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Abstract. Considering N spinless Fermions in a random potential,
we

study how
a

short

range pairwise interaction delocalizes the N-body states in the basis of the one-particle Slater

determinants, and the spectral rigidity of the N-body spectrum. The maximum number gN of

consecutive levels exhibiting the universal Wigner-Dyson rigidity (the Thouless number) is given

as a function of the strength U of the interaction for the bulk of the spectrum. In the dilute

limit, one finds two thresholds Uci and Uc2. When U < Uci, there is a perturbative mixing

between a few Slater determinants (Rabi oscillations) and gN « )U)~ < 1~ where P
=

N/2 (even
N)

or
(N +1)/2 (odd N). When U

=
Ucij the matrix element of a Slater determinant to the

~'first generation" of determinants directly coupled to it by the interaction is of the order of the

level spacing of the latter determinants, gN m 1 and the level spacing distribution exhibits a

crossover from Poisson to Wigner, related to the crossover between weak perturbative mixing and

effective golden-rule decay. Moreover, we show that the same Uci signifies also the breakdown of

the perturbation theory in U. For Uci < U < Uc2, the states are extended over the energetically

nearby Slater determinants with a
non-ergodic hierarchical structure related to the sparse form

of the Hamiltonian. Above
a

second threshold Uc2, the sparsity becomes irrelevant, and the

states are extended more or less drgodically over gN consecutive Slater determinants. A self-

consistent argument gives gN «
U~/l~~~~. We compare our predictions to a numerical study

of three spinless Fermions in a disordered cubic lattice. Implications for the interaction-induced

N-particle delocalization in real space are discussed. The applicability of Fermi's golden rule

for decay in this dilute gas of "real" particles is compared with the one characterizing a finite-

density Fermi gas. The latter is related to the recently suggested Anderson transition in Fock

space.
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1. Introduction

For non-interacting electrons the Thouless energy Ec has proven to be a very relevant energy

scale for several physical properties. The related "Thouless number" gi =
Ec /Ai, where hi is

the single-particle level spacing at the Fermi energy, plays an important role. For the disordered

case, Ec
=

AD /L~. D being the diffusion constant of the electrons and L the relevant sample
length. In this case, the Thouless number gi is equal ill to the dimensionless conductance, i.e.

the conductance in units of e2 IA. This important relationship is at the basis of the scaling
theory of localization [2], which has been quite successful in describing transport in disordered

metals for non-interacting electrons.

Ec is also an important energy scale for the spectral correlations of diffusive non-interacting
particles in a random potential. It was found by Altshuler and Shklovskii [3] that the usual

random~matrix correlations [4] of the density of states at different energies E and E' hold only
when the relative energy jE E'j is smaller than Ec. This means that one has only gi consec-

utive one-particle levels which exhibit the universal Wigner-Dyson rigidity. For jE E'j ~ Ec

a novel spectral correlation function was obtained which depends on the dimensionality and

the diffusion constant. This new dependence and the crossover associated with it follow rather

easily [5j from a semiclassical theory for the spectral correlations due to Berry [6].
When electron-electron interactions are introduced [7j, a single-electron (or hole) excitation

with an energy e acquires a finite width r~p(e) (~ ). This width obviously increases with e. It has

been calculated for an isolated metallic (gi » I) compact quantum dot iii reference [12j, where

it turns out that at the Thouless energy Ec this width becomes comparable to hi and the

single-quasi-particle excitations can no longer be resolved. Thus the number of single-particle
levels that can be resolved is of the order of the Thouless number gi This result which agrees

with the experimental findings of reference [13] is universal and does not depend on material

parameters, nor on the dimensionality of the dot.

The problem of interacting particles in a random potential is of great fundamental interest.

In particular, the suggestion [14] that some states of two interacting particles (TIP in a random

potential may be less strongly localized than each particle separately has recently caused much

interest [15-23]. This idea can be understood within the scaling theory based on the Thouless

picture [15]. According to this, the delocalization of the particular TIP states from one block

of size Li (the one-particle localization length) to the neighboring block follows from their

having an interaction dependent Thouless number g2 r~
Ec2/A2 much larger than that of the

single-particle states gi Here, A2 is the two-particle level separation at the given energy and

the corresponding Thouless energy Ec2 was first identified [15] to the interaction dependent
decay rate between neighboring blocks. As in the single-particle case, the multiple role played

by the Thouless energy, as discussed above, immediately suggested that this TIP Thouless

parameter will also be relevant to the level correlation )roblem. This is based on the general

qualitative picture. While the TIP-spectrum without interaction contains only hidden one-

particle correlations appearing on energy scales larger than hi and is close to uncorrelated

levels on lower energy scales, the interaction re-establishes the universal Wigner-Dyson rigidity

up to the energy Ec2 a Eu which depends on the strength U of the interaction. In the localized

(~) The width of the single-quasi-particle excitation exists only when the energy of the excitation is

high enough, namely above a threshold e*, and the golden-rule formulation for the decay is valid. An

analysis of this question either by using [8, 9] the formulation of reference [10], or ~ia a correspon-

dence with localization on a
Cayley tree [11j, shows that this crossover energy e* is of the order of

@$
r~

iii@. Note that since @$ « Ec, the level width is well defined and valid on the

scale Ec and for a large window below it. In reference [11] further extremely interesting results were

obtained to which we shall return later.
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regime (L > Li): this was formally described by a nonlinear a-model for the TIP problem, as

presented in reference [19j. The latter gives a theoretical foundation for the scaling picture for

TIP on equal footing to that for non-interacting particles. In the metallic regime (L < Li),

a study of the TIP-level statistics [18] confirmed that Eu gives also the characteristic energy
scale up to which the TIP-spectrum exhibits the universal Wigner-Dyson rigidity. This was

qualitatively explained by mapping [18] the TIP-Hamiltonian onto a Gaussian matrix model

~rith preferential basis.

