00247520�

https://hal.science/jpa-00247520
https://hal.archives-ouvertes.fr


J Phys II1 (1991) 311-322 MARS 1991, PAGE 311

Classification

Physics Abstracts

47 20 03 40G

Drift instabilities of cellular patterns

S Fauve, S Douady and O Thual (*)

Ecole Normale Supbneuie de Lyon, 46 allbe d'Itahe, 69364 Lyon, France

(Received 24 April1990, accepted m
final form 23 November 1990)

Rksulnk. Nous dbcnvons des mbcamsmes blbmehtaires qui mduisent une
dbnie I vliesse

constante d'une structure cellulaire Nous considbrons soit une structure spatiale statique, soit

une onde stationnaire. Dans Ids deux cas nous montrons comment «
l'instabilitb de dbnve

» est

like I la bnsure de l'invanance par rbflexion d'espace Lorsque le mode le plus instable a un

nombre d'onde fim, «
l'mstabihtb de dbrive peut ltre prbcbdbe par une instabihtb oscillatoire

qui engendre une
nlodulation spatiotemporelle de la longueur d'onde de la structure mitiale

Nous interprdtons divers rbsultats expdrimentaux rdcents dans le cadre du moddle que nous

proposons

Abstract. We report basic michamsms that generate a secondary dnft instability of a stationary

cellular pattern or a standing wave pattern In both cases, we~how how the drift bifurcation » is

associated with a space-reflection symmetry-breaking When the most unstable mode comes in at

finite wavenumber instead of zero wavenumber, the dnft instability can be pre-empted by an

oscillatory instability of the basic pattem wavenumber We interpret different recent expenmental
observations within this framework

1. Introduction.

Drift instabilities of cellular patterns have been widely observed m various experimental
situations Convection m binary fluid mixtures [I], or Couette flow between two horizontal

coaxial cylinders with a partially filled gap [2], display transitions from stationary to traveling
rolls. As clearly noticed m reference [2], the traveling rolls are tilted and the direction of the

propagation is determined by this asymmetry. The traveling-roll state is either homogeneous

m space, or there exist domains of inclined rolls with opposite tilt and thus opposite
propagation direction. Similar results_have bden found recently m a film draining experiment

13j.
Drift instabilities have been also observed m directional crystal growth experiments. Above

the onset of the Mulhns-Sekerka instability of liquid crystals, solitary modes propagating
along the interface have been observed [4]. These solitary modes » consist of domains of

stretched asymmetric cells that connect two regions with symmetnc cells. Similarly, domains

of tilted lamelae moving transversally along the growth front, have been observed during
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directional solidification of eutectics [5], and the relationship of the tilt direction to the one of

propagation has been also emphasized.
Finally, a drift instability was observed recently for a standing surface wave excited

parametrically in a horizontal layer of fluid contained m a thin annulus, submitted to vertical

vibrations [6]. It was observed that, as the dnving amplitude is increased, the standing wave

pattem either begins to move at a constant speed m one direction, or undergoes an oscillatory
instability that corresponds to a compression mode of the periodic structure (I,e. a

wavenumber modulation m space and time).
On the theoretical side, it is interesting to note that a secondary bifurcation that transforms

a stationary structure into a traveling one has been predicted by Malomed and Tnbelsky
before the expenmental results quoted above [7]. They used a Galerkin approximation for

model equations of the Kuramoto-Sivashinsky type, and pointed out that the dnft instability
arises in that case from the coupling betwedn the spatial phase of the basic structure with the

second harmonic generation. Recently this bifurcation was understood in a more general way

from symmetry considerations [8]. Finally, a dnft instability has been observed by numerical

integration of the Kuramoto-Sivashinsky equation [9].
This paper is organized as follows We first study a simple model of a dnft instability of

stationary pattems, that shows the basic structure of this bifurcation. We then propose a

model inspired by the mechanism described by Malomed and Tnbelsky (see Sect. 3). In

