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Abstract. Recently, hysteretic behaviour has been measured in some friction experiments
involving elastic surfaces. Moreover the approach toward the asymptotic value for the friction

force is characterized by a well defined length scale. We describe how this behaviour is connected

to the collective properties of the elastic instabilities suffered by the elastic body
as it is displaced

quasistatically. We express the relaxation length of the hysteresis in terms of the elasticity of

the surface and the properties of the rough substrate. The predicted scaling are confirmed

numerically.

R4sumk. Des rdsultats expdrimentaux r4cents ont montr4 que la force de friction entre deux

surfaces dlastiques pr6sente un comportement hystdrdtique. De plus, la relaxation de la force de

friction vers sa valeur asymptotique est caract4ris4e par une longueur. Nous d4crivons comment

ce comportement est lid aux propr14tds collectives des instabilitds dlastiques subies par le solide

lorsqu'il est d4placd quasistatiquement. La longueur de relaxation est exprim4e en terme de

l'41asticit4 de la surface et des propr16t4s du support rugueux. Les lois d'4chelle pr4dites sont

confirm4es num4riquement.

1. Introduction

The present paper discusses the origin of hysteretic behaviour and history dependent effects

measured in some recent friction experiments. We use a simple model to develop a phenomeno-
logical analysis of hysteresis in friction in the quasi-static limit (zero velocity, i-e-, below the

depinning threshold). In particular, we emphasize the connection between the measured hys-
teresis of the friction force and the microscopic elastic instabilities occurring when an elastic

surface is pulled over a microscopically rough surface. Guided by computer simulations of a

one-dimensional elastic chain, we construct a coherent collective pinning picture of friction.

In particular, an equation for the relationship between the friction force and the number of

elastic instabilities is derived. We use this equation to obtain the hysteretic relation between

displacement and friction force. The relevance of our model to describe experimental results

is discussed.
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(~~) URA CNRS 1325
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1-1- HYSTERESIS IN THE ELASTIC LIMIT. Friction between two solid bodies is found

experimentally to obey the two amazingly simple Amonton's laws, namely that: I) the frictional

force is independent of the size of the surfaces in contact; it) friction is proportional to the

normal load.

In spite of their simplicity, the understanding of these laws remained obscure for a
(long)

while. The first step was done by Coulomb, who pointed out that roughness was
responsible of

the interaction forces between the surfaces. The friction force then originates from the inter-

locking of a number of asperities on the two surfaces. But the first statisfactory understanding
only came out in the first half of this century. On the base of the systematic experimental
investigation of many friction phenomena, Bowden and Tabor then proposed the first "mod-

ern" theory of friction iii. Their point is that the real contact area between the two solids is

only a small part of the "bare" contact area, so that the asperities in contact undergo large

pressures and thus deform plastically. Starting from these two ideas, they could justify the

two Amonton's laws. However, since then, the development of clean, reproducible experiments
indicated the limitations of these laws (see e.g. [2] and references therein) and contributed to

refine the theoretical understanding of friction phenomena [3-6].
In this paper, we shall restrict our attention to a specific feature observed in recent experi-

ments of friction conducted in the "elastic" regime. These experiments exhibit hysteresis of

the friction force as a function of the displacement of the solid body, so that it takes a finite
dtstance for the system to reach the stationary sliding regime. This means that the friction

force does not depend only on velocity or position, but on the displacement performed before

reaching the point at which the force is measured [7]. These history dependent effects are thus

characterized by a length scale, which we shall denote as "recovery" or "memory" length. This

phenomena has been reported in AFM friction experiments at the nanometer scale [8, 9], in

experiments using artificial elastic surfaces with millimetric asperities [7], as well as in measure-

ments in the related situation of the hysteresis of the contact line at the nanometer scale [10j.
The existence of "memory effects" in dry friction characterized by a length is known since

the experimental work of Rabinowicz ill] and was accounted for by Ruina and others by
introducing new empirical state variables [12,13j. The "memory length" (of the order of the

micrometre) is commonly interpreted as the distance needed to break a contact and originates
from the (slow) plastic deformations of the contacts. Therefore the existence of hysteresis

even in the elastic regime as measured in the previous experiments cannot be handled by
such approaches and new mechanisms have to be found to understand it. One approach

was proposed recently by Tanguy and Roux [14], who have shown that even in the elastic

regime, memory effects characterized by a length can be induced by long-range correlations

in the roughness (for example for self-affine surfaces). However this was not the case for the

experiments cited above and another origin has to be found. This is the object of this paper.

Inspired by the previous experiments, we
shall consider in a first step a much simplified

version of the problem. Our model consists in a one-dimensional chain of springs, moving
quasistatically on a rigid disordered surface (see Sect. 2.I for details). Though very simple,

we shall show that the model already exhibits history dependent effects characterized by a

length scale in the building up of the friction force. The generalization of our results to two-

dimensional systems is straightforward. As we shall show, the crucial point is that in low

dimension (I and 2), a typical correlation length in the system is smaller than the system

size and friction is a collective process. As it stands, our approach does not however apply to

3-dimensional systems. This point will be discussed in the conclusion.

1. 2. THE CRUCIAL ROLE oF ELASTIC INSTABILITIES. As already pointed out by Tomlinson

[15], friction arises in an elastic media due to the existence of a multiplicity of metastable states.
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Fig. 1. Graphic resolution of equation (2) (in the multistable case
2Ap/R( > ~). The full line is

the derivative of the defect Gaussian potential. The slope of the straight line is ~, the stiffness of the

spring. The intersection gives the solution of equation (2). Black dots are the stable solutions, the

open dot is the unstable 801ution.

This multiplicity induces mechanical instabilities in the system and leads to dissipation and

hysteresis [6, 16, 17j.
The instabilities arise whenever the local force-balance equation describing the interlocked

surfaces becomes multivalued. As the mutual displacement of the two bodies is increased, the

asperities are forced against each other. The interface force increases linearly as a function of

the centre of mass displacement. When the local force balance becomes unable to sustain the

mutual force between the asperities, a local rearrangement of the atoms in the interface will

take place. If the roughness of the interacting surfaces is sufficiently large, the motion of the

interface atoms takes place in the form of swift jumps from one metastable configuration to

another. During such an instability the friction force drops precipitously by a certain value,
for then again to increase linearly upon further increase in the relative displacement ofthe two

bodies.

