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Abstract. Extensive Monte Carlo simulations are presented for the bond-fluctuation'model on

three-dimensional simple cubic lattices. High statistics data are obtained for polymer volume

fractions ~P in the range 0.025
w ~P w 0.500 and chain lengths N in the range 20 w N « 200,

making use of a parallel computer containing 80 transputers. The simulation technique takes into

account both excluded volume interactions and entanglement restrictions, while otherwise the

chains are non-interacting and athermal. The simulation data are analysed in terms of the

de Gennes scaling concepts, describing the crossover from swollen coils in the dilute limit to

gaussian coil§ in semidilute and concentrated solution. The crossover scafirig functions tot the

chain linear dimensions and for the decay of thd structure factor are estimated and compared to

corresponding theoretical and experimental results in the literature. Also the dynamics of the

chains is studied in detail, and evidence for a gradual crossover- from the Rouse model to a

D N ~ law for the diffusion constant is presented. This crossover is consistent with scaling only
if a concentration-dependent segmental «friction coefficient» is introduced. Within this

framework general agreement between these data, other simulations and experiment is found.

1. Introduction. i

Monte Carlo simulations of single polymer chains, which are modelled by self-avoiding walks

on lattices have yielded a longstanding and sig~tificant contribution to polymer science [1-4].
In fact; some of the most accurate estimates for the exponents v

and y characterizing the

statistical properties of very long polymer chains in dilute solution in a good solvent result

from this technique [5].
Much less progress has been made, howevir, -in understanding the properties of semidilute

and concentrated polymer solutions by such simulation methods. The problem is'of great
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physical interest as several length scales are important (the size of the coils as well as the

smaller correlation length, on which scale the excluded volume interactions are screened out

[6, 7]) with Respect to dynamical properties, the onset of entanglements among the chains

poses challenging theoretical problems [8]. While the universal aspects of static properties of

polymer solutions can be described by the renormalization group approach [9-11], the

dynamics of the chains is understood in the framework of phenomenological scaling
considerations [6-12], while more explicit treatments still pose important problems. Tl1us the

treatment of such questions by Monte Carlo simulation methods would be very desirable, and

several attempts have been reported in the literature [13-22]. So far, the simulations have

been much less successful than with respect to isolated chain properties [4-5] : while most of

the work has considered very short chainj [13-15, 17, 19] and could not address the question
of scaling, results addressing the question of scaling of static properties have been rather

controversial [18, 22]. The studies devoted to dynamic properties [16, 20, 21, 23] failed to

yield a clear evidence for the onset of reptation either the results were simply consistent

with the Rouse model [16] (note that due to the lack of hydrodynamic forces the Monte Carlo

studies cannot treat the Zimm model [8]) or concentration-dependent exponents a, b in the

relations for the relaxation time
r

and self-diffusion constant D~ (r N ~, D~ N-~
were

obtained [20, 21]. Only recently an extensive molecular dynamics simulation of polymer melts

was presented [24]. There a detailed analysis of the crossover from the Rouse to the entangled
regime was given, displaying nice agreement with the entanglement concept.

In fact, the Monte Carlo simulation of multi-chain-systems is rather difficult : some of the

most successful methods [4, 5] used to study properties of isolated chains can no longer be

applied; some of the standard methods such as kink-jump »- and « slithering-snake »-

algorithms [4] have ergodicity problems [4, 5] and also become rather ineffective (due to very
slow relaxation) in dense systems and last but not least, the enormous needs for computer
time to handle such simulations properly have been prohibitive.

In the present work, we reconsider this problem, making use of two important recent

developments

(I) The bond fluctuation algorithm [25-29] provides a simulation method which is better

suitable to Monte Carlo studies of multi-chain systems, since it suffers less from ergodicity
problems and works also rather efficient at large densities and chain lengths.

(ii) Multi-Transputer facilities as have been installed at the Institute of Physics at the

University of Mainz [30-33] provide a rather cheap computing power in the supercomputer

range that can handle the enormous needs in statistical accuracy of such simulations.

The outline of our paper now is as follows : in section 2, we summarize the crossover scaling
predictions for the statics and dynamics of polymer solutions, as far as they are pertinent to

our treatment. Section 3 describes the bond fluctuation model and discusses the implementa-
tion of this algorithm on parallel computers. Section 4 presents the raw data of the

simulations, while section 5 interprets them in terms of the « crossover scaling analysis.
Finally, section 6 contains a summary of our results, discussion of pertinent analytical theories

and experiments, and an outlook for further work.

2. Crossover scaring in polymer solutions : a summary of theoretical predictions.

This section describes results many of which can be found in standard texts [6]. However, we

feel it is necessary to coherently summarize these results, since ample use will be made of

these formulas in later sections where the numerical results are compared to the crossover

scaling theory. In addition, the present section serves to also introduce the basic terminology
and to define our notation.
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2. I STATIC SCALING. Scaling always can be considered as a comparison of lengths [6]. The

characteristic length in a polymer solution is the correlation length f, over which the excluded

volume interactions are
icreened out. Denoting the volume fraction of lattice sites taken by

the segments which form the chains as tb, and the linear size of a segment as

tr, we have [6]

f/« 4l "'~~ ~ (l>

Here v
is the critical exponent which describes the linear dimensions of long chains (nuinber

of segments N
-

aJ) in the dilute limit,

(Rj~~)~-~tr~N~~; (2)

the average (... )~ of the gyration radius square Rj~~ is being understood over all chain

configurations comjatible with the excluded volume constraints for tb
-

0. Equation (2) also

holds at nonzero but small enough tb, namely as long as (Rj~~)
~

« f ~ the crossover to ideal

gaussian behavior occurs for

(Rjjr)
~

=
f ~] (3a)

Combining Equations (I) and (2) this condition yields the critical volume fraction

tb * where the crossover occurs as

~l*~N-(3~-1) (3b)

For (Rj~~)~ hi ~ the chains behave at distances larger than f as Gaussian coils, I.e.