section 4 we show that a drift instability of a standing wave can be understood as a secondary
bifurcation descnbed by the evolution equations for the amplitudes of the right and left

propagating waves. In section 5, we consider the stability of a homogeneous dnftmg pattern

to space dependent perturbations. Finally we show that when the dnft bifurcation occurs at

finite wavenumber, we get an oscillatory instability of the basic pattern wavenumber,

observed m convection expenments [10] and for parametncally excited surface waves [6]. In

all cases, we show that the basic mechanism consists of the coupling between the spatial phase
# of the primary pattern, with the order parameter V associated with the space-reflection
broken-symmetry, #~ oc V, and we identify the physical significance of V for the various

examples considered. The notation must be considered independently in each section, except
for sections 5 and 6

2. A naive model.

We first consider a stationary pattern-forming bifurcation and thus write the field

u(x, t) that describes the physical system,

u(x,t)
=

iA(t)e'~~+cc.iu~+h.o.t (1)

where A (t) is the slowly varying amplitude of the most-unstable wavenumber k that gives rise

to the stationary penodlc pattem. u(x, t) stands for the velocity and temperature fields in a

convection expenment or for the interface position in the reference frame moving at the front

velocity in a crystal growth expenment. A(t) obeys to leading order a Landau equation,

A~=~IA- (A(~A (2)

where ~1is the distance from critlcahty we have considered a supercntical bifurcation and

simplified equation (2) by appropriate scaling of amplitude.
A periodic pattern, dnftlng at velocity V along the x-axis, is descnbed by a similar equation

in the reference frame moving at velocity V. We go back to the laboratory reference frame via
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the transformation x - x Vt, or equivalently for A, A
-

A exp (i Vkt). Thus, equation (2)
becomes,

A~=~IA- (A(~A-ikAV. (3)

We must at this stage give an evolution equation for V. We consider the model,

V~ =
V(- v + (A (~) V~. (4)

The following considerations have been taken into account. The space reflection symmetry,

x - x, implies the invariance V
~

V. V is linearly damped (v ~0) in order to get a

stationary primary bifurcation. The term V ( v A ~) is the leading order expansion of the

resonant term Vf(A, A ), compatible with the x-translation invariance which implies the

invanance under A
-

A exp I# This model is too simple because a coupling of the form

V(A(~ does not exist in general (it is for instance forbidden if the system is Gahlean

invariant), but it allows one to understand simply the structure of the bifurcation from the

stationary pattern to the dnfting one that occurs when ~1 = v.

For ~1 ~
0 equations (3), (4) have stationary solutions, A

=
Ao, V

=
0, with Al

= ~1, that

represent periodic patterns of wavenumber $ We write

A
=

iAo + r(tji exp i i# (tji
,

V
=

V (tj

and get from (3), (4), r~ =
2 ~lr + h o. t

,

thus r(t) is damped and

#~
=

kV (5a)

V~= (~1- v) V-V~+h.o.t (5b)

The basic pattern bifurcates first for ~1= v, and begins to dnft with a velocity

±
fi The structure of the «drift bifurcation is as follows. its order parameter V

undergoes a x ~ x symmetry-breaking pitchfork bifurcation, and the coupling with the

neutral mode # due to translational invariance in space, generates the dnft

This bifurcation structure was found m reference [7] where V corresponds to the basic

pattern second harmonic amplitude. More generally it was recently pointed out on symmetry
considerations, translational invariance m space (#

-
# + constant) and space reflection

symmetry (x~ -x, #
--

#, V~ V), that when a stationary pattern undergoes a

secondary pitchfork bifurcation that breaks the reflection symmetry, the coupling of the

pattem spatial phase is genencally of the form given by equations (5), and generates a drift

instability [8]. Thus, on symmetry considerations, equations (5) can be considered as the

leading order amplitude equations that describe the dnft bifurcation ».