Let us recall the microscopic features of the elastic instabilities. This is most easily done by

use of a single degree of freedom picture [6,17j. Consider a particle at position z elastically
coupled to a position X lone may think of X as the center of mass of the elastic lattice). We

want to follow the motion of the particle as it passes over an asperity modeled by a Gaussian

peak in the potential energy. The energy of this system is given by

u
~

(~ix x)2 + A~ expi-iz/R~)21, 11)

~ being the stiffness of the elastic coupling, and Ap and Rp the strength and range of the

asperity potential.
The static equilibrium of the system is obtained by solving the equation 3U/3x

=
0 for a

prescribed X value, I.e., we have to solve the equation

~jz X)
=

~~~~
exp[-(z /Rp)~j. (2)R(

This equation is solved graphically in Figure I. The important point is that the equation has

a single valued solution for any value of X as long as the slope of the force exerted by the

Gaussian peak is everywhere smaller than ~. This condition is

2Ap
j < ~. (3)

p
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When this condition is not fulfilled (as in Fig. Ii, the equilibrium position of the particle
x(X) will become a discontinuous function of X: a mechanical instability occurs when the

system passes over the defect. Accordingly, energy is dissipated (e.g. into the rapid degrees
of freedom, like phonons): instabilities induce hysteretic behaviour. In a more general case

where an elastic surface slides over many defects, one may still expect the basic mechanism for

friction to be linked to the occurrence of elastic instabilities.

1.3. OUR AIMS. Our aim in this paper is to give a mainly qualitative picture of collective

pinning in the quasi-static limit in order to understand the memory effects. We stress the fact

that we shall study the system in a regime where the sliding velocity of the two solid bodies

strictly vanishes. In other words we study the system in a regime where the external force

applied on the system is less than the critical value Fc above which the system acquires a

finite, non vanishing velocity. This transition is usually denoted as the depinnmg transition,
and Fc as the critical pinning force. Thus no dynamical effects are expected in our case and

the system will be considered at equilibrium under an applied external force. The velocity
dependence of the friction force is therefore not the purpose of the present study [18-20j.

We will attack the problem along the following line:

ii First we perform numerical simulations of a very simple model of the system, in order to

check the existence of hysteretic effects characterized by a length scale.

ii) We then construct a ~'microscopic" scenario of friction by analysing the microscopic be-

haviour of the system.

iii) Finally, on the basis of the numerical results, we propose a qualitative phenomenological
model for the collective properties of friction in the quasi-static limit. This model provides the

link between the collective equilibrium and out-of-equilibrium properties of the system below

the depinning threshold.

2. General Features of the Numerical Results

2.I. A SIMPLE NUMERICAL MODEL. Let us first introduce the model we use for our

numerical experiments. For simplicity we model the two interacting elastic surfaces by a

mobile deformable elastic medium in contact with a stationary undeformable rough surface.

This is clearly a limitation in comparison to two deformable elastic surfaces. However, our

findings will justify our anticipation that this simplification is inessential.

Our model consists of a one-dimensional string of particles at positions z~ where I
=

I,.. N,
coupled together through elastic springs all of the same spring constant k. The chain, of length
L, is assumed to be periodic. We use the equilibrium length a of the elastic springs as our unit

of length a =
I. The particles interact with a set of pinning centres in the form of randomly

positioned (at positions If where I
=

I,..,Np) repulsive asperities of density np. All the

asperities are modelled by the same Gaussian potential peak of amplitude Ap and range Rp.
The potential energy of the system can accordingly be written as

u
=

Uej + upin

=

~ f(x~
x~+i a)~ +

( i~
Ap exp[- (x~ x()~ /R)j. (4)

~
i=1 1=1 j=I

We are interested in experiments where dynamical effects can be neglected. For this reason

we investigate the total force produced by the asperities when the elastic chain is moved

quasistatically through the asperities.
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The quasistatic motion of the chain has been performed numerically using a Molecular

Dynamics (MD annealing method, developed previously for such systems [17j. We recall here

the main points of the relaxation method. First, a unit mass is ascribed to each particle of

the chain. Then, MD equations of motion are written, which are derived from the potential

in equation (4) supplemented by an auxiliary kinetic term. Note that in our simulations, the

averaged kinetic energy per particle, I.e. the temperature, is taken to be very low (of order

10~~Ap). The numerical integration of the equations of motion is done using the leap-frog
algorithm [17j. The time-step for the integration was taken to be dt

=

0.01(m/k)~/~

Now, starting from a given configuration with c.o.m. position Xojd, the elastic chain is first

displaced as a rigid body by a small amount da (dx la
=

10~~ in our
simulations) by replacing

all the particle positions by x~ -+ x~ + dx. The chain is then relaxed to the asperities using the

MD procedure during 10 time steps. We checked that the results (in particular the friction force

versus c.o.m. position) do not change upon further relaxation, I.e. by increasing the number

of relaxation steps per infinitesimal shift. The
c.o.m. is kept fixed by always counteracting

the force exerted by the substrate by an external force fext applied homogeneously to all the

particles of the chain. We have

text
~

fi~

~ ~ ~ (5)

where fext used in the
present

time step is lculated from the positions of the previous

ular time step. At the end of each of these laxation rocedures, the excess inetic

nergy is extracted from the system
by rescaling all the elocities

by the square root of

of the (measured) final over
the (ascribed) nitial kinetic energy of the

system. Note that the

small kinetic energy put in the system is only used as a numerical rick to

and explore locally its phase space. This of ccessive

shift

and relaxation is
then

iterated, until the c.o.m. has been
shifted

a
distance

of a few lattice spacings

allows
one

to follow as ccurately as desired the motion through the background potential

and a whole curve of the friction force Ff
versus

c.o.m. position c_o_m
can

be
onstructed.

Simulations
have been erformed for two system sizes (N = 500 and N

being similar

longer chain).

Whether this MD
ethod

produces the correct"
set of metastable configura-

tions or not is a delicate question. In rder to answer this roblem,

with constant force imulations using
overdamped

which is the tandard"
way

of

simulating such systems
[18j.

Starting from
a

given
characterized

by a c.o.m.

position Xojd and a force F$~~
=

Ff(Xojd),
a small shift in

the force, dF is imposed.

system

then move till the
sum

of the forces
vanishes, eading

to a new c.o.m.
position

Xn~w,
so that Fj~~ + dF = Note that this is

orrect
for forces under the depinning force

Fc (since the
system will acquire a

of the problem we are
interested

in.

The important point is then that these
constant

force simulations give results

and uantitative agreement with those obtained
using

the MD annealing method, thus

the validity of
this procedure

to drive the
system.

The draw
back of imply applying

a
constant

external force is that the force from the substrate fluctuates in
space.

A

force will
therefore sometimes be much

larger
than the pinning

force.
This leads to nwanted

acceleration effects and make it difficult to remain in the
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Fig. 2. Hysteresis of the averaged force
as a

function of the center of mass displacement Xco
m

when the elastic chain is pulled back and forth
over the defect surface. The parameters are: length

of the elastic chain N
=

500; density of pinning centres np =
0.5; parameters of the Gaussian defect

potential Ap
=

0.06, Rp
=

0.25.

Fig. 3. Log-linear plot of the averaged force as a function of the center of mass displacement

Xc
o m

for two different densities (top curve np =
0.35, bottom curve np =

0.2). The dotted lines are

an exponential fit of the averaged force in the large Xc
o m

limit. The other parameters are N
=

500,
Ap

=
0.06 and Rp

=
0.25.

2.2. EXISTENCE oF HYSTERESIS. Inspired by the experiments of reference [7], we move

the elastic chain back and forth over the "rough" surface, according to the numerical algorithm
discussed above. For each c-o-m- position of the chain, Xc

o m,
we measure the force acting on

the particles of the elastic chain. This force will be denoted as the friction force, Ff. The whole

curve Ff versus Xc_o_m_ is then averaged over many cycles and over different random spatial
configurations of pinning centres. Figure 2 shows a typical numerical result. Starting from a

given point, the friction force reaches ajter a finite distance
a plateau value, independent of

the c.o.m. position. This plateau value is the static friction force: it is the maximum value

for an external force before the solid body (here. the elastic chain) acquires a non vanishing
velocity. Then, when the system is moved in the other direction, the same plateau value with

the opposite sign is reached, but following a different curve in the Ff versus Xc_o
m_

plane: an

hysteresis loop is performed during a cycle.
As in the experiments, history dependent effects are clearly observed, since it takes a

finite

length for the system to reach the stationary pinning force. This defines a recovery length.

2.3. EXPONENTIAL DECAY oF THE PINNING FORCE. As shown in Figure 3, the approach
towards the plateau value for the friction force is ~. For example, when the system

is pulled in the Xc_o_m > 0 direction, the friction force can be very well fitted after an initial

small transient distance, by the following relation:

Ffixc
om

=
Fcc + ifo Fcc) exP 1~°~.° n °°1

16)

where FC~ is the plateau value for the force, Fo is the force measured at a given point Xo.

This relation defines the recovery length, (. In our simulation, the latter was obtained to be
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lo
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~ ~a.om ~

Fig. 4. Plot of the non-averaged force as a
function of the center of mass displacement, i.e., for one

realization of the cycle. The parameters are
N

=
500, np =

0.2, Ap
=

0.06 and Rp
=

0.25.

of the order of a few Rp, the range of the defects. The size of the initial transient regime was

obtained to decrease when the density of pinning centres np increases.

One can note that the same exponential approach towards the plateau value of the pinning
force has been found experimentally in references [7,10j. This point will be discussed in the

conclusion. We now analyse in greater details the simulation results to give a microscopic
picture leading to these results.

3. A First Empirical Understanding

3.I. HOOKE'S LAW AND INSTABILITIES. While in Figure 2, we considered an average of

the friction force over many different initial states, we now focus our attention on a particular
realization of the numerical experiment. A typical non-averaged plot of the friction force as

a function of the c.o.m. displacement is shown in Figure 4. This figure is characterized by

a saw-tooth behaviour, which splits up into linear increase of the friction force, separated by

steep decrease in the friction force.

ii) The linear behaviour corresponds to the reversible linear (elastic) response of the sys-

tem, when
an external force is applied in order to impose a given c.o.m. displacement. This

response is characterized by an elastic susceptibility, ~L, defined by

dff
=

~LdXc
o m.

(7)

relating the measured infinitesimal change in the friction force, dff, to the c.o.m. displacement
dXco_m_, according to a simple Hooke's law. The parameter ~L was first introduced by Labusch

[22j, in the context of lattice deformations in crystals and will be denoted as the "Labusch

parameter" in the following.
iii) The discontinuities in the force are the indication of a dramatic irreversible transfor-

mation occurring in the system. A look at the microscopic trajectories shows that these jumps
in the force are intimately connected to a large common displacement of a significant number of

particles (typically of order 10-50 among 500). The typical displacement dxo of each particle of

the moving block was always of the order of one lattice spacing in all our simulations: dxo Cf a.

This indicates that, because of the imposed c.o.m. displacement, the local equilibrium state

of the system becomes unstable and a finite jump occurs towards a new local equilibrium

state [17]. In other words, these jumps occur because the system cannot support elastically
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the applied external force anymore, so that a new metastable state has to be found in order to

release the stored energy. Dissipation occurs during these abrupt transitions. In the following,
these jumps will be denoted as "elastic instabilities".

The previous scenario is in fact very reminiscent of the single particle case
ii. e., one spring

over one
defect), discussed above [6, 23]. In particular, the multistability of the metastable

positions seems thus to be recovered in the many-particle system. However the characterization

of the associated instabilities is now
much more difficult, because of the collective character of

the phenomena, as will be shown in Section 4.

Let us assume that the elastic chain is pulled in the Xc
o m

> 0 direction. We introduce

the spatial frequency of instabilities, u, defined as the number of instabilities occurring in

the system per unit c.o.m. displacement; and Al~n~t the drop in force occurring in a single
instability. It is useful to define it to be the absolute value of the drop, so that Al~nst > 0.

The latter is assumed, of course, to depend on the c-o-m- position (or equivalently on the

friction force) at which the instability takes place. According to the previous scenario, a

simple differential equation for the (averaged) friction force, Ff, can be written:

'