(Rjjr)
~ °~ ?

~
~b

~ N
,

(4a)

where the exponent x follows from the condition that for tb
=

tb * a smooth matching between

Equations (2), (4a) must be possible which yields

x =
(2 v

1>/(3
v 1> (4b)

Hence Equations (4a) can be rewritten as

j(j ~,2~-(2v-1)j(3»-1)p~~~2-im,ijvp~~ ~~~~ j~)
Yr ~

Both Equations (2), (5) can be considered as limiting cases of a crossover scaring function

fgyr(5), 5
=

N " ~ "'(~ "
(

ljl)~
=

fgyr

@)
=

fgYr IN " ~ '
- li°m~. lull» (6)

While the exponent v
is known to very high accuracy (v

=
0.588 )~~, the crossover scaling

function f~~(5 has been calculated only via low orders of renormalization group expansions

so far [9,10]. Thus the estimation of f~~(5) from the « data collapsing » of the family of

curves (Rjy~)
=

f(tb, N ) on a single master curve when (R(~~) /(Rj~~) is plotted vs.
5 is

4 4 o

one aim of our numerical studies (Sect. 5).
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At this point, we note that the same considerations as quoted for (Rjy~)
~

also hold for the

mean square end-to-end distance of the cha(ns, (R~)
~.

The fact that the crossover exponent

in Equation (I) is not independent but expressed in
terms of v can be understood from the

simple interpretation that for tb
=

tb* the coils just «touch», I.e. (he concentration of

segments inside a coil tb~;j is of the same order as tb *

~b~,~=N/fi-~N'~~~~~b*(N). (~~

Of course, in all Equations (1-7) prefactors of order unity have been suppressed for simplicity.
The scaling concepts also apply straightforwardly to the single-chain structure factor

S(q),

S(q)
"

N@(q fi, /~/f)
~

N&(q /~,
qf ), (8~)

where the scaling function derives from by a suitable transformation of its arguments.

Equation (8a) is not particularly useful, since it is hard to analyze numerical data in terms of

scaling functions containing two variables. A simple scaling emerges again, however, for large

q where the N-dependence in Equation (8a) cancels out,

S(~>
= ~

~'~ &(~f
=

li°iii" " if i1 (8b)

2.2 DYNAMIC SCALING. The mean square displacement of an inner monomer as a function

of time t in the dilute limit behaves as [35]

l~~(~) lo '~(wt)~'~~ ~ ~'~ ~~
,

(9)

where W is an effective monomer reorientation rate. Now we allow in the crossover scaling
formalism unlike reference [12] for the possibility that the tube diameter dT differs from the

correlation length fin equation (I) by a numerical factor which possibly is much larger than

unity, although we do expect that the concentration dependence of dT is the same as that of

f, and dT aid f thus should be simply proportional to each other. We should note that

because of hydrodynamics this cannot be checked by experiments on semidilute polymers, but

only by simulation. Thus we conclude that equation (9) still holds for tb ~0 as long as

(r~(t))
~

<

f~ While We have

~~~~~~~ ~''~~~~°~~)~'~, f~< lr~(t)j
<

dl, (io~~

~~~~~~~ ~
~ ~ ~~(

ift)~~ d(
<

(r~(t))
<

d
fi

' T ~gYr ~,
(lob)

~~~~~~~ ~'~~~ ~~~~~~~' ~T
~

<
(r~(t))

< (R(~~) (io~)
4

~
2--

~~ ~~~i ~'
~ ~/ N~~Wt)~, <r~(t)> »

iRiri~ ~io~~

Here equation (10a) is the prediction corresponding jo the Ropse model for Gaussian

chains [8] while equations (10b-d) incorporate the predictions of the reptation model [6, 8, 12,
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16, 35]. Once more the exponent y is estimated from the matching condition between

equations (9), (10a) for (r~(t))
=

f~, which yields

y =

(v -1/2)/(3
v i ) (ii)

and this crossover occurs at a time
t~~~~~

which follows as

wt
~ ~§

(2 V + i )j(3 V 1) ~~~~
cross

The exponent y' in equation (10b) is '

since for t = t~~~~~ all
he displacements as by (9), (10a), n

he

same way with the olume fraction ( namely as ~ tb ~ ~ ~'~~ ~ ~

prefactors for the second t"~ regime
(Eqs. (10c)) and the (Eq. (10d)) where the mean

square isplacements are governed by the diffusiofi'of the chain as a
whole

are fixed

requirement

below.
~

In
addition

to the mean
square

isplacement (i~(t)) ~ of segments, it is qf

consider the

wr
=

N~+2v f(~/~*), (14)

,

where the scaling function f(tb/tb *
=

5") has the following limits

const. 5"
-

0 ( ~/ (R~)
~ <

f ) (lsa)

~(~")
"

~" ~~ ~~~~ ~ ~~, lll~~~lll~~l~~~ ~" (f
<

/~
"

~T) (15b)

5,,2(1 v
)/(3

v
-1) 5>, ~ ( ~ j j~2j (~ ~~)

,
~ T " #

From equations (14, (15) and (3b) one can read off the following behavior of the relaxation

time

w N + ~
~,

fi<
f

,

(16a)
~ #

w ~ (2 v
i )j(3 v

1) p~2
~

j j~2j
~

d~ (16b)
T '

/~
'

WY i$ ~~~ ~~~~~ ~ ~i~ ~T
<

~/ (~~)
~