We should emphasize that V does not need to be a velocity field m order to generate the

drift, which occurs because of the form of the coupling with the spatial phase given by

equation (5a). V is the order parameter of the «dnft bifurcation», associated with the

x--x broken symmetry. The only constraint on V is thus the symmetry constraint,

(x
- x, ~

-
#, V

-
Vi. Different types of symmetry breaking bifurcation can be of

course considered for V. In particular, interesting pattern dynamics can occur if V bifurcates

at a finite wavenumber instead of zero wavenumber (see Sect. 6) In realistic problems, one

needs to find the nature of the order parameter V of the «
drift bifurcation ». A general model

is given in the next section for the transition from stationary to propagating patterns In

section 4, this problem is solved for parametncally excited standing waves undergoing a dnft

instability.
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3. A drift instability of stationary pattems.

In their Galerkm approximation of a model equation, Malomed and Tnbelsky found that the

dnft instability occurs when the second harmonic of the basic pattern is not linearly damped
strongly enough. We thus consider a situation where two modes k and 2 k interact resonantly,

u (x, t)
=

[A (x, t) e'~~
+ c,c, u~ + [B(x, t) e~'~~

+ c-c u2k + (6)

From symmetry argument (translational invariance m space), the evolution equations for A

and B read, to 1hlrd order,

A~=~IA-18-a(A(~A-p(B(~A (7a)

~B~=vB+sA~-y(A(~B-3(B(~B (7b)

The quadratic coupling terms describe the resonant interaction between the modes k and

2k Their coefficients can be taken equal to e =

±I by appropriate scaling of the

imphtudes the coefficient of1B
can be taken equal to I, making the transformation

u ~ u, if necessary Positive values of a, p, y and 3 ensure global stability. The bifurcation

diagram Of equations (7) have been studied by several authors in the context of resonant wave

interaction [I1, 12, 13] or as a model of spatial penod doubling bifurcation [14] We thus refer

to these papers for the mathematical aspects and discuss equations(7) m the restricted

context of the « dnft bifurcation ».

Writing

A=Re'*, B=Se'~, 3=2~-9,

we get from (7)

R~
=

(~1 aR ~ pS~) R RS cos 3 (8a)

S~ =

(v yR~ 35~) S +
sR~cos 3 (8b)

~t
- '12 S

~

l
Sin ~ (8C)

#
=

s sin 3 (8d)

In the context of our study we must take
v <

0 (the second harmonic is linearly damped) and

increase the bifurcation parameter ~1 When ~1becomes positive, the null state bifurcates to an

orbit of stable stationary patterns related to each other by space translation.

R=Ro#0, S=So#o, 3=30=o, and#arbitrary.

A cellular pattern dnfting with a constant velocity, corresponds to

R~=0, S~=o, 3~=o, ~~=constant#0.

This implies 2 S sR~/S
=

o, and thus
s =

I. So the coefficients of the quadratic terms must

have opposite signs in order to observe the dnft instability Note that this means that the

second harrnonic does not enhance the stationary instability near onset; indeed, for

~1 m
o and v <

o, B follows adiabatically A (B oc A ~), and the quadratic term of equation (7a)

contributes to saturate the pnmary instability. The stationary pattern is destabilized when

2 So Rj/6~ vanishes as ~1is increased. This happens if the condition I + v
(2 y + 3 )

m
0 is

satisfied, which corresponds to the condition that the second harmonic is not strongly damped
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( iv not too large). The system of equations (8a), (8b), (8c) then undergoes a supercntical
pitchfork bifurcation. The two bifurcated stationary states "are such that R(=25(,
3= ± 3r# 0 Above the instability onset, ~ increases linearly in time according to

equation (8d) As noted earlier, this state represents traveling waves.

