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Abstract, A simple analytical study of a short term memory model is performed. This

model consists of
a symmetric p~neuron interaction between N neurons. Learning is achieved

by a generalized Hebb rule. Saturation is prevented by the introduction of a bound A to the

couplings. At each time step, an input pattern is drawn at random, independently of the previous

ones. The determination of the life time T of
a memorized pattern viewed as a

function of A and

N is accomplished by a statistical study of the dynamic of the learning process which has been

made possible under the assumption that the couplings evolve independently. This simplification
reduces the determination of T to a

one-dimensional problem, by considering energies rather

than couplings. The choice of the optimal value Aopt of A is a compromise between the success

of the learning process and the maximization of T. The essential results are expressed by the

~
p-iformulae T cc A and Aopt cc Ni

1. Introduction

The Hopfield model [lj suffers from the sudden appearance of confusion as soon as the number

of input patterns crosses a threshold. This model is therefore not suited to describe the

behavior of the memory during arbitrary long learning phases. Many elegant ideas have been

considered to remedy to this problem and calculate the capacity of such systems, by modifying
the acquisition intensity [2j or by considering transmission delays (see [3j for instance). As

suggested by Hopfield [4j, the Hebb rule can also be modified by introducing bounds to the

couplings. This alternative is common in recent models, which include multilayer networks

as in [5j for example. Numerical studies can be found in [6, 7]. Two different analytical
methods have also been developed: Hemmen [8] considered the learning process as a discrete

dynamical system whose asymptotics can be calculated exactly; Derrida and Nadal [9] reduced

the investigation, in the case of asymmetric diluted neural networks, to the study of a one~

dimensional random walk subject to constraints. For
a presentation of the rich behaviour

exhibited by such systems, see [10].

(*) Author for correspondence (e~mail: dbonnaz@pop~server.unil.ch)
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Fig. 1. Plot of the mean capacity versus A for networks with N
=

10, 20 and 30 neurons, obtained

numerically in the case p =
3. No error is tolerated in the patterns retrieval.

The goal is to provide an elementary understanding of systems that are able to record ev~

ery input patterns, inevitably to the detriment of good capacity. In order to improve storage
capacity, a p~neuron interaction between N neurons is considered, following Abbott ill] (cal-
culus of the storage capacity using the replica method) and Gardner [12] (among other things,

determination of the storage capacity without the replica trick in the limit p ~ cc). The

capacity is estimated by the mean life time T of onq recorded pattern. Figure I shows the

typical dependence of the capacity on the bound A for various sizes of the system.
We proceed to an analytical study of fully connected symmetric networks by assuming that

the couplings are almost uncorrelated for p » 2. Our approach differs in that respect from [9].
The idea is then to consider energy models instead of interaction models, inspired by Derrida's

random energy model of spin glasses [13].

2. Definition of the Model

The system considered here is composed of N neurons, with neuron I in state S~ E (-I, I)
I standing for firing, -I for quiescent) interacting via the Hamiltonian:

H[S]
=

~j Jj
~~..

~~S~~S~2 S~P, I < p < N (I)

q<~2< <~p

There are
C( distinct couplings J~~

~~ ~~.
Each coupling evolves according to the discrete

rule

J~~
~~ ~p

It) ~ J~~
~~ ~p

It + i)
=

fA J~~
~~ ~~

It) + Sl~ Sl~ S]~) 12)

where

IA,
x > A

fA(x)
= x, (x( < A

-A,
x < -A

is the limiting function and St
#

(S( I
=

1, 2,
,

N) is the random input pattern at time t.