~~~~~

Here equation (16a) describes the Rouse model resul(s for unscreened excluded vblume

interactions, equation (16b) describes the'Rouse model result for chains which are

asymptotically gaussian (excluded volume interactions being screened at large length scales),

and equation (16c) yields the reptation model prediction. It is instructive to note that for

t
= r

both equations (10c), (10d) are of the same order and of the order of (Rjy~), as it should

be. We also recall that the Rouse time equation (16b) plays a role in the strongly eiianjled

~~~l~~ W~I~~~ ~T
<

~/(ll~)~
At t

= rR ~b
~~ ~ ~'~~ ~ N ~ the crossover between the regime jr ~(t) ) t

~'~

(Eq. (10b)) and (r2(t)) t~'~ (Eq. (10c)) occurs.
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Finally we consider the diffusion constant D~ which is written as

D~/
=

N~ l$(tb/tb *) (17a)

A law D~ N-~ results if l$(5" »1) 5"~ with
z =

1/(3
v I ). Hence

D~ N-2 ~-ij(3v-1)~ (~~~)

which is consistent with equation (10d). In fact, equations (14), (17) are compatible with the

simple rule that during
r

the coil has diffused a distance corresponding to the radius of

gyration,

WY DN
~

N~ ~ f(fb/fb *) fi(fb/fb *) N~
~ fjr(fb/fb *) (18a>

which for tb » tb * becomes

which is exactly equation (5).
Nothing has been said in this treatment on the concentration dependence of the monomer

reorientation rate W, which, however, is not trivial. This will be discussed in section 5.

3. The bond fluctuation model and its algorithmic implementation.

A detailed account on the «philosophy» of the bond fluctuation model was given in

references [25, 26] so it may suffice here to summarize in short properties pertinent to our

simulation. Figure I shows a sketch of the tree-dimensional realization of the model. Each

repeat unit or « monomer » occupies 8 (2~ in d dimensions) lattice points on a simple cubic

lattice. No two monomers may have a site in common (self and mutually avoiding walks).
Thus, the smallest bond length is two lattice constants. If one requires that no bond crossing

like in a phantom chain occurs in the course of the simulation the set of allowed bonds is

restricted further. In 3 dimensions this set still is not uniquely specifiedj but if one takes the

largest possible set there are 108 allowed bonds [27, 29]. These log bonds are obtainable from

six « basic bonds via symmetry-operations of the lattice. The basic bonds are : ((2, 0, 0 ),
(2, 1, 0 ), (2, 1, ), (2, 2, ), (3, 0, 0 ), (3, 1, 0 )). The chain dynamics is generated by a

Monte Carlo procedure with stochastic updating. You choose a monomer at random, choose

one of the 2d lattice directions at random and try to move the monomer for one lattice

constant. The set of allowed moves depending on the bonds connecting the chosen monomer

to its neighbors can be tabulated and the self-avoiding walk condition is taken care of using
lattice occupation numbers. This algorithm was shown to exhibit Rouse dynamics for single
chains [25].

The simulations were done on the Multitransputer facility of the Condensed Matter Theory
Group at the University of Mainz. Parallel machines based on the Transputer processor have

found increasing interest during the last years and we show here that such a machine can very
effectively be used for large scale computations in polymer science. The machine follows the

so-called MIMD [36, 37] (Multiple Instruction Mdltiple Data) concept of parallelism. Each

processor can run a different set of instructions working on its own data stored in a local

memory (typically I to 8 MByte). Data routing and cooperative action of processes on the

same or different processors is achieved via a self-synchronising message passing scheme.

Our program is written in OCCAM, a language especially developped to mirror this concept
of parallelization [38].
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Fig. I. Sketch of the 3-d bond fluctuation model Typical elementary moves are indicated by arrows

for one monomer.

Principally, the most effective way of parallelising a given application is data parallelism,
that is, you replicate your program and let n processors work on n different sets of data. In

Monte Carlo simulations this is always possible since you need to generate a statistical sample
of results. A task parallel algorithm [39] is only needed if one works on a large system that

does not fit iito local memory, or if the generation of a single result on one processor takes

prohibitively much time.

We were working with a lattice size of 403 with periodic boundary conditions and densities

up to 50 ilb and these systems still could be run with the simple replication scheme. One T800

processor. performed about 19.000 trial moves of single monomers per second. Running 50

processors in parallel we got about half the performance of a highly optimized CRAY YMP

program [27] with a much smaller turn around time.

4. Simulation results : raw data.

Using the algorithm described in the previous section chains of length N
=

20 up to

N
=

200 were simulated with densities ranging from tb
=

0.025 up to tb
=

0.5. We typically

ran m =

33 statistically independent systems in parallel. Each transputer carried along one

system. The density then was adjusted by a varying number M of chains in the system. The

averages were performed by averaging over all chains in all systems.
The initial configurations were generated by growing the chains simultaneously. During this

growth process self-avoidance was taken into account wherever possible. In order to avoid
highly knotted structures, which might become artificially more favourable during such a
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growth process, the initial configurations only contained a restricted set of bonds. From the

allowed bonds of secion 3 only those bonds obtainpble from (2, 0, 0), (2, 1, 0) and (2, 1, 1)

were considered. (For the higher density systems always several lattice sites were occupied

Table I. Static and dynamic properties of the chains. Note that the average bond length turns

out to be a clearly density-dependent quantity.

~ ~ ~~~~ ~~~~ ~~~) ~ DN

0.025 20 7.469 264 ± 4 41.5 ± 0.4 0.279 1.8 x
10-3

50 7.465 792 ± 10 126 ± 0.264 6.6 x
10-4

100 7.470 1736 ± 35 281 ± 3 0.258 3 x10-4

200 7.468 3 642 ± 110 605 ± II 0.256 1.7 x
10-4

aJ 0.253

0.03 80 7.453 329 ± 29 220 ± 3 0.259 3.6 x
10~

0.05 20 7.456 246 ± 3 39.8 ± 0.3 0.278 1.6 x
10-3

50 7.454 741 ± 10 120 ± 0.262 5.4 x
10-4

80 7.462 1259 ± 31 205 I 3 0.259 3.I x
10~

100 7.454 647 ± 32 266 ± 3 0.258 2.6 x
10~

200 7.446 3 476 ± 135 570 ± 13 0.255 1.I x
10~

aJ 0.253

0.075 20 7.448 243 ± 2 39.1 ± 0.2 0.275 IA x
10-3

50 7.437 ' 710 ± 8 115 ± 0.261 4.9
x

10~

100 7.442 529 ± 24 250 ± 2 0.256 2.I x
10-~

200 7.438 3 480 ± II? 547 ± II 0.253 9.7 x
10-5

aJ 0.251
-_

0.08 80 7.434 335 ± 7 197 ± 2 0.257 2.7 x
10~

o-1 20 7.4I1 237 ± 2 38.3 ± 0.2 0.273 IA x
10-3

50 7.421 692 ± 5 l12 ± 0.259 4.5 x
10~

80 7.425 197 ± 15 193 ± 2 0.255 2.5
x

10~

100 7.421 443 ± 21 240 ± 2 0.254 1.9 x
10~

200 7.426 3 II1 ± 107 506 ± II 0.252 8.5 x
10-5

co 0.249

0.2 20 f.349 214 ± 2 35.5 ± 0.2 0.257 9.6 x
10~

50 7.340 609 ± 5 100 ± 0.245 3'
x

10~

80 7.348 014 ± 13 165 ± 2 0.242 1.6
x

10-4

100 7.336 271 ± 19 210 ± 2 0.241 1.2 x
10-4

200 7.355 2631± 74 439 ± 7 0.239 4.6x10-5

aJ 0.237

0.3 20 7.227 200 ± 2 33.2 ± 0.2 0.233 6.9
x

10~

50 7.234 538 ± 4 90 ± 0.223 2.0
x

10~

80 7.227 895 ± 12 150 ± 2 0.221 1.0 x
10~

100 7.233 137 ± 15 189 ± 2 0.220 7.I x
10-5

200 7.240 2424 ± 55 402 ± 6 0.218 2.3x10-5

aJ 0.217

0.4 20 7.108 185 ± 2 31.3 ± 0.2 0.200 4A x
10~

50 7.093 506 ± 4 84 ± 0.193 IA x
10~

80 7.098 840 ± II 138 ± 0,191 5.9 x
10-5

100 7,090 040 ± 14 174 ± 2 0,190 4.7 x
10-5

200 7.097 2 084 ± 35 350 ± 3 0.189 1.5 x
10-5

oJ ~-
0.188

0.5 20 6.961 175 ± 29.7 ± 0.1 0.161 2.5 x
10-4

50 6.949 466 ± 4 79 ± 1' 0.155 7.I x
10-5

80 6.946 782 ± 10 130 ±1 0.154 3.I x
10-5

100 6.947 006 ± 15 166 ± 2 0.153 2.0
x

10-5

200 6.943 2 061 ± 31 343 ± 3 0.153 7.2 x
10-6

aJ 0.152
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more than once initially.) After the desired number of chains were embedded into the lattice,
the standard simulation procedure started and ran for some ten thousand time steps. This

produced absolutely self- and mutually-avoiding configurations by forbidding any new double

occupancy. The initial configuration was generated by a sampling procedure similar to what is

called inversely restricted sampling or biased sampling [40]. For such a procedure it is known

that the average configuration is close to an ideal chain (v
=

1/2). Before any averages were

taken chains diffused a distance of the order of their own radius of gyration (RI '~ Only for

N
=

200 the time was smaller.

A first analysis on the properties of the chains assured that we cover the crossover from the

single good solvent chain to the chain in the dense melt of same chains. Table I gives a

summary of the data.

If r, denotes the position of the I-th monomer the mean square end to end distance and the

radius of gyration are defined as (Rc~ being the center of mass of the chain)

~ll~(~i))
"

((~J ~~N+1)~)~~~ ~N~~