The bifurcation from the stationary pattern to the traveling one has all the charactenstics of

the « dnft bifurcation described in section 2. Its order parameter, 3
=

2 ~ 9, undergoes

a pitchfork bifurcation that breaks the basic pattern reflection symmetry The coupling with

the basic pattern spatial phase ~ induces the dnft motion according to equation (8d), and the

direction of propagation is determined by the sign of 3. Thus the mechanism descnbed by
Malomed and Tnbelsky [7] for their model equations appears to be a general one Although

the drift bifurcations observed in the experiments of reference [1, 2] near codirnension-two

bifurcations are not described by this mechanism, we expect that our k- 2k interaction

mechanism is relevant for the expenments of references [3, 4, 17]

4. The drift instability qf a parametrically excited standing wave.

We have observed recently a drift instability of a standing surface wave, generated by
parametric excitation in a horizontal layer of fluid contained in a thin annulus, submitted to

vertical vibrations [6]. It was observed that, as the dn~lng amplitude is increased, the standing

wave pattem either begins to move at a constant speed in one direction, or undergoes an

oscillatory instability that corresponds to a wavenumber modulation in space and time. We

first describe the dnft bifurcation and discuss the oscillatory instability in section 6

Close to the onset of instability, we wnte the surface deformation in the form

f(x,t) =Aexpi (wt-kx)+Bexpi (wt+kx)+cc +h.o.t, (9)

where A and B are the slowly varying amplitudes of the nght and left waves at frequency

w =
w~/2, where w~ is the extemal dnving frequency. The equations for A and B are at

leading order [6],

A~+cA~= (-A +iv)A+~lfi+aA~~+ (p(A(~+y(B(~)A (10a)

B~-cB~= (-A +iv)B+~11+aB~~+ (p(B(2+y(A(2)B, (10b)

where is the dissipation (A
~

0),
v

corresponds to the detuning between the surface wave

frequency wo and w~/2, ~1is proportional to the external forcing amplitude The imaginary
parts of fl and y describe the nonlinear frequency variation of the wave as a function of the

amplitude, whereas the real parts correspond to nonlinear dissipation. The real part of c,

c~, is the group velocity Note that the imaginary part c, is non-zero here, contrary to the case

of waves generated by a Hopf bifurcation in an infinite system, and describes as

a~ does, wavenumber dependent dissipation. a, corresponds to dispersion
When ~lm 0, a standing wave regime is observed To analyze its stability we write,

A
=

exp (S + R) exp 1
( & + 4~ ) and B

= exp (S R) exp 1 ( & 4~ )
,

and get from equations (10) for spatially homogeneous waves

S~ =
+ cosh 2 R [~1 cos 2 & + (p~ + y~) exp 2 S] (I la)

8~
= v + cosh 2 R ~1 sin 2 & + (p, + y, ) exp 2 S] (I16)

R~
=

sinh 2 R [- ~1 cos 2 & + (p~ y~) exp 2 S] (I lc)

4~~ =
sinh 2 R[~1 sin 2 & + (p, y,) exp 2 S] (lid)
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& and 4i are respectively the temporal and spatial phases of, the pattem Note that the

equation for 4~ decouples, because of the translation invariance of the system in space. The

standing-wave solutions correspond to (So, &o, R
=

0). Their stability with respect to spatially
homogeneous perturbations is simple to investigate from equations (11) We assume

p~ + yr10 and the detuning small enough (
v <

p~/p, ). Then, perturbations in S and

& are damped Perturbatlons in R and 4~ obey the equations,

4~~=2[v+2p,exp2So]R+h.o.t (12a)

R~=2[-A +2prexp2So]R+h.o.t. (12b)

When the standing wave pattern amplitude exp 6~ is small, R is damped and the standing wave

pattern is stable As the dnving amplitude is increased, 5~ increases and R becomes unstable

for exp2 So
=

A/2pr, provided that pr~0 A non zero value of R breaks the x~

x symmetry (see Eq (9) and the expressions of A and B versus S, R, &, al. Thus R is the

order parameter of the « dnft bifurcation » for this standing wave problem. The coupling with

the spatial phase 4~ generates the dnft (Eq (12a)). The structure of the « drift bifurcation is

again similar to that descnbed in section 2 (Eqs. (5)). However, higher order terms in

equations (12) show that the dnft bifurcation is subcntical in this case. One can easily
check this by noting that the dnfting solution of equations(11), S~=R~= &~=0,
4l~, 0, exists for exp 2 So

