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Abstract. We consider a composite medium which consists m resistance elements with a distribu-

tion of conductance, m a narrow range around a mean value. The question we address is the distribu-

tion of local power dissipation, and its correlation with the local conductance. Various discretizations

of the problem are considered: regular networks of different types in two and three dimensions whose

bonds are assigned conductances at random, finite element method with random distribution of con-

ductances in each element. We also consider the case of elastic elements, and study the distribution

of elastic energy stored in each element. It is shown that the correlation between the dissipated (or
elastic) energy and the conductance (or elastic modulus) depends on the discretization. These corre-

lations are analysed in an effective medium theory framework, and numerical simulations confirm the

theoretical predictions. The distribution of local energy always tends towards a Gaussian distribution

for all cases considered, in the limit of a small disorder.

1. Introduction.

Heterogeneous materials occur extremely frequently in nature. However, the influence of the

heterogeneity on v§rious physical properties can vary a lot. In particular, a weak disorder (narrow
dbtribution of local properties) will have a very limited impact on the overall transport properties

of the system. However, when considering brittle fracture or damage, even a vanishing dborder

may controll the macroscopic fracture properties, and thus it is extremely important to know more

about the local state of stress of an heterogeneous elastic brittle solid in order to understand the

initiation and development of damage and fracture. The purpose of this paper is to analyse the

distribution of local stress, and to study the correlations between stress and local elastic properties.
We will mainly focus on a comparable case, e.g. electrical properties, since all results can be

straightforwardly extended to elastidty at the cost of more cumbersome calculations.
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The reported results are relevant for a numerical approach to brittle fracture of monolithic ce-

ramics [I]. Indeed in such cases, inithl defects control the failure, and thus it suffices to compute
the stress dbtrwution using linear elasticity to be able to predict the breaking of the first element

in the material, which corresponds to the failure of the whole material (weakest link hypothesis).
In addition, some statbtical information is available for the defect distrwution~ and thus our ap-
proach allows to extend a previous approach [I] coupling the defect distribution to the fracture

properties without having to resort to numerical computations.

2. Effective medium approximation for electrical networks.

Let us consider a regular network whose bonds I are assigned a conductance g, randomly picked
from a distribution p(g). The question we address in this paper is the distribution of local power
dissipation

e =

j2/g (where j is the current flowing through a bond), and the eventual correla-

tions between e and g. In particular, we win be interested in the limit where the distribution of

conductance is narrow, I-e- a small disorder case.

In the case of a small disorder, the Effective Medium Approximation (hereafter referred to as

EMA) is known to give an extremely accurate determination of the conductivity. We will show

that it also allows to predict the correlation between e and g locally. We will follow closely the

derivation of the EMA result given by Kirkpatrick [2] for random resistor networks. Tile EMA is

obviously applicable to much more complex cases, and in particular for elasticity, we refer to [3]
for a more general presentation.

The spirit of the EMA method is to focus on one particular elemen~ and consider tllat the rest

of the medium can be well approjima ted by a homogeneous medium, I-e- in this case, a regular
network composed of identical resistors. We follow this approximation, and consider an infinite

homogeneous network, whose bonds are all assigned the same conductance, g, apart from one

bond, AB, whose conductance is called h, see figure I. A preliminary question we need to answer

first is to know what is the current flowing through the bond AB, when a uniform mean current is

imposed at infinity, in such a way that the current flowing in bond AB would be jo if h
= g.

A

B

Fig. I. Schematic decomposition of the network into two parts: one homogeneous lattice where all bonds

have the same conductance g and one additional conductance h g placed m parallel with the bond AB. This

construction is equivalent to the case of one bond AB having a conductance h embedded m a homogeneous
lattice.
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16 answer this question, we split the bond AB into two elements mounted in parallel, one

with a conductance g, and one with a concuctance h g. Formally, this partition b only possible
when h > g, however, an algebraic continuation to negative h g makes no difference. From

this construction, we see that the network can be seen as a homogeneous one, and an additional

conductance h g has been placed in parallel to the bond AB. We can now use a superposition
of ma different boundary conditions imposed to the hom~geneous nemork The first one simply
consbts in applying the boundary condition chosen previously at infinity. By construction, the

current flowing in the bond AB b simply ii
=

io. The voltage drop accross it is thus vi #
io/g The

sec6nd situation consbts in sending a current k in A and collecting it in B, whereas no current is

sent at infinity. Let us call G the conductance of the infinite homogeneous lattice when a current

is sent in A and collected in B. The voltage drop accross AB in the second case will be v~ =

k/G, whereas the current flowing through the bond AB in the lattice will be j2 =
(g/G)k We

now superpose both cases to solve our problem. The current k is determined by noting that it

is the one which flows through the parallel bond of conductance h g, and thus which satisfies

(h g) (vi + v2) #
-k Solving this equation for k gives

k
= ~( j)G (i)

Obviously, G b proportional to g The proportionality constant A
=

G/g is a characteristic of the

lattice. Since we will mainly consider a small disorder limit, we inuoduce s such tllat h
=

g( I + s).
Using these notations, k reads

~
" (A

II) ~° ~~~

Coming back to our initial problem, the total current flowing through the bond AB of conductance

h is

~~ j~ ~ j~
~

A(1+ £)
~~ ~~~(A + s)

The energy dhsipation in the bond AB, eAB = jj~~ /h can be expanded to the second order in s to

give

eAB #
(eo) I + e(1- 2/A) + e~ (3/A~ 2/A) + O (s~) (4)

where we have introduced eo =
j(/g, the dbsipation for h

= g, in order to make the result

not-dimensional.