~~~.m.
~~ ~~~~~sti j~j

which accounts for both the elastic response of the system and the finite change in the force

during instabilities. The notation (..
means a non-equilibrium average over many different

distributions of pinning centres for a given c.o.m. displacement, or equivalently for a given
friction force. We omit the brackets for the Labusch parameter ~L, since the latter is found

in the simulations to be independent of the friction force Ff. This means that the elastic

susceptibility of the system remains constant, when the friction force increases, i.e., when

new metastable states are explored. This rather astonishing fact will be discussed briefly in

Section 5.

We can see in Figure 4 that no instability occurs until the force has reached the value

Ff
=

0 and
a

rather long elastic relaxation takes place up to that point: then u =
0 for

Ff < 0. In fact, this is to be expected since in ~our numerical procedure (involving an alternative

forward /backward displacement of the whole system like in the real experiments), the initial

state is not an equilibrium state but the stationary state of the system when it is pulled in

the opposite direction. Therefore, until some stress is effectively supported by the system (i. e.,

Ff > 0), the system relaxes elastically the stress and no instability occurs. For Ff > 0, the

instability process is turned on. The frequency of instabilities is found numerically to reach a

plateau value in a very short distance (much smaller than the lattice spacing, a), followed by

a small decrease towards its stationary value. This small Ff dependence will be omitted in the

following and the frequency will be considered as roughly constant (for Ff > 0).

3.2. A PHENOMENOLOGICAL LAW AND THE EXPONENTIAL DECAY. The averaged change
in force during an instability, IA l~nst) does not remain constant when the c.o.m. is displaced.
This

can be seen for example in Figure 4, where the non-averaged friction force is plotted

versus the c.o.m. displacement. The change in force during an instability is seen to increase

when the system is pulled quasi-statically, so that IA1~nst) is expected to increase when the

friction force Ff increases. We conjecture a simple linear relationship between these two

quantities:
IA l~nst)

#
dfo + aft (9)

where dfo and a are two phenomenological parameters
This "phenomenological law" has been checked in the simulations by plotting the averaged

change in an instability as a function of the friction force measured just before the instability
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Fig. 5. Average of the discontinuity in force during an instability, (Afin~t)
as a function of the

friction force Ff. The dotted line is linear fit of the numerical points (the few last ones
excepted).