~~~~
~~~~~~

N l
~~~' ~~~~~~N~w ~~~

with
v =

0.588 for the single isolated chain and
v =

1/2 for the chain in solution/melt where

the density is high enough to cause the chains to strongly overlap. Figure 2 gives the results for

the systems and densities as indicated. As the figure displays we find a gradual crossover form

the single chain good solvent behavioui to the typical melt behaviour. Figure 2b already
indicates that at least for the two limiting densities p =

0.025 and p =

0.5 the two different

asymptotic regimes are reached on length scales down to a few bond lengths. For the

intermediate densities we expect to see both regimes depending on the length scale. This will

be analyzed in detail in section 5. However, not only the overall dimensions of the chains

~ __.
~

_.~
,"'

~~
500 -""

_" ~ _"
j

2000 -"' ~ ""' ~

_-"
,"'

:.' i
200 ,:.' I t

O ~ -' O
~

," ~ _-' ~

,"" i ~
,"" i ~

."
~ loo

." O

50
-" ;"

)
,"'

50
I I

200 j

20 50 loo 200 20 50 loo 200

N- I N-1

a) b)

Fig. 2. a) R~(N)
vs. N I for 4

=

0.0025 0.5 (from top) for chain lengths between N
=

20 and

N
=

200. The straight lines give the asymptotic slopes of 1.18 for the single chain and 1.0 for the melt

chain respectively. The different densities are the same as in the table. Note that for N
=

80 the

densities vary slightly with respect to the other systems, because the box size was always 403. b) same

plot as (a) but for ll~.
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~ ~aj
~i~ 7.4

~

C
~

7,~
o

4

~
7.2
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~ 7.1 £
~

ro

~ 7.0$
'. £

~ ~0
2 3 4 5 E

density

Fig. 3. Averaged squared bond length (i~)
vs. density, for N

=

20 octagons, N
=

50 triangles and

N
=

100 crosses.