We finally have to find the value of A in order to conclude. We refer to [2], for an elegant
solution to this question. The answer is A

=
z/2 where z

is the wcrdinance of the lattice (the
«ordinance is the number of bonds which are connected to a node). For the square lattice,

z =
4

and thus A
=

2. We see from equation (4) that the correlation between eAB and gAB =
h is only

to the second order. A linear regression of e versus h will give no correlation. Up to the second

order we can write

~ ~°
=

i-1/4) (~
)~

+ O ((~
)~)

(5)
eo g g

In fac~ for the special case of the square lattice, we can use a duality transformation [4] to prove
that the first order term in (h g) is zero in this relation.

For a triangular lattice, z =
6, the linear term in equation (4) does not cancel out. It gives:

fi
"

(1/3) (~
~ (l/3) (~ ~) + ° l(~ j ~ (6)

~° ~ ~

~ ~
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Thus, the smaller the conductance, the larger the dissipation. For a honeycomb lattice,
z =

3, the

trend is opposite:

fi
=

-(1/3) (~ ~) + O ((~
)~)

(7)
eo g g

This conclusion is a little surprising since, depending on the details of the discretizafion, a general
argument cannot state where the madmum dissipation b more likely to occur: for good or bad

conductors. mis observation should call the attention onto models of electrical or mechanical

damage where depending on the details of the dbcretization, a damaging process can either be

stabilized or destabilhed, according to the fact that further damage is respectively less or more

likely to occur in regions of space where some damage is already present.

3. Numerical simulations.

We have checked numerically these predictions by solving the current distribution in lattices where

the conductance ofthebondswere randomly sampled over a uniform distribution [1-6/2, 1+6/2].
We tested different lattices: square and triangular lattices in mo dimensions and a centered cubic

in three dimensions. The sizes of the lattices investigated were 20 x 20 in mo dimensions, and

20 x 20 x 20 in three dimensions. We chose a width 6
=

19b Tile currents were obtained using
a conjugate gradient relaxation routine with a precbion of 10~~°. In all cases, we performed a

linear regression of the dissipated energy versus the conductance for all bonds in the nemork We

thus had access to the contrAution which is linear in s in equation (4). We obtained the following
estimates of the slopes: 0.0, 0.35 and 0.52 for respectively the square, the trhngular and the cc

e
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Pg. 2- Distribution of the local energy dissipated e in a bond of conductance g, in a three dimensional

c-c- lattice of size 15. One sees a mean linear correlation between e and g as well as a statistical distribution
of e roughly independent from g.
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lattice. These estimates should be compared to the eTpected values 0, 1J3, and la (using Eq.(4)
with z =

4, 6 and 8 respectively). Figure 2 shows an illustrative example of the cc lattice for a size

15 (13500 bonds).

e
I

~

090 092 094 096 098 100

K

Fig. 3. Average elastic energy e stored m cells having an elastic modulus K The data were obtained using

a two dimensional finite element code.

We llave also tested this correlation for a hierarchical diamond model, where the topology of

the lattice is different from that of a Euclidian lattice. We expect however rite same result as

equation (4) in such a case. The value of A can be computed easfly in this case, and amounts to

3/2 (the relation between A and z
does not hold in this case). We measured a slope 0.33, in

agreement with the expected result la.

Is it possible to relate this slope to another characteristic of the network that may be measured

globally, and not locally as presented up to now? We propose to use a EMA result to do thb. Let

us imagine that we start with a homogeneous network, and remove at random a finite fraction

of bonds g. The removal of these bonds will reduce the global conductivity of the network by an

amount which b proportional to q for q « I. The EMA prediction is

G(q)
~

~~ ~~~G(q
=

0). '

where
=

(A I) IA. The decrease of the total conductance is a quantity which can easily be mea-

sured. Eliminating A between equations (4) and (8), we obtain a first order correlation coef%cient

(1- 2A)
=

2A -1.

Up to now we have simply dealt with regular lattices. lvhat can be said about the finite ele-

ment method as an alternative discretization of the heterogeneous medium? Assuming that each

element b given an independent conductivity, and that the elements are of first order, we see

that the discretized problem can readily be mapped onto a resistor network The result equation
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(4) is thui expected to hold, provided the factor A is computed in the corresponding bamework,
I-e- one has to solve the problem of a source located in one element (far from the border) in an

otherwise homogeneous medium.

For linear elasticity, we can reproduce a very simflar argttment, although all scalar quantities
(such as A, s, have to be turned into tensors. lb illustrate the validity of the results, we have

performed some simple simulations using linear elasticity, with a finite element code in two di-

n1ensions. The elastic modulus was chosen uniformly distrAuted between 0.9 and 1.0. Figure 3

shows the average of the elastic energy, e, stored in cells flaying an elastic modulus K. The data

are averaged over .25 -samples of size 10. We see that a linear correlation accounts very well for

the presented results.