The slope gives the phenomenological parameter a, while its value at the origin gives bfo. For the

numerical parameters under consideration (N
=

500, np =
0.8, Ap

=
0.06, Rp

=
0.25), this gives

a =
0.095, bfo

=
1.3.

takes place. Numerically, this procedure involves a simple algorithm which detects the insta-

bilities. The latter relies on the measure of the numerical derivative of the friction force, which

exhibits a dramatic change during an instability. This rough indicator has been checked to work

with a very good accuracy. We have then averaged the plot over many different realizations of

the initial conditions to compute for
a given jriction force, the corresponding averaged change

in force (Afinst). A typical result is plotted in Figure 5. Except in the large force region, the

numerical points can be fitted with a good agreement by a straight line, thus validating the

phenomenological relation in equation (9). Physically, the increase of the force release during

an instability is understandable. Roughly, when the external force increases, the "susceptibil-
ity" of the system increases accordingly, so that the drop in force during an instability becomes

larger. This point will however be studied in more details in the next section. The increase of

IAl~nst) for large forces in Figure 5 could be the indication of the onset of large fluctuations

arising in the close vicinity of the depinning threshold, although "critical" avalanches ii. e.,

involving the whole system)
were not observed in our simulations. But this problem requires

a specific careful numerical work as done by Pla and Nori [24]. This is not the object of the

present work.

Combining the phenomenological relation (9) with equation (8) leads to a closed equation
for the friction force:

(10)
dff

~~ U(Afinst)
~~~.°'~'

j~~ ubfo) U°~f.

This equation predicts an exponential relaxation of the friction force towards a stationary
value given by Fn=j-~[°.

iii)

The relaxation length, (, is related to the phenomenological parameter a, through the simple
relation:

(
=

I/uo. (12)
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This exponential behaviour is in agreement with the numerical results (see Fig. 2).
Therefore, the phenomenological relation (9) provides an initial "empirical" understanding

of the underlying physics of LD friction. However, how this simple law emerges from the

microscopic picture remains to be clarified. Moreover, the results obtained within this approach
for the stationary force (Eq. ill)) and relaxation length (Eq. (12))

are only useful, if some

prediction can be made for their dependence on the physical parameters of the system (e.g.
density of pinning centres np, strength and range of the pinning centres, Ap, Rp). This is the

object of the next section.

4. Microscopic Picture: Towards Collective Pinning

4.I. DESCRIPTION oF INSTABILITIES. In Section 3.I we described the instabilities as an

instantaneous collective motion of an important number of particles of the system, while the

other remained more or less stationary. Intuitively, it would be appealing to relate the drop in

the friction force to the number of jumping particles during the instability. To this end, we have

studied numerically the microscopic behaviour of the system when an instability takes place.
Especially, after isolating an instability, we separated the system into the block of "jumping
particles'" and the remaining particles. For both parts of the system, we computed the change

in the force due to the defects. This operation was repeated for a number of instabilities of

different amplitudes, taking place at different c.o.m. positions. The general "rule" we obtained

was the following: I) the change in force measured for the jumping particles only was found

to be very small; it) the global drop in the total friction force observed in an instability is

caused by the remaining particles, which didn"t undergo a large displacement. This can be

interpreted as follows. When each of the J~ump jumping particles move forward by a large,
finite amount bzo, the c.o.m. of the remaining particles will move backward by an amount

Azc_o_m i
-Njumpdzo IN, in order to keep the c.o.m. of the complete system constant. The

corresponding drop in force is then simply given by the relaxation of the corresponding elastic

force, according to Hooke's law (see Eq. (7)):

Fafter Fbefore ~ ~bfinst
~

~LbIc
o m.

Equation (13) provides the desired link between the drop in the force occurring in an instability

and the corresponding "length" of the instability, I.e., the number of particles that jumped,

J~ump.

4.2. EXISTENCE oF A COHERENCE LENGTH. The afore-mentioned point I) that the

change in force measured for the jumping particles only is extremely small is very striking.

In fact, this can be considered as a first indication of the collective character of the instabilities.

To understand this subtle point, we first recall how an instability occur in the single particle

case, as discussed by Nozibres and Caroli [6,17j. The system involves then only a single
particle attached to a spring and interacting with a defect. The extremity of the spring is

moved adiabatically. For a sufficiently soft spring (see Sect. 1.2 for details), the equilibrium

position of the particle becomes multi-valued over a given range of system positions, I.e., the

system becomes unstable. The evolution of the particle thus exhibits three phases when it

encounters the defect: first an adiabatic move, corresponding to the elastic response of the

defect; then a large finite jump towards a point where the reaction force is very small: this

corresponds to the elastic '~instability"; finally, an adiabatic move again, where only the tail
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of the defect's potential is felt by the particle. Accordingly, the drop in the force A f during
the instability is of the order of the threshold force before the jump. Now consider lump
particles jumping according to such an "individual scenario", the global change in force for

the whole system would simply be Afin~t Cf l~umpA f, which is proportional to the number of

particles involved in the instability. This assumes that the drop in the force originates from

the particles involved in the instability. But this differs dramatically from our observations

in the numerical experiments. Indeed according to the previous points ii) and iii), the crucial

difference is that in our simulated systems, the drop in the force during an instability is only
induced by the release of the elastic response of the particles not involved in the instability.

We interpret this point by assuming that the system separates into two types of particles: a

few particles interact "strongly" with the defects, while all the other only interact weakly with

the defects, i.e., they can be considered as '"strongly correlated". The equilibrium positions of

one
(or

a few) strongly pinned particle may become unstable, the latter thus performing a large
finite jump. All particles "strongly connected" to this particle then simply follow collectively
the jump of the first jumping particle. Within this scenario, the change in force due to the

'~jumping part" of the system has no reason to be large. Indeed, most of the jumping particles
ii. e., except for the one or the few strongly "pinned" do not interact strongly with the

defects, so that their individual change in force during their jump is mostly random, justifying
the observation facts ii) and iii).

There is another indication of the "collective" character of the instabilities. Let us come

back to the phenomenological relation (9) for the drop in the force during an instability,
verified numerically in Figure 5. As

can be observed in this figure, the value at the origin,
dfo

"
Al~n~t(Ff

=
0), is non-vanishing. This means that, as soon as instabilities are allowed,

a finite (non-zero) number of particles are involved in the instability. Therefore, the length
scale of the previously discussed "strongly connected" particles is non vanishing at equilibrium,
and is hence an intrinsic property of the system at equilibrium.

These observations lead us to the notion of "strongly pinned" particles and "strongly con-

nected" particles, the latter being characterized by a well defined correlation length. In

fact, this separation is reminiscent of the analysis introduced by Larkin and Ovchinnikov

(LO) [25, 26], of the pinning of vortex lines in superconductors. Their analysis is based on the

introduction of a "correlation length", characterizing the balance between the elastic energy
(of the Abrikosov lattice in superconductors) and the pinning energy due to the interaction

with the defects. This length can be equivalently interpreted as the displacement correlation

length of the system. More precisely, the linear size of the correlated volume lL is defined as

the length scale over which the elastic rigidity of the elastic medium is sufficient to counteract

the random forces. The relative displacement induced by the random forces is small within a

correlated length. The particles within a correlated length are strongly correlated in the sense

that if a particle is displaced a small amount, this displacement will be transmitted by the

rigidity of the lattice out to distances of the order of the size of the correlated volume. At

distances larger than the size of the correlated volume the random forces become essential.

The distortion of the elastic lattice becomes appreciable and particles farther apart than lL are

only weakly correlated. In this sense we can think of the elastic lattice as being broken into

weakly interacting rigid lengths. It is at the interface between the correlated volumes that the

elastic instabilities occur.

We now recall the (qualitative) LO argument in order to estimate iL.

In the picture depicted above, the total pinning force on a correlated length, I.e., the force

due to the defects, is the sum of many contributions of the same order fo
+~

Ap/Rp, but with

different signs (since the strongly correlated particles only interact weakly with the pinning
centres). Therefore, the pinning force on a correlated length involves a statistical summation



1614 JOURNAL DE PHYSIQUE I N°12

over all the individual contributions and will be of order N/~~ fo, where Nc
=

npiL is the

number of pinning centres included in the correlated length (we now restrict our study to a

I-D problem). Since there are
LliL correlated segments in the system, the total pinning force

is found to be of order:
1/2

Fpin
+~

L (~~) fo. (14)
iL

Since this force only acts for a distance of order Rp (the range of the pinning potential), before

changing randomly, the pinning energy is assumed to behave like

1/2

dEpin
+~

L ()~ foRp. (15)
L

On the other hand, the increase of elastic energy due to the deformation of the lattice

inside a correlated length can be estimated as dEej
=

)(k/niL)dz~, where k is the bare spring
constant, n =

lla is the density of particles la is the spring length), and dz is the distortion

distance. The term k/ntL takes into account the effective stiffness of ntL springs contained in

a correlated length. The distortion length is expected to be of order of Rp, the range of the

defect potential. For the whole system (involving LliL correlated volumes),
we thus find

dE~j
+~

L ~ka (~~ (16)
2 iL

~

Adding equations (15, 16), we find the change in energy per unit length associated with the

randomly distributed defects:

~J~
-

lka lli)~ Iii) ~~~

/oRp. i17)

The optimized correlation length is found by assuming that the system evolves towards a

state which minimizes the costs in energy. This is done by minimizing the expression (17) with

respect to iL, leading to

~~ ~
2/3

~L
"

~2
~ (~~)

~P 0~

Replacing (18) into equation (14), we obtain a total pinning force which scales like

~2/3 ~4/3
~~~