vary, but also the band leigth I itself. Figure 3'siows the variation of the bind length with

density for the various chain lengths. The scatter of the points for different chain lengths just
indicates the statistical accuracy of the data-, as for each chain length the bond lengths were

only averaged over, inner bonds. This was done to eliminate the effect of free ends which

would significantly shift the resilts [24]. As figure 3 shows, no N dependency is Jeft. However,
important is the variation of (i~) with tb. There is a significant decrease off with increasing
density. If we take int6 account that for coarse-grained models such as the present a model

monomer may account for several chemical monomers, this means that a compression also

occurs on the length scale of a few bonds. In order of this to happen one has to be in the dense

solution limit. Thus, already from this we can conclude that the tb
=

0.5 system probably very
well simulates a polymeric melt. A direct test on which length scale the self-avoiding

interaction is screened is provided by the structure function

S(q)
=

l~ jj e'~'~J
~

(20)
~

~i

ql

of the individual chains. The index q means the spherical average over q vectors of the same

magnitude. Following the discussion of chapter 2 we expect good solvent properties on length
scales smaller than f(tb and random walk properties on distances larger than f(tb ). For

S(q) this gives

~ (R~) ~'~
~

~
"

~
f

S(q)
=

~ (21)

q~ V~ f
~

~
"

~
iii

q

while for small q <
2 WI (R~) "~

one gets

S(q)
=

N(I 1/3 q~(R[) ). (.22)

q ~
o



N I MC TEST OF CROSSOVER SCALING IN POLYMER SOLUTIONS 47

Figure 4 shows the result for chain lengths N
=

20 to N
=

200. First- let us consider the

tb
=

0.5 data. After an initial decay, following equation (22), for all chain lengths we find the

asymptotic scattering law S(q) q~~ up to q values slightly above I giving a distance of 6
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Fig. 4. Scattering function S(q) for single chains for the densities ~b =

0.I and 0.5 respectively for

N
=

20 (a), N
=

50 (b), N
=

80 (c), N
=

100 (d), N
=

200 (e) for N
=

200 the chains are larger than

the box (L
=

40). Thus correlations should only be used for q ~
2 «IL

=
0.15.
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lattice constants-which is twice the prefactor of the end to end distance. ~y the relation

(R~(N, tb
=

1/2))
=

(12) c~ N this is just twice the persistence length I c~ and strongly

supports the picture of a dense melt. Another important aspect is that N
=

20 obviously is

sufficiently long in order to obtain the asymptotic structure of a chain in a melt. For

tb
=

o-I the situation is different. There we expect a finite region above the bond length
where the self-avoidance is not screened. This can be most easily be seen for the two longest
chains of N

=

100, 200. Fitting straight lines with the slope of I/v
=

1.695 and 2 to the data

(N
=

200) we find a crossing of the two regimes around q =
0.3 giving f

=
20. Using the

results of (R~) from figure 2 we expect for N
=

50, 20 no signature of the presence of the

other chains, since tb (N) s tb * This is nicely confirmed by the data. There we also find the

known weak overshoot in S(q) [41], which is a typical effect of the possibility of backfolding
of the ends of finite chains into the interior of the volume covered by the individual chain. For

a Gaussian chain, such as the chain in the melt, this should not occur in agreement to the data.

This very first analysis of the raw data shows that the systems considered cover the region
from very dilute solution to melt densities.

5. Crossover scaring for statics.

The crossover scaling proposed in Chapter 2 for the static properties of the polymer chains

has been investigated by several authors [16, 7, 9-11]. However up to now it was not possible

to cover the full regime from the very dilute single chain case to the dense solution/melt limit.

Both, experiment [42, 43] and simulation [13-19] were only able to analyse a restricted range
of densities. From the analysis of the previous chapter we can expect to cover the whole

crossover between the two limiting situations.

The scaling, as developed in Chapter 2 describes the system as a function of chain length,
density and the fundamental segment size

tr. This segment size tr, I.e. a chemical bond, is

supposed to be a constant and independent of density p. Here a similar fundamental length
scale would be the lattice constant, since, as discussed earlier, the bond length is changing as a

function of the density tb. However, this naive scaling does not work. If we follow

equation (6) for (11~) or (R~) one finds that the data from figure 2 by no means collapse

onto a single curve. The reason can most easily be understood, if we consider the crossover

concentration tb*, as defined in equation(3b). tb* is the concentration at which

(R~) and f~
are up to a constant, equal. Thus tb* and fare directly related via

I (N) (N/~ *)1'3 (23)

Important here now is the prefactor. tb * is given by N and the prefactor of (R~) N~
~,

(R~)
<

f~. Since (i~) varies with tb, the number of monomers in a correlation volume

f~ also depends on the variation of I. Using equation (6), the scaling of (R((N))
can be

interpreted as a function of N and the crossover density tb * following equation (23). Since the

bond length variation directly influences f we have a bond length dependent shift of

tb* besides the plain power law of N. Thus the relevant fundamental length scale in the

system is not the lattice constant but the bond length (i~) ~'~ Using this the scaling relation of

equation (6) reads

illll~)
~

(N
~llll/>

~ ~

~~>
~

fGYr ~~ i ~~ ~~~

'
~24>

and sipilar for R~. i~ is given by (i~)~'~ Figure 5 gives the scaling plot for (R[(N)) and

(R~(N)). The data cover the whole range from the asymptotic flat regime fGyr,R(x)
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The upper curve gives the data for (R~(N)) while the lower one shows the results for

(Rl~~(N)). The indicated straight lines show the expected asymptotic power law of equation (6). The

figure includes all data from table I, using the same symbols as figure 2.

x°, x-0 [e,g. Eq. (6)], the infinite dilution limit, to the dense solution/melt limit with

fGyr,R(x)~x~~~~~/~~= x~°.~°
as indicated ~by the straight fines in the figure. lvhat is

especially surprising is that by explicitly using the density dependence of (12) almost all data

can be described by these two regimes, even the data with the densities of tb
=

0.4, 0.5. Only
the very last two or three data points seem to show a levelling off. From other lattice

simulations it is known that the asymptotic power law for larger densities is not reached [6]. It

was understood by the fact that-in order to obtain scaling f has to be much larger than the

fundamental unit of length in the system. This certainly cannot be expected to hold for the

present data. The scaling only makes sense if we interprete the model monomer with the

fluctuating bond length as a representation of a group of monomers of a chemical or simple
lattice chain, as already mentioned in the discussion of the raw data.