The memorization process is successful if St corresponds to a strict minimum of energy in the

configuration space. To understand how it works, suppose that the function fA is removed.
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The system registers more and more patterns but it becomes robust in the sense that the cou~

plings increase, at the expense of flexibility (more precisely, the system cannot create minima

of energy at the right places any more and spurious minima invade the configuration space).
Furthermore, as a consequence of the learning process, the old patterns are progressively for~

gotten. These two facts contribute to a loss of ability of the system to record and remember

at the same time. To avoid such a dramatic situation, the freedom of the couplings must be

limited to insure that every input pattern is memorized. The system remains at the edge of

robustness (the system is not critical in the sense that the life time distribution is not a power

law for the values of A considered), to the detriment of capacity because less deep energy wells

get faster obliterated. This problem can be viewed as an optimization process. The remain-

ing part of the section is devoted to the study of the model by considering the asymptotic
distribution of the couplings.

2. I. A Toy MODEL: THE CASE p =
I. Consider first the case where each neuron interacts

only with a site dependent external field. Since there is only one strict minimum of energy,

the capacity is limited to one pattern. The quantity of interest is the probability that an

input pattern is successfully registered. If PA denotes the probability that a J~ has the correct

sign (I.e. the same as
S() right after the trial, then the probability of success is given by

(PA16'~, where

/j~~ ~ ~~~~~~~

i 1
~ haif~integer l~)p~

= j +
2 A +1

where the brackets denote integer part. For further details, see appendix A. The probability
of success goes exponentially to 0 as N ~ cc unless A < I, so any A E (0,1) is optimal.

2.2. THE GENERAL CASE. Consider now the case p > I. Suppose for simplicity that A is

a positive integer and that initial conditions are

J~~
~~ ~~

it
=

0)
=

0 Vii < 12 < < i~ (4)

The equation (2) controlling the discrete evolution of each coupling can be rewritten as

~h
~2 ~p ~~~ ~ ~~~

~2 ~p ~~~ ~ ~~~
~2 ~P ~~~ ~~~

where AJ~~
~~ ~~

(t)
=

+I with probability 1/2 for J~~
~~ ~~

(t) # +A, with the sign depending

on the choice of the input pattern. We can
have also AJ~~

~~ ~~
(t)

=
0 or ~l with probability

1/2, the sign corresponding respectively to the cases J~~
~~ ~~

(t)
=

+A.

Let pj(t) be the probability one coupling equals J, defined for J E (-A, -A + I,
,

A),
then they obey the equations

PA It + i)
= )PA It) + )PA- ilt)

p j(t +1)
= p j+i(t) + p j-i

It) for J # +A (6)

P-A(t + I)
= )P-A(t) + )P-A+i(t)
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which have already been studied in [9]. When t ~ cc, the solution converges to the uniform