~
~

(~~ j~ (1/3 ~~~~

Larkin and Ovchinnikov [26] assumed that the pinning force in equation jig) is the out-

of-equilibrium pinning force, defined as the force measured at the point where the systems
depins, i.e., acquires a non-vanishing velocity. The latter corresponds to the asymptotic force

measured in our numerical experiments when the system is pulled quasi-statically.
But our interpretation of Fpin differs qualitatively from the previous affirmation. Indeed,

the LO argument as depicted here is an equilibrium argument, which allows one to find

the equilibrium properties of a lattice interacting with randomly distributed defects. In this

case, the averaged pinning force should vanish (otherwise the system is not at equilibrium).

Therefore the "pinning force" defined in equation (14) cannot be identified with the out-of-

equilibrium pinning force. Moreover, the LO argument does not take the elastic instabilities
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into account, while the numerical simulations (and even the real experiments, see [27, 28j show

that these instabilities play a crucial role in the pinning process.

In contrast to Larkin and Ovchinnikov, we interpret Fp,n of equation (14), obtained along the

previous argument, as a typical underlying scale for the fluctuations of the reaction force due

to the defects at equilibrium: more precisely, it fixes the amplitude of the root-mean-square
(r.m.s.) fluctuations of the pinning force. How this scale is related to the non-vanishing, non-

equilibrium pinning force (I. e., the plateau value for the force for example in Figure 2), remains

to be understood and will be the object of the next sections.

4.3. LINKING THE COHERENCE LENGTH AND THE PHENOMENOLOGICAL RELATION. In

order to make the connection between the equilibrium properties of the system and our empir-
ical understanding of friction depicted in Section 3, we make the following two conjectures:

Assumption (A): in an instability, the number of particles undergoing a jump is given by
the length of a characteristic jump-length. In the limit of zero applied force, this jump-volume
is given by the Larkin length.

This assumption is intuitively understandable. Indeed, according to the picture already
discussed in the previous paragraph, instabilities are initiated by the few particles which are

strongly interacting with the defects. When one of these strongly interacting particles becomes

unstable, and thus performs
a large jump, all the particles which are strongly "attached" to

this jumping particle will follow as a whole.

Assumption (B) when an external force is applied, the length of the jump length increases.

To lowest order in the external force, we may guess a linear increase of the correlation length
(here identified as the jump length),

as would be obtained by applying a kind of linear response

theory to the system:

iL(Fext)
"

I[~~ + ~f~xt (20)

where I[~~ is the equilibrium correlation length obtained along the LO argument, defined in

(18). Fext is the total external force applied to the system in the direction of the motion:

Fext
=

Fext k, with k the unit vector pointing in the direction of motion. This guess is mainly
empirical but will be confirmed

a posteriori by the consistency of this assumption with the

numerical results. However, it can be justified at least qualitatively by the following argument.

Let Lj denote the length of the jump-length and nsp denote the density of strongly pinned
particles. According to our picture, we have (in a one-dimensional system)

Lj
=

I/nsp. (21)

The density of strongly pinned particles will be related to the probability density Po(e) of elastic

energy per particle. Indeed, according to the LO picture, the elastic chain keeps mainly its

lattice spacing inside a correlated volume, while it is strongly distorted at the defects, I.e., for

the strongly pinned particles. Therefore, the strongly pinned particles should be characterized

by a large elastic energy, say greater than a given threshold value, eth ~J
kR). Hence,

nsp =

) /
de Pole). (22)

~

Now we apply an external force fext per particle. Some of the initially strongly pinned particles
will be able to relax their elastic energy, by "climbing up the pinning hill". Roughly, we can

identify these particles with those whose elastic energy before the force was applied was less

than eth + text(Rp. We then deduce the change in the density of strongly pinned particles
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according to

Ansp
=

nspjlext) nspjlext
=

°)

e~h+(fex~'~P

=
de Po(e). (23)

~h

In other words, particles have to sustain stronger elastic energy in order to remain among the

strongly pinned particles as the external force is applied.
We expand equation (23) for small F

asp m asp IF
=

°) Poleth)lfext lRp. (24)

The probability density Po (eth) is calculated at fext
"

0. It has dimension of an inverse energy

and can accordingly be assumed to scale as the inverse of the LO (elastic
or

pinning) energy
scale, I.e.,

'~~~~~
~

~o
~

pin~p
IL ~~~~

where equations (14, 16, 17) were used.