In order to prove the overall consistency of the above arguments we also jnalyzed the

scaling of the static structure function S(q of the individual chains. In order to obtain scaling
in a consistent manner, we again have to change the simple form of S(q) of equation (8b)
(with f

=

(f2j ii.

For the. intermediate regime
~ "

< q <

§f
we expect

J~jj f2

S(q)
=

(qf )~ ~/
~

Ii qi, ill1
(25)

=

(qf )~ ~/
~

Ii (qf) (4lf~)~ ~'~~
~ ~~i

with

((x) ~°~~~'~ " (26)
x~'~ 2

«

With equation (21) this scaling is confined to q values which measure the internal self similar

structure of the chain given by 2 w/R
< q <

§i.
Similar to the end-to-end distance and
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Fig. 6.-Scaling plot of the scattering function @(q) (Eq.(5.3)) vi. the scaring argumeiit

x =

qi(tbi~)~~'~~ ~~~J The data are for the chains of lengths N
=

50, 100,'200 with the constraint
~

"

~
< q <

2'ar Ii.
(R~) '

radius of gyration the data in figure 6 nicely display -the expected scaling again for the whole

ranje of densities. Froi this scaling plot we directly can calculate the screening length~f.
Takin) the asymptotic slopes of the intermediate scattering function (, the two straight lines