distribution:

~~~~ ~ "~
A~+

~ ~ ~ ~' ~ ~ ~' '~~ ~~~

Consider now only k different couplings among C(. It is expected that they constitute, at

least in the large A limit, a subset of independent variables if k < p + I. Indeed, if the effects

of bounds are neglected, the variations of the couplings do not depend on the history. Thus it

is sufficient to check relations such as for instance for p =
2:

1(/~Ji 21tli"~ i/~J131tli"~i - 11/~J121tli"~i (/~J131tli"~i

for every positive integer al and a2, but we have already that

jaJi~jt) aJi~jt)aJ~~jt)) ~ jaJi~jtj) jaJi~jt)) jaJ~~jt))

where (. stands for an average over the values of the components S( of the input pattern.
From now on, we assume that the couplings can be considered as independent variables which

seems to be reasonable for p ~ N/2 in the large N limit, but we expect it to be valid also for

small values of p.

3. The Energetic Approach

Supposing that the couplings are independent, the central limit theorem (CLT)
can be applied

to calculate the distribution of energy of any pattern viewed as the sum of C( independent
stochastic variables. As a result of the symmetry of the coupling distributions, the distribution

is independent of the pattern. So we calculate this distribution, denoted by p(E), for the

pattern (I, I,
,

I). The CLT states that p(E) is a Gaussian with mean value p =
0 and

variance a~
=

1/3 A(A + I)C(. But the knowledge of p(E) is not sufficient to calculate the

life time of a memorized pattern. We have to introduce a way to describe the convergence

of p(E) towards a Gaussian distribution. Note that we already know that the energy of the

input pattern decreases on average from E' to E'- (I Q)C(, where Q
#

II (2A +1) is the

probability that
a

coupling keeps the same value.

If the energy is E' at time t, it will be E at time t + I with probability P(E, E'). In a general

way, the distribution evolves according to

p(E; t + I)
=

~j PIE, E') p(E'; t) (8)

E,

Obviously, £~ P(E, E')
=

I. Now we make the assumption that C( is much greater than

the distribution width. Then the approximation of the sum by an integral between -cc and

+cc yields the integral transform

p(E; t + I)
=

/ dE'P(E, E') p(E'; t) (9)~~

At this stage, an ansatz is made for PIE, E') (to be justified below) depending on the param~

eters i E (0, +cc) and I E (0,1):

P(E,E')
=

'~e~~l~~~~'~~ (10)
~
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Repeated applications of (9) lead asymptotically to a Gaussian distribution of mean value

p =
0 and variance a~

=

)[i(I l~)]~~ Appendix B presents these results in greater detail.

The values of the two parameters will be obtained naturally by considering the justification of

the relation (10).
For this purpose, let us define n[ (and n~) as the number of couplings with value J

=
I at

time t (and t + I). The n~ are constraint by the relations:

A A

~j
n~ =

M and -~j I n~ =
E (II)

~=-A ~=-A

with M standing for C(. Let us also define nj
~

as the number of couplings changing from

J
=

I at time t to j at time t + I. For instance if I # +A
,

we can only have j
=

I + I or I I.

The nj
~

verify

nAA + nA-iA "

n~

n~+1
~

+ n~-1
~

=

nj it i # +A
j~~~

n-A+i-A + n-A-A "
n~A

and

nAA + nAA-i " nA

n~ ~+i + n~ ~-i # n~ if I # +A (13)

n-A -A+i + n-A -A " n-A

These equations are not independent. In fact, the sum of the left~hand side terms of the

equations (12) equals the sum of the left~hand side terms of the equations (13), so there are

only 2(2A + 1) 1 relations for 2(2A + 1) variables. The probability sought is the number of

ways to make each coupling vary for fixed (n~), (n[) and n~
j,

divided by the total number of

possibilities (2") and summed over all the choices of (n~), (n[) and n~
j

compatible with (12),
(13) and (11):

, , n[! ~)~

~l
~ ~ (~

n~ ~i
~!n~-1~! '~~~+~ ~~ ~ ~

(14)

pjE, E')
"

2~
nA A.llA-i A.jn~i,I"ll'l"' ~l

~ ~ Hn[I/Hn~
j~

~

~~ ~~ ~~~~~j

Every possible changes have the same probability because all the couplings are supposed to

evolve independently and each coupling always takes a new possible value with the same

probability1/2 (see (6)).
The combinatorial factors in the first sum are easy to understand. For instance, the first

one represents the number of possibilities for nA A
couplings among n[ to remain the same,

and nA A-i #

n[ nA A to diminish. At this stage, using (12, 13), the n~
j

in (14) are easily
expressed as functions of nA A.

The calculus of (14) is performed in the large N limit by taking the leading order term in N.

This term is obtained considering only the greatest term of the sum, which is calculated with

optimal values of (n~), (n[) and nA A
verifying the constraints. Nevertheless this is a difficult

task. So we prefer to calculate (n~) and (n[) first, and then deduce P(E, E') by supposing it

is, in the large N limit, equivalent to the probability to go from (n[) to (n~). The price to

pay is a slight discrepancy, for A small only, between the result for a(A)
=

1/(2a~(A)) and

the expected value, as we
shall see in equation (31).
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The first step is to find the relation between E and (n~)~~j_A,-A+i, ...,Aj. For each energy
E correspond different choices of (n~), each choice corresponding in addition to different ar~

rangements of the couplings. The probability of having the reduced state (n-A, .,nA) is

simply the number of acceptable arrangements of the couplings, which are equiprobable since

all couplings are uniformly distributed, divided by the total number of arrangements (2A+1)"

12A + 1)-" /~~ lis)

fl n~j

~=-~

The energy distribution is then:

p(E)
=

~j (2A +1)~" /~
(16)

1«~l fl
y~

j=-A
~

where the sum is performed under the constraints (11). Because of the difficulty to cope with

this formula, a well-known method in statistical physics is used. The goal is to identify E with

only one choice of the (n~), optimal in the sense that II fl n~l is a maximum. By applying the

Lagrange multiplier method, we find:

xjE))~
~ j j ji~~n~ =

M
~ ,

i
-~'. '~

~ jxjE))J
~~~