From equation (21)
we arrive at the following expression for the jump-volume

Ljjfext)
" Lj~~ + 'fifexti

"
iL + 'flfexti (26)

where F~xt
#

Nfext is the total external force acting on the system. In the last equality

we made use of the assumption that the jump-length approaches the Larkin length when the

applied force approaches zero. The coefficient
~y

is according to the above discussion given by

~y +~
iL /Fpin, (27)

where lL and Fpm are given in equations (18, 19) respectively.
By use of the two conjectures, we can now account for the "phenomenological relation",

equation (9), relating linearly the drop in force measured an instability to the friction force.

In our case, the external force applied in order to impose a given c.o.m. position is equal to

the measured friction force, Ff, so that Ff
=

F~xt. Combining equations (20, 13), and setting

J~ump
=

nLj(Ff) according to the previous argument, we obtain

~~~~~ ~~~~~~~~~~

- ~~~l~~° + l~~~i~~°I Ff. 128)

The proposed scenario thus gives a coherent picture of the mechanism leading to the phe-

nomenological law. Moreover, identifying this expression with the phenomenological relation

equation (9),
we are left with the following "microscopic" expressions for the two phenomeno-

logical parameters dfo and a:

jj~
~LYli?~~~0

° N

a = ~~~)~~° (29)
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One of the important consequences of equations (29) is that it will allow us to compute the

dependence of the two introduced phenomenological quantities on the microscopic parameters

of the system (density of pinning centres np, strength and range of the defects Ap, Rp). This

requires more information
on

the Labusch parameter ~L, which will be obtained in the next

section.

For the dimensionless parameter a, we obtain by use of equations (27, 29), the expression

~~
13/2

~
N

~~~°
L

~nj~~ ~~~~

where the expression for iL is given in equation (18). This expression can be written in a more

transparent form:

~ ~

~
~~~~

The predictions of equations (29. 30) will be compared with the numerical results in Sec-

tion 5.3. This will allow us to assess the validity of our approach. But we first need to char-

acterize more properly the dependence of the other quantities, in particular of the Labusch

parameter. This is done now.

5. fkiction and Scaling Laws

5. I. THE LABUSCH PARAMETER. The Labusch parameter is defined in equation (7) as the

elastic susceptibility of the system. By definition, this susceptibility measures the response of

the pinning centres (defects) when the particles interacting through the springs are slightly
displaced from their equilibrium positions, I.e., when the applied force balances the pinning
force [21j. We performed numerically this "experiment" by displacing the c.o.m. by a very

small amount and analysed the corresponding change in force on each defect. Surprisingly, the

change in the reaction force of the defects was found to be homogeneously distributed over the

defects, thus leading to a picture of an individual elastic response of the pinning centres to the

displacement of the spring system.
Therefore, we expect the Labusch parameter to scale like

~L #
npLko (32)

where np is the density of pinning centres and L the length of the system. ko is the individual

elastic response of a defect, and can be roughly estimated as the probability for a defect to

interact with a particle, of order
+~

nRp in being the particle density and Rp the range of the

potential), multiplied by a typical value of the second derivative of the pinning potential, of

order Ap/R). This leads to

ko
+~

nRp ~) (33)
RP

Combining, equations (32, 33),
we obtain that the Labusch parameter should scale like

~L +~
npApRj~ (34)

This scaling relation has been checked in the simulations, by varying np for a given set of

potential parameters Ap, Rp, and varying Ap, Rp for a given density. The numerical results

are obtained to be in reasonable agreement with these predictions. The dependence on np is

shown in Figure 8: the numerical value of ~L is plotted as triangles; the underlying dotted
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Fig. 6. Log-Log plot of the two phenomenological parameters n
(squares) and bfo (circles),

as a

function of the density of pinning centres np. The straight lines show the predicted scalings: n$ for a

and n(/~ for bfo. The length of the chain is N
=

500 and the parameters for the potential of pinning
centres are Ap

=
0.06, Rp

=
0.25.

Fig. 7. Log-Log plot of the frequency of instabilities as a
function of the density of pinning centres

np. The straight line has a slope 1/3. The length of the chain is N
=

500 and the parameters for the

potential of pinning centres are Ap
=

0.06, Rp
=

0.25.
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Fig. 8. Fig. 9.

Fig. 8. Log-Log plot of the different measured quantities as a
function of the density of pinning

centres np. The triangles stand for the Labsuch parameter ~L; the crosses for the stationary static

pinning force Fi°'; the circles for the recovery length (; and the squares for the length b. The straight
lines indicate the scalings predicted within the proposed scenario. From bottom to top, the slopes
of the lines are

-1/3, -1/3, 2/3, 1. The length of the chain is N
=

500 and the parameters of the

potential of pinning centres are
Ap

=
0.06, Rp

=
0.25.

Fig. 9. Log-Log plot of the stationary pinning force (triangles) and of the Labusch parameter

(circles)
as a

function of the strength of the pinning centres, Ap. The straight lines indicate the

predicted scalings: Fi'°
r~

A(/~;
~L ~

A(. The length of the chain is N
=

500 and the density of

pinning centres np =
0.5.
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~~.~ L°gio(Rv) -0.45

Fig. 10. Same as Figure 9 but for the dependence on the range of the potential, Rp. The straight
lines indicate the predicted scalings: Fi°'

r~

Rj~/~;
~L r~

Rp~. The length of the chain is N
=

500 and

the density of pinning centres np =
0.5.

curve is a straight line with slope I. We explored numerically the dependence on the strength
and range of the defect potential too. This was done by varying slowly Ap and Rp for a

given density. The presented results do not involve however an average over different random

spatial distributions of the pinning centres. The measured points for ~L are plotted as circles

in Figure 9 for the dependence on Ap and in Figure 10 for the dependence on Rp: The dotted

lines are a guide for the eye to indicate the predicted slopes: slope I for the dependence on

Ap (in Fig. 9) and slope -I for the dependence on Rp (in Fig. 10). The trend is seen to be

correct for both dependences. However a more extensive numerical study is still needed for a

whole set of parameters Ap and Rp, using different densities of pinning centres.

It is interesting to note that the picture of an individual response of the pinning centres for

the elastic susceptibility of the system is coherent with the fact that the Labusch parameter
is found in the simulations to be independent of the friction force ii. e., of the applied force).
We confirmed this result in all our simulations, by checking that the slope of the linear part of

the non-average friction force, as in Figure 4, does not change when the c.o.m. of the system
is displaced. Apart from the previous qualitative argument, based on an individual response

of the pinning centres, this result remains up to now quite obscure to us.

5.2. THE FREQUENCY oF INSTABILITIES. Finally, to complete our phenomenological de-

scription, we need to characterize more precisely the frequency of instabilities, u. Up to now

we do not have a full understanding of the mechanism of creation of instabilities, but some

predictions can however be made.

In the stationary regime, the following relation is obtained from equations (8, 28)

~~ ~~6nst
"

U~~~~~~~)d~o
N

(35)

where F~°~ is the plateau value of the friction force. This equality imposes the scaling of the

asymptotic frequency
u to be

N 1
~ ~ nbzo I[~~ ~~~~

Note that here we are only interested in the scaling properties of the frequency u, so that we

forget any friction force dependence of iL to focus on its dependence on density of defects
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and other microscopic parameters: we simply use the fact that the stationary value of the

correlation length iL(Fn) has the same scaling on np, etc... as I[~~ defined in equation (18).
We cannot a priori apply the expression for u in equation (36) to the transient regime.