<
A/2 pr, i-e- only before the onset of the dnft bifurcation But

additional terms of the form (A (~ A, (B(~ B, can stabilize the dnfting solution, and even

make the dnft bifurcation supercntical

5. Instability of tbe homogeneous drifting pattern.

The experiments of references [3, 4] usually do not display stable homogeneous dnfting
patterns, but often localized dnfting regions. This was described by assuming that the panty
breaking bifurcation is subcntical [8]. We show here that even if the bifurcation is

supercritical, the homogeneous dnfting solution is generally unstable in the long wavelength
limit. To wit, we generalize equations (5) to take into account space-dependent pertur-
bations :

4t
"

V (13a)

Vt=AV- V~+a#xx+bvxx-C4xxxx-dvxxxx+fV#x+gvvx+h#x#xx+h.o.t.
(13b)

Equations (13) are a gradient expansion, the form of which is given by symmetry arguments,
translational invanance in space (#~ #+ constant), and space reflection symmetry

(x
- x, #

~
#, V

-
V). Higher-order terms in equation (13a) can always be removed

via a nonlinear transformation [15]. (The coefficient k of Eq (5a) has been scaled in Vl. If

the coefficients, a, b, c, d, are positive, the V
=

0 solution first bifurcates when vanishes and

becomes positive The homogeneous drifting pattern, Vo
=

±
$ #o

=

Vot, bifurcates

supercntically, its stability to inhomogeneous disturbances of the form exp(~t + iqx), is

governed by the dispersion relation,

~~+ (2 > iqgvo +
bq2j

~ iqfvo +
aq2

=

o(q2j, (14j

that shows that the term f VW
~

can destabilize the homogeneous pattern independently of the

sign off thus leading to spatially inhomogeneous patterns without assuming a subcntlcal

bifurcation for V
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The observation of such a pattern in the vicinity of a drift bifurcation was recently reported
[19] in the expenment described in reference [3], where an oil film is drained between two

cylinders. When one cylinder is at rest, say the outer, a stationary cellular pattern of the oil

meniscus is created above a cntical rotation velocity of the inner cylinder A slight counter-

rotating motion of the outer cylinder then generates a dnft of this pattern, that consists of

many dnfting domains moving erratidy The homogeneous dnft is stabilized only for larger
counter-rotation velocities [19]. Another expenmental observation that can be understood

with equations (13) is the stationary pattem wavenumber selection with increasing rotation

velocity of the inner cylinder, when the outer cylinder is at rest. It is observed that an abrupt
increase of the inner cylinder velocity leads to a pattern wavenumber modification by
nucleation of a transient dnfting domain. As noted in reference [8] this dnfting domain

generates a phase gradient, say q, that leads to a new penodic pattern of wavenumber

k+ q. Indeed, V
=

0, #
= qx, is, a particular solution of equations (13), for which the

damping rate of perturbations in V is A + fq. Consequently the dnft of this new pattern is

inhibited if fq
<

0, for q ~
Al f. The new penodic pattern thus remains stationary because

of wavenumber modification (see Fig I). Within the framework of the model of section 3,
this stabilization mechanism is associated to the increase of the second harmonic damping rate

when the pattern wavenumber is increased (Fig. I).