The Lagrange multiplier X(E), is calculated by introducing the expression (17) for n~ in the

relation -£j~_ ~in~
=

E. Assuming that
£ =

E/M is small enough, the development of

X(E) to order
£ is

~~~~ A(~/+ 1)
~ ~~~~

From this we deduce that

n~ =
2/~i1 ~~ ~ ~~ ~) Where a~ =

3

A(A + 1) ~
(19)

At this stage we can recover the CLT result, calculating fIn~! with the approximation
n! m

e"'~l")~~l If we suppose that the n~ are of the form fi (1+ a~£ + b~£~), then to

order £~

( ~~~~~~~ ~~ ~
~~

2A + 1)
~

~
2(2A + 11

(
~~~ ~~~~

This result to order E~ only provides from products of terms to order E. The substitutions for

every a~ from (19) lead to

A
~fl n~! m

M!(2A+1)~"e2A(I+~i i~ (21)

~=-A
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The distribution is then siJj1ply

p(E)
m e~ 2A(I+11

%
,

(22)

in agreement with the CLT result.

To continue the calculation of P(E, E'), we have to find the optimal value of nA A to order E

by considering £ (fInv!)
=

° 1231
AA

This leads to a polynomial equation of degree 2A +1 in nAA which admits only one real root.

We use the value of this root and (19) to calculate the n~
j.

This yields the next expression for

the n~
j.

~*'~ *'~ 2(2~+ 1)

~
~

A~+
1~~

~
'~)

~~~~

and

~~~~'~
2 (2A + Ii ~~ ~ °~ ~ ~ ~~ ~ ~~~~

where
3(A+I-I)(A+I+1) 3

~ ~~~2 A(A+1) ~2A+1' ~°

a~ =

3 (A I)(A + I) 3
~

2 A(A + 11 2A + 1' ~ ~~~~

(26)
3(A+I-I)(A+I-1) 3

~ ~~~2 A(A+1) ~2A+1' ~°

fl~ =

3(A+2-I)(A+I) 3
~~

2 A(A + 1) 2A + 1' ~ ~~~~

for I E (-A + I,
,

A). Switching a~ and fl~ yields n~ ~-i
The calculation of P(E, E') to order

£~ gives an expression of the desired form (10) except for a factor e~~(~') with t~(E') < I. For~

tunately the consequence is minor because the normalization is preserved with an appropriate
rescaling. The parameters i(A) and I(A)

are given by

'~~~~ 4(2A l)M

~ 2A~+ ~ ~

~ _jj ~°~ ~
~~~

~~~~

and
~ ~

'~~~
f/A)

4(2A l)M

~ 2A~+
1) ~ ~ _( °~

~~
~~~~

By substituting (26) into (27) and (28), we find

'~~~~ l/M ~~
~ll~+~))~~ /l(~~ ~ ~

~~~~

and

A~ + A + 1
j30'(A)

~
l 1°

8 A4 + 16A~ + 19A~ + 1IA + 6
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Fig. 2. Approximate value of o(A)
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versus A. The ratio does not depend on M
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Fig. 3. Plot of the function A(A).