4. Statistical distribution of local energy.

We propose now to go a little further in the analysis of the current distribution in the medium.

indeed bom figure ~ we see that despite the correlation between the local energy and the con-

ductance, the former displays a statistical distribution which hides partially the mean correlation.

what b the distribution of local current in the medium?

From the above proposed derivation, we see that the spreading of local current comes from the

fluctuations of resistance of the network seen from one bond (fluctuation of A). These fluctuations

are obviously independent of the properties of the bonds, and thus justifies that the distribution

of local energy appears to be independent of the local conductance as may be seen bom figure ~

lb derive this dwtribution, we will start with a homogeneous network~ all bonds having the same

conductance g and consider the change of A that will result from the change of the conductance

of any bond I in the network. The fluctuation of A will then be the sum over all bonds of these

variations. the spirit of this approach is similar to that of the EMA since the influence of one bond

on the conductance of thb whole network seen from another bond is computed «sing a fictituous

homogeneous network.

A variation 6A m A will induce a change 6jAB in the current JAB The relation between these

twq variations is given by the derivative of equation (3):

~JAB
= -ll~i~l'~A (9)

16 compute the change in A which result bom a variation 6g, of the conductance of a bond
i

different from AB, we use Cohn's theorem. We imagine applying a voltage drop UAB across the

bond AB. The voltage difference ok the bond
i

will be u,. Cohn's theorem simply states that

6A,
=

~~'$
(10)

g U~

Tile voltage drop u, w simply a dipole field which decays with the distance
z from AB to I as

z-d

We how have all the ingredients necessary to conclude.

Tile total variation in current 6 JAB is the sum over all bonds I of each contribution to 6A

~~"
A~~~~~jJ~

~j ~~'"~ ~~~~

Thus the fluctua~ion of jjB appears to a simple sum of decorrelated numbers having different

weights (u)). The'mean value of 6 JAB is zero since the average of 6g, is zero. The width of the
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distribution of 6jAB can be estimate using the variance of this quantity. Calling «(g)2 the variance

of the distribution of g, we can compute

(bib)
=

~~))) ~j2
~ ~ «(g)~Ul (12)

Using the dependence of u, with the distance z, it b obvious that the sums in equation (11-12) are

convergent. It also shows that most of the fluctuations in j are due to the local environment. We

underline in this last result, that the width of the distribution of current at fixed s is proportional
to the widtlt of the distrAution in conductance.

In the case where the local conductances are distributed normally, then the dbtribution of j

is also along a Gaussian since we deal with a sum of independent variable, albeit with different

weights. The fact that the sums are convergent prevents us from applying the central limit theorem

in the case of any non-Gaussian distribution of g: the dbtribution of j will not converge towards a

Gaussian as the system size increases to infinity. Our situation1s close to that of a sum of a finite
number of uncorrelated random numbers. In practice, provided the dbtfibution of g is narrow,

that of j will be very close to a Gaussian. For the local energy distribution, we have to take the

convolution product of the distributions of j and g with weights 2 and I respectively. Again this

dbtribution will be close to a Gaussian in a small disorder limit.

4

09 lo i 12

e

Fig- 4. Semi-log histogram of the distribution of local energy dissipated in square lattices (+). A parabolic
fit is shown as a full curve for comparison to a Gaussian distribution.

Figure 4 shows the'semi-log plot of the histogram of the local energy dissipated in 20 x 20 two-

dimensional square lattices with a uniform distribution of local conductances of width 6g /g
=

I To

One sees that this plot is very close to a parabola, and thus the dlsmbutlon is very close to a

Gaussian. We have also verified that the width of the dbtribution of e is proportional to that of g,

when the disorder is small.
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One can show that the dbtribution of conductance of finite size lattices converges toward a

normal disuibution when the size tends to infinity. Thus the previous results allow to state a more

general property: Under coarse graining, the distribution of current in an heterogeneous con-

ductor will tend toward a Gaussian distribution. In addition both distribution will have a similar

width, and thus the distribution of current coarse- grained at a scale £ has a width which decreases

as
£-d'2.

5. Conclusion.

Let us stress finally that all the results reported above are valid as long as the dbtributions of

conductances._or elastic moduli are narrow. In practice however, for the elastic case, we tested

a dbtribution of damage extending from 0 to 0.5 without noticing any suong deviation from the

linear correlation between energy and elastic modulus. Let us note that in the case of an exneme~J
broad distribution of conductances or elastic moduli, it is possible to use a very different approach,

[5] and it can be found that the local energy distribution can be characterized by a generalized
multifractal form, which take into account both the size effect and the disorder dependence.

Let us stress finally the strong discretization dependence of the correlations between the lo-

cal transport properties and the local energy distribution. This puzzling result shows that in the

continuum limit, one has to precise some informations on the shapes of the different elements

which are given a constant transport property. Otherwise the result is ill-posed. Applications of

the results presented above to the case of fatigue are currently being investigated.
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