R

,,
k k+q ,'

,
o ,« x x

' 2k 2(k+q)

k

Fig. I Sketch of the wavenumber selection mechanism when the control parameter R is abruptely
increased above the marginal stability curve (solid line), the pattem of wavenumber k (o) becomes

unstable to the drift bifurcation because its second harmonic is not suffciently damped. However, the

homogeneous dnfting solution is unstable and the propagation of drifting inclusions increases the

wavenumber to k + q (.), thus stabilizating a new static pattern because the damping rate of the second

harmonic increases. The dashed curve represents the selected wavenumber of the static'cellular pattern
(Note that in the model equations (7), the linear growthrates Jz and

v
of the modes k and 2 k are not

independent)

6. Oscfllatory phase modulation of periodic patterns.

As said above, an oscillatory phase modulation of penodic pattems has been recently
observed as a secondary instability of convection rolls [10] or surface waves [6] After this

instability onset, the position of the rolls (or of the wavecrests respectively) is modulated in

space and time by a standing wave In the surface wave expenment [6], this oscillatory
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instability was observed close to the dnft bifurcation in the expenmental parameter space.

The numencal integration of equations (10) has shown that this oscillatory instab1llty
corresponds to a standing wave modulation of the basic pattern spatial and temporal phases,

in agreement with the expenmental observations [6] (see Fig. 2).
We show that the coupling that generates the «drift bifurcation» is also a possible

mechanism to describe phase modulation of penodic patterns, if the order parameter V is

destabilized at a finite wavenumber. We consider equations (13), that govem the space

dependent perturbations of the basic -periodic pattem, with A
m

Ao, Ao ~0. Thus, the

standing pattern is stable with respect to homogeneous perturbations. The growth rate of a

perturbatioi of the form exp(~t + iqx), is govemed by the dispersion relation,

~~+ ~(-A +bq~+dq~)+aq~+Cq~=O(q~). ('5)

,Stability at short wavelength implies d
~

0. For a ~
0 and b

<
0 an oscillatory instability

occurs first for A
o =

b~/4 d, with a finite wavenumber qo =

(A o/d~~'~, and a frequency at onset

iio
=

(aqj+ cq)~'~, provided that a +
cqj~0. lifhen Ao is small, i-e- close to the «dnft

(a) (b)

(C)

tl(d)

aJ

o x lo o x lo

Fig 2 Numerical observation of the oscillatory mode The control parameters used in the numerical

simulation of the amplitude equations (10) are A
=

2.5,
v =

3, Jz =

4, a, I, a, =

I, p~
=

0.I, p,
=

I, y, =

0 2, y, =
0.I, c, =

3 5, c, =
2 5, L

=

10. Temporal evolution of the moduh

profiles (A(x, t) and (B(x, t) [respectively a) and b)], of the spatial phase ~P(x, t)
=

(argA
2

arg B) [c)] and of the temporal phase 8(x, t)
=

(arg A + arg B) [d)] Twenty one successive profiles
2

ale displayed on the same figure with an arbitrary upward shift, for a time interval t e [0, Ii
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,,'
,,'

," (rTlT~
,

,
,

,,
0

h

Re~

Fig. 3 -Perturbation growthrate as a function of the wavenurnber of the oscillatory instability
(a~0, b<0)

bifurcation», qo is small and thus we expect the gradient expansion to be justified. The

corresponding growthrate is displayed on figure 3 it shows that the oscillatory instability
results from the interaction of the neutral mode, because of the translation invanance in

space, with the slightly damped, reflection symmetry-breaking mode associated with the

drift bifurcation before its onset value. An instability leading to a stationary modulation of

the basic pattem wavelength can occur for
a <

0 and b
~

0. A convective pattern with rolls of

irregular length has been observed expenmentally, but the relevance of this mechanism in

that case remains to be checked [18].
In the vicinity of the oscillatory instability onset, we write

#(x,t) =A(t)expt(wet-qox)+B(t)expt(wet+qox)+cc +C(t)+h.o.t. (16)

The fields A (t) and B(t) describe the slowly varying complex amplitudes of the waves that

propagate to the right and to the left, whereas the real field C(t) takes into account the

existence of marginal modes for q -
0.