With a =

1/(2a~)
we get

a(A)
=

(I I(A)~) i(A)

~ ~

2~i A(/+
1)

~ (2A l)2
~

~~8A4 +
1~3~~~2~~

llA+ 6) ~~~~

Note that I does not depend on the size M of the system. I can be seen as a quantitative

measure of the robustness of the system, increasing if1 ~ l. The value of a~(A) calculated

from a(A) is compared with the previous result in Figure 2. These values do not differ more

than about lsl. Furthermore they are identical for A
=

I and very close for A » I. See also

Figure 3 for I(A).
We are now able to estimate the storage capacity by calculating the life time of a recorded

pattern. We assume that the energy distribution p(E, t) is stationary ii and a are
fixed). The

decrease of the energy of the input pattern, which equals -M ii Q)
fi -M, and -M(1-2p IN)

for his neighbours, puts this state out of equilibrium. The effect of the noise of other records

is to restore the equilibrium. More precisely, the Gaussian nature of PIE, E') indicates that

the mean energy
f and the variance L~ obtained after one temporal step from energy E'

are
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respectively:

f=lE' and L~= (32)
21

Each step corresponds on average to a simple multiplication of E' by I. The fluctuations have

the same amplitude for all E'.

In fact, we are interested in the difference of energy AE, between the input pattern and a

neighbour pattern. The energies are the sum of M terms, M(I p/N) of which are identical.

Only Mp IN of them (always the same if the states are fixed as it is the case here) are opposite,

so we drop the lzI(I p/N) couplings which never play any role in the variations of AE.

Therefore AE can be seen as a sum of only Mp/N terms. We conclude that P(AE, AE') is

given by

Pi AE, AE')
=

'~~ e~~~(~~~~~~~'J~ (33)
/~

with the parameters la, la, La and aa calculated similarly as the parameters considered

earlier, except for the substitution AI ~ Mp IN. Note that the correlations tends to soften the

fluctuations of the difference of energies between the neighbours.
We are now in a position to calculate the mean life time T of a memory. Just after the

memorization, the initial value of AE is AEO
G~ 2Mp IN + aa. Then we deduce from (32) that

AE is reduced by
a

factor ii after t new memorizations since the fluctuations, of typical value

La, are negligible
as long as AE » La. But when AE reaches the same order of magnitude as

La, we expect that the hierarchy of patterns is rapidly modified. Thus we estimate naturally
T by writing

I( ~M
m La (34)

From now on, we assume that I « A (and p « N). Hence we obtain

In
(fi

~
~

P

~ Irll'& (All

m (p I) In(N) A~ (35)

Figure 4 illustrates the evolution of the energies of an input pattern and one of his neighbours.
This model also predicts how Aopt depends on N. If we want the memorization to be successful,

AEO must be greater than the distribution width aa of AE, up to a numerical factor c, to

insure a minimum of energy has been generated. That is, A verifies

caa(A) §
~~M where aa(A)

m

fiA
(36)

Aopt is thus the maximum admissible value of A:

fi
~°~~

lP Ill ~~~~

4. Some Concluding Remarks

The main result is the strong dependence of T on A. The size of the system influences sig~
nificantly the capacity, essentially because Aopt is increased. For p =

2, these results are in
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Fig. 4. Time evolution of the energy of one pattern selected to be recorded at time t
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100. We

have also represented the time evolution of the energy of one neighbour. The second diagram shows

the energy difference between the two neighbours. With N
=

10, p =
3, A

=
1.5.

agreement with [6. 7,9j where one can find Aopt c<
4 and the capacity c< N (estimated here

by T). They are
also exact for the trivial case (p

=
I). Furthermore, the capacity i

NP~~ is

compatible with the total number of memory states given in ill,12]. Of course, the capacity
decreases for A smaller than the optimum and is exactly I when A < I.