However an alternative argument can be given, which estimates u
from the fact that the

system is broken up into the weakly and strongly pinned particles. Remember the mechanism

producing the instabilities in the single particle problem (see 1.2): a particle P (position z) is

elastically coupled to a position X and interact with a defect. In the elastic region, we may

approximate the force due to the defect by a
Hooke's law, with a stiffness kd

+~
Ap /R). Then,

if the position X is displaced by a small amount bX, the equilibrium position of the particle
P will be displaced by

an
distance bz

i
~bX/(~ + kd), where ~ is the spring constant. If

the stiffness of the spring is much weaker than kd (which is a condition for the existence of

instabilities, see e.g. (3)),
we obtain bz

+~

KdX/kd. Now in our many body system, we can

identify the position X with the
c.o.m. position Xc

o m,

and the stiffness of the spring ~ with

the effective stiffness of the correlated volume, ~ +~

k/(niL). Moreover the particle P can be

identified with one strongly pinned particle, since in our microscopic scenario the latter are

expected to induce the instabilities. An instability will occur when the latter will move over

a distance of order of the range of the potential: dz
+~

Rp. This is equivalent to a change
in c.o.m. position dX given by dX

+~

niLkdRp/k, according to our single particle discussion.

This argument thus predicts a frequency scaling like

~ ~

d~Rp
ii~ ~~~~

which is consistent though not strictly identical with our first guess, equation (36).
In particular, this argument predicts a dependence of the frequency of instabilities on the

density of pinning centres as u +~
n)~~ (see Eq. (18)). The numerical results are consistent with

this scaling as shown in Figure 7: the circles are the numerical points; the dotted line has
a

slope1/3.

5.3. SUMMARY oF THE PREDICTIONS. At this stage, we can check the predictions for

the phenomenological parameters and measured quantities obtained within our scenario: in

particular for the two phenomenological parameters dfo and n, for the Labsuch parameter, the

plateau value of the friction force F~°~ and the recovery length (. Apart from the pinning force

and the Labusch parameter, we have mainly focussed our numerical study on the dependence
of the measured quantities on the density of pinning centres np. Since the predicted scalings

on np are non trivial (see the different powers of np in the equations below! ), the comparison
with the numerical results as a function of np are therefore expected to be already a drastic

test for our scenario. But clearly more extensive numerical work needs to be done to explore
the whole parameter space (np, Ap, Rp).

First we focus on the phenomenological parameters, dfo and n. Their "microscopic" ex-

pressions are given in equations (29, 30). Combining the predicted scaling of the Labusch

parameter, as displayed in equation (32) with the expression of the correlation length I[~~,
given in equation (18),

we obtain the following dependence as a function of the density of

pinning centres, np:

dfo
+~

n)/~

a +~

n(. (38)

In particular, this shows that the slope n of the phenomenological law equation (9) does not

depend on the density of pinning centres! Both predictions of equation (38) have been checked
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numerically. The results are plotted in Figure 6: symbols represent the numerical points
and the da8hed line8, the predicted 8caling8. The agreement is seen to be correct for both

parameters. This confirmation is crucial, since it shows that the proposed scenario for the

underlying mechanism of friction (see Sect. 4) is coherent. In particular, this justifies our two

conjectures (A) and (B) of Section 4.3.

Now we turn our attention to the other measured quantities. According to equation ill ),
the stationary friction force F~°~ is the sum of two term, ~L/ua and dfo la. However combining
the "microscopic" expressions obtained for all the different parameters involved. equations (29,
30, 31, 36), we obtain that the stationary friction force F~°~ simply scales like Fpin, the

r.m.s. value of the fluctuations in equilibrium. Using equation (19), this leads to

y~2/3 ~4/3
j~cc

~

j~
~

~ P 0

~ ~~~ kaR(~~

~

~2/3 ~4/3 j~-5/3 j~g)
p p p

On the other hand, using (30, 31, 36), the recovery length ( is found to scale like

1
(

~ )

~

~Pm
~

~-l /3 ~l /3 j~-2/3 ~~j
~~ P P P

where the microscopic expressions for Fpm and ~L have been used (see Eqs. jig, 32) ).
In fact, an equivalent relaxation length can be introduced, defined as the ratio between the

asymptotic friction force Fn and the Labusch constant ~Li

~c~
b w

~ (41)
~L

Since Fn scales like Fpin, this length exhibits the same scaling as the recovery length (:

j
~

(
~

~-l /3 ~l /3 j~-2/3 ~~j
p p p

In Figures 7 and 8, we summarize the numerical results for the scalings of the different

quantities as a function of the density of pinning centres. The symbols are the numerical

points and the dashed lines indicate the predicted scalings. The error bars were estimated in

the following way: for a given (random) distribution of pinning centres, the measured quantities

were averaged over many forth and back cycles (typically 15), giving a particular value for the

desired parameter. Then we averaged again on different random configurations of pinning

centres (typically 10): this gives a mean value and a typical error bar for each quantity.
For the pinning force and the Labusch parameter, the error bars are within the size of the

symbols and thus not displayed explicitly in the figure. For both parameters, the numerical

results (triangles for ~L and crosses for Fn)
are in good agreement with the predicted scalings

of equations (39, 34): these are illustrated by the dotted lines in the figure, with slope I for

~L and slope 4/3 for Fn
Note however the large error bars involved in the estimation of the recovery length, (.

Indeed, in contrast to the other parameters, the estimated value of ( fluctuates a lot when

different configurations of pinning centres are considered. Good statistics would therefore

involve an average over many different (randomly distributed) configurations of defects. Such

a procedure requires much more numerical work and goes beyond the purpose of this first stage
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study, devoted to construct a coherent picture of friction. The numerical results for ( (circles)

are however coherent with the proposed scaling (40), as shown in Figure 8. The underlying
dotted line has a slope -1/3,

as predicted by equation (40).
On the other hand, the estimate of the other length d is obtained to be more precise, since

the errorbars involved in the numerical calculations of F~°~ and ~L are both quite small. The

numerical results (squares)
are seen to follow quite closely the predicted scaling of equation (42),

illustrated in the figure by a line with a slope -1/3.
Finally

we checked the dependence of the Labusch parameter and of the pinning force as a

function of the strength Ap and range Rp of the defects, as given by equations (32, 39). The

results are summarized in Figures 9 and 10. The dependence of ~L has already been discussed

in Section 5.I. The results for the friction force F~°~ are plotted as triangles in both figures.
The predictions of equation (39) are illustrated as dotted lines of slopes 4 /3 for the dependence

on Ap and -5/3 for the dependence on Rp. Here again, the numerical results are obtained

to be in correct agreement with the theoretical predictions. Note that the agreement of the

measured F~" and ~L with the predicted scalings on Ap and Rp implies necessarily that d

follows the predicted dependence on Ap and Rp as displayed on equation (42).
Let us emphasize again that we only performed a partial exploration of the parameter space

(np, Ap, Rp), and a more complete numerical work is still to be done. However within the

explored window, the trend of all the quantities involved in the proposed scenario is obtained

to follow the theoretical predictions. Therefore, the numerical results validate with some

confidence the proposed picture for the onset of friction.