Taking only into account the leading order non-lineanty, f VW
~

we obtain with standard

asymptotic methods (see Appendix),

(Ao- iii)
~ ~A

" ~
~ + (tY IA + P (B( )A ('7al

fi=
~~° ~~~~B+ (p(A(~+a(B(~)B (17b)

©
=

~~"°~°
((A (~- (B(~), (17c)

Ao

with

~

~)~ ~
~

9

~c/dwo
'

~
~)~

~~~~

Thus, the leading order nonhneanty does not saturate the oscillatory instab1llty. In the long
wavelength limit, the effect of other nonlinear terms is of higher order, and the instab1llty is

JOURNAL DE PHYSIQUE II -T I, M 3, MARS <WI is
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subcntical If we discard terms which depend exphcitely on V, the leading order term is

h#~ 4~~ We obtain C
=

0 and s1rnllar equations for A and B with,

~ dh ~ ~~
~~~~~

~

~~~
~ ~ Id) ~

~
~ ~~

~

The bifurcation is supercritical and standing waves ((A(
=

(B( ) are the stable post-

bifurcation state, whatever the sign of h Thls corresponds to the experimental observations

[6, 10]. However, we have no general argument to discard the terms V4~ VV~ and

V~
in equation (13b).

We have thus shown in this paper that a vanety of recent expenmental observations of

periodic pattern secondary instabilities, can be understood in a simple framework: the

coupling of the neutral mode associated with translational invanance in space, with a

reflection symmetry-breaking bifurcation. Note that a similar singularity, with two, zero

eigenvalues at a secondary instab1llty onset, occurs for the oscillatory instability of convection

rolls and leads to traveling waves that propagate along their axis, although the underlying

physical reasons are different [15]. Let us finally mention that the secondary instabilities

described here obviously fit in the general classification, proposed recently on the basis of

symmetry arguments [16], but the present approach gives simple physical mechanisms that do

generate these secondary instabilities.
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Appendix : Dedvation of the amplitude equation (17) from equations (13).

Taking into account only the nonlinear term f#~ #~ equations (13) read

£# =f#t#x,

where

£#
=

#
tt

A #
t

a#
xx

b#
xxt

+ C#
xxxx

+ d#
xxxxt

The dispersion relation is

£(~,tq)
=

o,

W~~~~

r(~, iq)
=

~2+ ~(> +bq~+d~~) +~~~+~~~

for a ~
0, b

<
0 and d

~
0, an oscillatory instability occurs when A

=
A

o =
b ~/4 d, with a

finite wavenumber qo =

(Ao/d)"~ and a frequency at onset wo =

(aq(
+ cq)~'~ provided that

a +
cqj

~
0.

Close to the instability onset, following standart asymptotic methods [21], we expand

=
-Ao+ s~A~+...

~
=

~~(i) ~~2 ~(2) ~___

and introduce the slow time scales Ti
=

Et, T~
=

s~ t,..
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To leading order we have £o 4 ~'~
=

0 (to
=

£(A
=

A o)), that implies

~ ~'~(x, t, Tj, T~,.
=

I(Tj, T~, ) exp t (wo t qo x) +

+
1i(Ti, T2, ) eXP1 ("0 t + ~0 X) + d(Tj, T2, + C-C-

We get at the next order

£ ~ ~~~ f ~ ~~~ ~ ~~~ ~

~~
° ~ aTj

The solvability condition gives the evolution equation for d

ad 2 fwoqo
~ ~

i = >~
(lA (B( )

Then,

~ ~~~
=

~"° ~° [l~
exp 2 I (wo t qo x) +

ji~
exp 2 I (wo t + qo xii + c-c-£o(21wo, 2 iqo)

We get at the next order

£ # (3)
~

~j ~ (i) ~ (2)
~ ~ (2) ~ (i)j

The solvability conditions gives

~~ =~~l+ (a(1(~+p(fi(~)l
3T2 2

~~
=

~~h+ (p(1(~+a(fi(~)h (17b)
3T2 2

with
a

and p given by equation (18). After rescahng to onginal vanables, A
=

El,

B
=

Ed and C
=

Ed,
we get the amplitude equation (17). The same method can be used

when considenng the other nonlinear terms of (13).
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