cross at qi tbi~)~."~~ ~ ~~
=

0.47.

~~~~~ ~ ~(~) ~~ ~~~ ~ ~~ ~ ~~ ~~~~~ ~~~~ ~ 0.~7

= (21.2
tb

=

0.1

6.46 tb
=

0.5
(27)

Here we use
I taken from the longest chains (N

=

200). Following equation-(27), it is

obvious that even for N
=

50, tb
=

0,I the different polymdrs hardly feel each other, while

for tb
=

0.5 thi screening goes down to a very few bonds only. This again supports the ansatz

of a single model bead iorresp6nding to a relatively large number of chemical mdn'omers
or

simple'lattice monomers depending of course on the internal degrees of freedom.

This is also in agreement to light scattering experiments of Wiltzius et a/. [42]. They
analyzed the properties of polystyrene solution in the marginal to good solvent regime. They
however covered screening lengths f between 2 000 h and 501 for chains with a molecular

weijht of up to Mw
=

26 x10~. The smallest f still is much larger than ours if we use

~ ~~~ ~~~

=

7.4h [44] compared to the data for p =

0.4, 0.5 of table1.
N

In the light of the present discussion and results from other simulations [21, 23, 24] we also

for the dynamical properties expect to cover the range up to an entangled melt.

6. Dynamical properties.

Following the above scaling analysij we expect a similar behaviour for dynamical properties.
Unfortunately there are no experiments on the same class of systems. In order to obtain the

dynamics of a semi-dilute solution without hydrodynamics, one would need to vary the
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concentration of a solfition of chains in a melt of short chains systematically. This was not

done up to now. In order to avoid any hydrodynamic effects the solvent » has to consist of

chains of several monomers, but much shorter than the entanglement length M~. For

Polystyrene (PS) e,g. the mass of the solvent is supposed to be at least Mm 2 100 [45] (giving
roughly 10 monomers) where M~

=

18 000. For such a system Watanabe and Katoka [45]
showed that the tracer diffusion constant of a single long chain is very well described by the

Rouse model. Other experiments deal with the diffusion of a probe chain in a matrix of

variable length [46, 47]. Pinder [48] analysed the friction f of oligomers using the Rouse

diffusion equation

with N being the length of the oligomers in the presence of long chains. It is, however, not

clear, as to whether the diffusion of the mono/oligomer solvent can be easily related to the

motion of the long chain mondmers. Following the earlier results of [45] one anyhow has to

expect strong hydrodynamic effects. Indeed, as a recent molecular dynamics simulation

showed [49], the monomeric solvent is an ideal good solvent and the chains display Zimm

dynamics. In or$er to directly compare our simulations to experiment one would need a

systematic density variation of the long chains in a solvent of short chains. In order to shed

some light on the density dependence of the entanglement length N~, such an investigation is

needed. Conceptually this is more easy to attempt by a simulation. In a MC simulation one

can study the dynamics of semi-dilute systems, disregarding hydrodynamics. Such an

investigation is performed with the present numerical data.

First let us consider the diffusion constant D(N, tb ). Using equation (17) we expect

D~.N~l~ ~"~~
(29)

~~

N»N~

for a given density. In order to obtain DN the mean square displacement of the center of

mars of the chains was carefully extrapolated using 6D
=

lim ((ACM(t) -ROM(0))~)/t.
<~m

Figure 7 shows the mean square displacements of the inner monomers and the center of mass

with time. Except for N
=

200 and tb
=

0.4 and 0.5 where we only get an upper limit for the

diffusion coefficient all,data obtained from the plot of g3(t) in figure 7 actually reached a

plateau value as figure 8 indicates, which gives the extrapolation of the diffusion constant.

Equation (17) now suggests a scaling plot of D~ N versus (N I tb ~'~~ The data show for

any given, but fixed density a decay of DN with increasing N. However, as figure 9 displays,

the data do not scale at all. What is especially striking is, that with increasing density the

shortest chains seem to show the strongest decay <in D~(tb ).

From experiments, however, we know that especially the short chains appear to be too fast

which was identified as an effect of the free ends [44]. Thus we also need a scaling of the time.

In the scaling analysis of chapter 2 wq always use a microscopic mobility W of the monomers,

which can, up to constant, be identified as the friction from kT/f of equation (28). The

analysis assumes that there is no variation of the monomer friction term with density. This is

typically done in analytic treatrients of the dynamics of polymers. Hess [50] e,g. normalizes

the motion of the monomers by- a time-dependent monomeric friction function and then

derives an expression for the entanglement length and the crossover from Rouse to reptation.

Our microscopic mobility corresponds to his'friction function in the limit time to zero.

In order to investigate this in more detail, we have to estimate the density dependence of
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Fig. 7. Double logarithmic plot of mean square displacements versus time, gj(t) center monomers,

g~(t) center monomers relative to center of mass, g~(t) center of mass, g~(t) end monomers,

gs(t) end monomers relative center of mass to a) N
=

100, 4
=

0,I. b) N =100, 4
=

0.5.

W. A first attempt would be to calculate the acceptance rate of the attempted moves. This

would allow to relate the monomer mobility to the density without calculating mean square
displacements. Figure 10 shows the extrapolation of the acceptance rate per attempted move

for increasing N. Again we observe a pronounced shift with increasing N, which is linear with

I IN. Such a correction is a consequence of the higher mobility of monomers near the end.

Since A is averaged over all monomers of the chain, the behavior shown in figure10 is

observed. Following the ideas of Hess [50] we can normalize the diffusion constants by the

single chain (4
-

0) acceptance rates Ao giving a factor of A(4, N
- co )/Ao. However, a

plot of DN/(A/Ao) vs. (N -1)(4i~)~'~~ "~ ~l does not scale either. This means, the pure

acceptance rate of the moves does not give a reasonable measure of the monomeric mobility.

Even for high density there are many allowed moves, which do not contribute to the motion

of the chain. These moves are forward and backward jumps. They would also persist in a



M I MC TEST OF CROSSOVER SCALING IN POLYMER SOLUTIONS 53

00
°°

+J ooo2

~
~~++~ ~

mn
6

rq ~6

W
~

/~
W ~

+

~

6~
+~

~

+~

ooooi

ill

Fig. 8. Extrapolation of the diffusion constant D from the mean square displacement of the centers of

mass, for chain length N
=

100, octogons 4
=

0.I, triangles 4
=

0.3 crosses 4
=

0.5.

oi

oos

z

° o01
~ v
.

° 0075

. 00s0

* 0100

A 0200

+ 03oo

» 0400

° 0500

oi 02

'~

Fig. 9. Attempted scaling plot of the chain diffusion coefficient versus
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for density dependence of monomeric friction).

glass, where the mobility of the monomers is zero. Therefore, we have to go back to

equation (9). Defining, in order to avoid end effects

gi(t)
=

((r~j~(t) r~j~(0))~j (30)

the mean square displacement of the middle monomers of the chains we can write for

equation (9)

gi(t)
=

(f~) Wt°.~~ (31)
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for times and distances less than the relaxation time and diameter of a chain of length f.
Following the scaling results of chapter 5 it should be possible to estimate (f~) W for all

densities considered. Confining ourselves to the middle monomers of the chains, the data for

all chain lengths should give the same result. Figure1l shows a log-log plot of gi vs. t for

4=0025

4 =020,050 S mbzl

+ 20

° 50

"
100

10? 210? 510~ 5

t

Fig. Ii. Plot of the short time behavior gi(t) _vs. time t for different densities and chain lengths, as

indicated. The offset of the fitted lines of slope 0.54 jives (f~) W.

various chain lengths. The offset of a fitted line of slope 0.54 directly gives (f~) W. For the

smaller densities the regime with 0.54 is quite pronounced, while for 4
=

0.4, 0.5 only the

very end (t
-

o) of the data can be fitted to this slope. For larger times t we of course find

gi t~'~ Figure 12 now shows a plot of (f~) A/Ao (f~)~ and (f~) W/(f~)~ Wo vs. density 4.
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striiing difference fietqeen,A and W.'We

see that W decays much faster with

increasing density than A, indicating thit for high densities the forwird/backward jumps
dominate the acceptance. The ratio of (W/lI~)/(A/Ao), which is also shown in the -figure,

shows that for 4
=

0.5 only about 30 §b of the moves contribute to the diffusion. Interpreting
(f~) Was a measure for the monomiric friction (e,g, using Eq. (28)), fiiure13 shows a

scaling plot of the diffusion constant normalized to a constant monomeric friction vs.

x =
(N 1)(4f~)~'~ " ~. The scaling now is almost perfect. For small -values of x thd data

approach the Rouse plateau, while we find a common crossover to a stronger N-dependence
with increasing argument. We also find that there are two sets of data which deviate from the