6. Discussion and Conclusions

This work focuses on the onset of friction at the interface between an elastic and a "rough"
surface. In particular, we study how the friction force evolves when the system is pulled
quasistatically over the surface. We have shown that, in this controlled limit, the system
exhibits hysteresis and more surprisingly, history dependent effects. These "memory" effects

are characterized by a length scale. While it was known for a while that elasticity is able to

produce hysteresis and dissipation, it is shown here that the memory effects originate from the

collective character of the induced elastic instabilities.

The collective character of quasistatic friction is related to the existence of a correlation

length in the system at equilibrium, which expresses the balance between the elasticity of

the medium and pinning to the defects. When an external force is applied to the system, this

length is shown to increase linearly with the applied force. This linear increase provides a simple
explanation for the exponential approach to the stationary static pinning force. as observed

numerically. Moreover the evaluation of this length allowed us to make some predictions for the

dependence of the stationary pinning force and recovery length on the microscopic parameters
of the system (density, strength and range of the defects of the surface). In particular, it is

shown that the value of the out-of equilibrium stationary pinning force is fixed by the typical
scale for the fluctuations of the pinning force in equilibrium. The link between the two limits

is provided by the analysis of the increase of the out of equilibrium correlation length in the

spirit of linear response theory. The predicted scalings are in agreement with the measured

numerical results, validating therefore the proposed scenario.

We stress the fact that although
our analysis focuses on a one-dimensional problem, the

generalization of our results to a two-dimensional system (i.e.
a thin layer with a free upper

surface) is straightforward. In particular, we expect the proposed scenario leading to the

exponential approach of the saturation force to still hold. Only the scalings of the different

parameters (as a function of the microscopic characteristics, np, Ap, will change. The main
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reason for this qualitative equivalence between one and two dimension systems (studied under

the present conditions) is that the Larkin correlation length is still finite and smaller than the

system size. This can be verified by a simple estimate of the Larkin length. In two dimensions,
the latter scales as [26j

iL
'~

~~~ (43)
'lp ~p

where C is a combination of the shear (C66) and compression (Cii modulus of the 2d elastic

system. Let us assume that this system is made e.g. of a thin elastic plate of thickness h. C

is then roughly estimated to be C
+~

Eh, with E the Young's modulus of the elastic media.

Just to fix the ideas, we assume moreover that the interaction between the surface and the

elastic media takes its origin in the elastic deformation of the asperities of the latter. This

leads to Ap
+~

ER( and then iL
+~

h/(npR()"2 This rough estimate leads therefore to an

equilibrium Larkin length of the order of a few thicknesses h. This reasoning may slightly
underestimate the correlation length (as is the case of the estimate (18) in our Id system),

but does not lead to Larkin length larger than the system size. This property thus preserves

the collective character of the elastic instabilities, which is the crucial point of our study. On

the contrary, if a (semi-infinite) three-dimensional body slides over a rough surface, it can be

shown that a typical correlation length at the sliding boundary is of the kilometric order of

magnitude [29j. Thus on the laboratory land everyday) length scale, the surface of a three-

dimensional elastic body can be considered as rigid: only single particle pinning can occur. On

the other hand, the collective character is recovered on the earth length scale, as observed in

earthquake dynamics [2].

Another interesting point is the apparent qualitative analogy between the history dependent
effects described in this paper and the experimental results of reference [7j. In this experiment,
the friction force between two surfaces of controlled artificial roughness and elasticity is mea-

sured as a function of the relative displacement of the two bodies. The roughness is created

by steel spheres (of diameter 2 mm) placed on the two surfaces in contact. On both surfaces,
the steel spheres are embedded in silicon rubber and can only move horizontally because of the

presence of the slider. In the experiments, the upper slider is moved at small constant velocity
(of order I pm/s) and the force on the bottom surface is measured by a tranducer. As in our

system, the force
was

measured to circulate through an
hysteresis loop and the saturation

towards the stationary force was measured to follow an exponential law as a
function of the

displacement, defining a characteristic recovery length. This qualitative agreement seems

indeed attractive but should be handled with care. Indeed in this experiment, the presence

of the slider to which the elastic layer is glued certainly screens the elastic interaction and

does reduce the collective nature of the instabilities, which was a crucial ingredient of our

model. On the other hand, instabilities involving a large number of particles are observed in

this system [7, 27j. This renders the situation quite puzzling and this point should thus be first

clarified in order to precise the relevance of our approach to discuss these experimental results.

Our study only focuses on the quasistatic motion of the elastic media, I.e., when any dy-
namical effect can be neglected. When the system acquires a finite velocity, one may expect
that the main lines of the proposed scenario will subsist and could provide an interesting al-

ternative route to dynamical friction. However, such a
generalization should be handled with

care. In particular, as already emphasized in Section 5.2, our understanding of the creation

of instabilities is only qualitative. In the dynamical case and for large sliding velocity, sound

waves induced by instabilities may play a crucial role. These effects are not included in our

discussion of the quasistatic limit.
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Finally, it is interesting to note that our approach may be generalized to the problem of

contact line motion in the quasi-static limit. Fundamentally, these problems are indeed very
close: the contact line exhibits (long range) elastic properties due to capillary effects [31j and

is able to pin to the impurities of the solid surface (like e. g. the chemical heterogeneities of the

surface or the geometrical roughness) (see [32j for details). Note that although the triple line

is ID, the elastic distortion is in fact 2D (like the liquid-gaz interface) [31j, but reduces to a ID

problem in a confined geometry (I.e. in the so-called Hele-Shaw cell) [33j. Experimentally, the

quasistatic motion of a contact line has been investigated very recently on nanoscales, using
the Surface Force Apparatus (SFA) technique [10j. The experimental results present a striking
analogy with those obtained in the experiments of reference [7] on quasistatic friction between

artificial surfaces (discussed in the previous paragraph). In particular, the force acting on the

contact line (related to the contact angle of the line) is shown to present hysteresis as a function

of the displacement of the contact line, defining spatial memory effects characterized by
a

length scale. Moreover, the approach to the stationary value of the force ii. e., of the advancing

or receding contact angle) was obtained experimentally to be exponential too. Obviously,
all these facts are very similar to the features described in the present paper. Beyond this

encouraging agreement, further work is needed to understand more deeply these analogies and

characterize more precisely the regime in which these analogies are relevant. We are currently
studying these problems.

More generally, it is interesting to note that a detailed description of instabilities (here elastic

instabilities) is not needed to understand qualitatively the onset of friction. The hope would

then be to be able to include plastic effects into the scenario too, along the same lines as elastic

effects. Work along these lines is in progress.
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