The typical number of bit stored per coupling is estimated by NT/lzI m p(p I In(N). Thus

it seems a
good idea to consider values of p > 2, but there are also drawbacks, discussed for

instance in [12j.
In practice, the choice of p should be adapted to the purpose: it offers interesting possi~

bilities to simulate systems with complex linkages where pair interaction is a poor, restrictive

approximation. For instance, it allows to build a rugged landscape subject to changes in time,
with significant number of extrema despite a small value of N.
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Appendix A

This appendix details the treatment of the p =
I model. Since every couplings vary inde-

pendently, it is only necessary to look at the time evolution of one of them (denoted by J).
Assuming J(t

=
0)

=
A, there are two cases: A is either an integer or half integer, or it is not.

We begin with the easiest case: J can only take a value in the set (-A, -A + I,
,

A). The

evolution of J implies that the density pj follows the equations (6), leading to the asymptotic
solution

~~~~ ~ "~
A~+1

~~ ~~~~

Now we calculate the probability PA that J (# 0) has the correct sign (+ for example),
remembering that J makes a unit step in the desired direction. For integer values of A,

PA
#j~pJ# ~~~

(39)

J=o

~~ ~

while for half integer values of A

PA
=

~j
pJ =

~

~~
+ 140)

jii

In the other case J belongs to (-A, A (L I), -A + I, A (L 2),
,

(L I) A, A), with

L
=

[2Aj +1 (note that -A + I
=

A (L I) + I if and only if 2A is an
integer). The equations

are now:

PAlt + i)
=

(p~jt) + (p~-i it) +
p-~+~~-i~

it)

~~~~ ~ ~~
~~~~~~~

~
~~~~~~~

j41)

for J E (A (L- I) + I,
,

A 1)

PA~L-o It + i)
= (p~~~-j+i it)

The values of pj for the other J verify the same equations except for replacing every pK by

p-K The asymptotic solution is given by:

~~~~ ~~~~ L(L +11' ~ ~ ~°'' '~ ~~ ~~~~

and therefore

PA
=

~
PJ

J>-i

=
+ PA- jAj-i + P-A+jAj (43)

1 2L-2[Aj-1
~

2
~ L(L +1)

Substituting L
=

[2A] + 1 into the last equation gives (3).
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Appendix B

We study here the evolution of p(E) towards a Gaussian distribution. The basic equation is

p(E; t + I)
=

'~
/dE'e~~~~~~~'~~ p(E'; t) (44)

~

where 'f E (0, +cc) and I E Ilt. The normalization is easily seen to be preserved. Suppose now

that p(E) is a Gaussian distribution:

pj E. t)
=

ie-a(tjjE-~(t)j2 j~~)
'

~

Applying (44) yields

pjE; t + ii
=

~e~whl~~~"~~)l~ j46)
~jil + ajtjj

Therefore (44) maps a Gaussian distribution into another Gaussian distribution. The param~

eters change according to the relations

art +11
= ~,i[~jj~j and pit + ii

=
>pit) 147)

The study of the iterations of

f
~ ~

al

'~'~ ~ °

~~~ ~~~~ '~ (48)

leads to the results:

a =
i(I l~) is an attractive fixed point

~~
=

l~
< 1) (49)

da
~~~_ ~2~

and

a =
0 is a repelling fixed point

~~
= > l) (50)

do
~

l

for 0 < (A( < 1, p =
0 is an attractive fixed point for the same condition on I too.

Assume now that p(E)
can be written as the linear combination of Gaussian distributions:

PIE)
=

~
a~P~ (El 150

where p~(E) are Gaussian distributions with arbitrary means and variances. The coefficients

a~ verify £~
a~ =

I (normalization condition). Then each Gaussian distribution converges
independently to the same asymptotic Gaussian distribution (because (44) is linear) thus p(E)

converges to this Gaussian distribution.
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