common scaling curve. These are the data for N=20 at 4 =0.3, 0.4, 0.5 and

N
=

50 at 4
=

0.4, 0.5. Their diffusion constant seems to be slightly too large. This means

that the effect of the free ends for the two chain lengths becomes clearly visible. Thus, with a

proper normalization of the monomeric mobility we are back to a situation similar to

experiienis. There it is known that the ends enhance the diffusion constants artificially with
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respect to the longer chaini [44, 46]. Using figure13 we can directly give a quantitative
estimate of this effect, by calculating the deviation from the common scaling curve. This

common scaling curve then is the asymptotic curve for the behavior of the diffusion constant

for N
- co, 4

-
0, but finite x. It should be noted that this curve up to now was never

determined.

Since figure13 gives the universal relation between chain length, density and diffusion

constant, it also means that by the scaling employed here, the entanglement length
N~ is given by a constant number of subchains of length f~'" Of course, the corrections

coming from the variation of (f~(~§ ) ) have to be included. This is the first clear indication of

that kind although it was generally assumed to hold. However, the density variation of the

microscopic monomeric mobility was not considered up to now. The experimental work of

Pinder [48] probably leads, for our purpose, to wrong results, since the diffusion of isolated

monomers and oligomers does not take the connectivity constraints properly into account. In

addition the effects of the hydrodynamics modify the results. Using the figure 13 we now can

estimate the density dependent entanglement length N~(4 ) following the various theoretical

approaches~
Using the packing criteria of Kavassalis and Noolandi [51], our chains ivould hardly be

entangled at all. Since it was seen earlier [24] that this does not describe the crossover regime
properly we do not take this into account here. Others use topological criteria [52]. Within the

reptation picture there are several crossover equations which describe the deviation from the

Rouse behavior. Graessley [53] e-g- uses

4 N~
D/DRouse

" ~ $ (32)

Hess [50] in a self-consistent projector operator formalism, where the constraint release is

explicitly taken into account, gets

N~
D/DRouse

" ~ ~ ~
(33)

Here D~~~~ is the extrapolated Rouse diffusion constant.

Schweizer [54] uses a mode coupling theory to describe the motion of entangled polymers.
However, he does not give an explicit equation for the diffusion in the crossover regime.
Estimating DRouse=N/(f~) W to 0,4 from the data of figure13 we can estimate

N~ from equation (32). It turns out that equation (32) does not give a unique entanglement
length. Taking a fixed density and comparing equation (32) to the curve in figure 13 gives an

increasing f) entanglement length with an increasing chain length. Similar to the molecular

dynamics simulations of reference [24], equation (32) tums out not to describe the data well.

In reference [24], equation (33) was found to give a reasonable description of the diffusion

data. There only one melt density was investigated. Here we now find this to work out also for

the full -semidilute to dense regime. To do this we replace in equation (33) N and

N~ by N(4f~)~/
" and N~(4f~)~'~ " respectively. With this we get

N~(4f~ )~'~ "
=

750 (34)

For 4 =0.5 this results in an N~=42, approximately 54 for 4 =0.4, and 76 for

4
=

0.3 respectively. Thus, we expect from the mean square displacements of the monomers

and the Rouse modes finally an N~ of about 30 monomers for
~§ =

0.5, since it was found [24]
that equation (33) slightly overestimates N~ by a constant factor of about 1.5. Relating 4 to
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f(4 due to equation (27) we get a direct relation between the screening length and the

entanglement length. Using the numbers from (27) in equation (34) as a consistency check

N~ is reproduced within a few percent.
This now can be used for a first comparison to experimental systems. If we plot

D/DRouse vs. N/N~ or M/fi~ we should find a universal curve. Since we cannot estimate the

entanglement length from the plateau modulus as it is done for a long chain polymer melt in

an experiment, this comparison should provide an unambiguous definition of N~. However, it

was found from comparing different polymers (PS and PE) to a very simple Lennard Jones

Polymer [24], that the simulatidns better compare to PE than PS. The computer polymers are

more similar to PE than PSj which has a rather large side group. This finds its manifestation

experimentally in the fact that the ratio between fi4j, the turning point of the viscosity and the

entanglement length fi~. detenuined from the plateau modulus, is not universal. Figure14
shows a comparison of MD results [24] and PE data [55] with diffusion constants from the

present simulation with an estimate of N~
=

30 (~§
=

0.5 ) and N~
=

40 (~§
=

0.4 ). There are

deviations for smaller N which certainly is related to the extrapolation of D~~~~~ for

N( if ~ )~'~ "
-

0. For N/N~
~

l all data up to a reasonable accuracy follow the same curve.
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Fig,14. -Comparison of norrnal12ed diffusion constants following reference [24] for PE [55],
molecular dynamics simulations [24] with N~

=
35 and the present data for N~

=
30, 4

=

0.5 and

N~
=

40, 4
=

0.4. ~

7. Conclusion.

The present investigation covers the static and dynamic properties of polymer solutions in the

so-called free draining limit from the very dilute single chain limit to the dense solution/melt
limit, where the chains are entangled. The outcome can be summarized into two different

points. One is the validity and usefulness of the used hardware and model, while the other one

contains the results of the scaling analysis, both for statics and dynamics.
Using the bond fluctuation method we were able to perform an investigation of tie static

and dynamic properties of polymer chains covering the whole density range from the isolated

single chain up to melts with the very same model. The fluctuations of the bond length, which

allow monomer moves of a length smaller than the bond length tum out to be especially
important for dense systems. No precursors of the glass transition were found. Investigations
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as such of the present kind typically require massive use of supercomputers, such as a Cray.
By the use of a multitransputer system we were able to perform such a typical supercomputer
application on a much cheaper system. To our knowledge, this is the first time such a type of

investigation was performed on a transputer system. For the present model the speed of 80

transputers roughly corresponds to the speed of one Cray XMP processor Using a highly
optimized Cray code [27]. For standard optimization the ratio turns out to be even much

better for the transputer system.
The second main group of results concerns the crossover scaling of both static and dynamic

properties. In chapter 2 we shortly. review the crossover scaling. The standard tssumption
within scaling ideas is that scaling should work for NW ~'~ " finite but N large and 4 small

giving f »
I. Indeed, if we follow the equations of chapter 2 we find significant deviations for

high densities. There f certainly is not much larger than f. For 4 =0.5 we find

f
=

6, where f
=

2.64. By including the density dependent average bond length (f~(4 ~'~ in

the scaling, we normalize all scaling variables to the length scales of 4 *. Using this, we find

that all data for (R~),. (RI) and S(q) collapse onto single scaling curves. Thus, we

determined the crossover scaling functions from the very dilute to the very dense limit. For

the dynamics the situation was somewhat more complex. Here not only the length scales have

to be scaled properly, but also the time scales. All theories, which describe the crossover of

the dynamics from the dilute to the dense limit use a constant intrinsic mobility of the

monomers. The deviations from Rouse behavior are then attributed to the interactions on

length scales longer than a typical bond length. As the data, however, showed, there is a

significant shift in the microscopic mobility with increasing density. Only with a normalization

of the time scales to the microscopic mobi§ty we arrive at a situation commonly described by
theory. Incorporating this, we find a master curve for the variation of the diffusion constant D

With density and chain length. An important aspect of this is also that we here have a first

direct evidence that the entanglement length N~ has a rather simple density dependence,
namely N~ /( (f~) ~° f )V" is a constant. So far the simulations, if compared to each other, very

well agree with the predictidns of the reptation model. However, meanwhile other theories

which give for weakly entangled chains and/or small times similar results are under discussion

[54]. However, in order to distinguish thbse prediciioni the chains have to be much longer (at
least N/N~ m 20). This is beyond the present computer capabilities.
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