We see that the scaling properties for interacting particles can thus be studied ~ia the spectral
correlations of their levels in the metallic regime. This is an extremely useful observation.

The metallic regime is easier to study both analytically, where reliable methods exist, and

numerically. In the latter case, the necessity to go to very large system sizes larger than the

localization length with weak disorder in low dimensions is eliminated thereby. Since the study
of two interacting particles is only the first step towards the treatment of a more realistic

many-body system, it is highly desirable to increase the number of particles. Even a modest

program of going from two to three, four and larger numbers of interacting particles can be

best accomplished by analyzing the Thouless parameters in the metallic regime for rather small

system sizes. This is the strategy we adopt in this paper.

It was mentioned before (footnote 1) that when a state is coupled to a quasi-continuum,
the golden rule expression for its width starts to be valid only when the coupling is strong
enough, or the density of the final states is high enough. The crossover between perturbative

mixing (Rabi regime) and effective decay in fact occurs when the typical matrix element of

the coupling becomes larger than the mean level spacing of the accessible states [8, 9,18j. An

equivalent condition is that the golden-rule width be larger than the final level spacing. This

very general crossover, which becomes a phase transition in the appropriate "thermodynamic
limit" is the essence of delocalization in the usual Thouless scaling theory for a single particle.
It applies to two-particle delocalization [15] and should likewise describe delocalization for N

particles. The Hilbert-space transition found in reference [11] is another example. In this case

one gets a proper transition by the hierarchical coupling to higher and higher numbers of quasi-
particle excitations. In the work presented here, as in reference [18], this transition is observed

numerically as a function of the interaction strength U. When U is weak, it can couple only

a few very close quasi-degenerate states and leads at most to Rabi-type oscillations between

adjacent levels. When U is larger than a certain threshold Uci (or at larger excitation energy),

many non-interacting states are coupled and Fermi's golden rule describes the spreading width

of a non-interacting state over the (quasi-continuum) of other non-interacting states which are

nearby in energy. Uci is also the crossover interaction between Poisson and Wigner-Dyson
statistics for the spectral fluctuations. We show that the same Uci signifies also the breakdown

of the perturbation theory in U. Above a higher threshold Uc2, the states are ergodically mixed

and gN is suggested to increase like U~/(~~~~

Most of this paper will be concerned with the three-particle problem. Simple analytical
arguments will be presented for the behavior of the spectral correlations in a small diffusive

quantum dot, and compared to a numerical study. Thus, we work in this paper in the metallic

regime and do not directly study the delocalization in real space for stronger disorder, when

the one-particle states are localized. However, some remarks will be eventually made on the

implication of this picture to interaction-induced delocalization in real space and on its gen-

eralization to quasi-particle excitations in a degenerate metallic Fermi system. In particular,
the basic delocalization mechanism discussed in the original locator expansion of Anderson

was the divergence of perturbation theory around the initial localized states. It will be shown

that a seemingly analogous divergence can be identified in the perturbation theory in the in-

teraction, around the noninteracting states. Here, this divergence signifies (as is also true
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in the Anderson localization case) the onset of Wigner-Dyson correlations in the full spectrum,

where the basis of noninteracting eigenstates becomes well-mixed due to the interactions. A

similar process appears in the recent work [11] of Altshuler et al., using an analogous ex-

pansion for the quasiparticle excitations in a degenerate Fermi system, decaying by emitting

electron-hole pairs. In the three cases of the Anderson delocalization in real space and the

delocalization processes found due to interactions in the Hilbert space of wavefunctions, the

basic condition for the transition is very similar. It demands that the matrix element of a state

to the "first generation" of states directly coupled to it by the interaction, be comparable to

the level spacing of the latter states.

2. N-Body Hamiltonian in the Fock Basis

In the presence of interactions, it is convenient to consider the N-body system in a certain

Fock basis. Since we use this terminology in a slightly unusual way, let us make precise what

we mean by Fock basis. We consider the one-particle states which take into account exactly
the kinetic energy, the random electrostatic potential seen by the electron, the chaotic or the

integrable dynamics yielded by the boundaries in a ballistic billiard etc., and we use the exact

one-particle states to build up the Slater determinants which we refer to as the Fock states.

Therefore, by Fock basis we just mean the eigenbasis of the N-body Hilbert space in which

the system Hamiltonian is diagonal at U
=

0.

Moreover, we do not focus on the low excitation energies, ii.
e. on the restricted space avail-

able from the Fermi vacuum by successive applications of ~uasi-particle creation operators)
but rather to higher energies in the bulk of the N-body spectrum. Therefore, in contrast to

reference [11j, the parameter in our study is not the excitation energy of an extra quasi-particle

above the Fermi sea, but the strength U of the interaction, at a given total energy chosen close

to the band center of the N-body spectrum. Another important difference between this study

and the problem considered in reference [11j is that we have in mind the dilute limit (2), where

the number of "real" particles is arbitrary, but nevertheless of zero density. Therefore, we have

not in this study a Fermi vacuum from which an arbitrary large number of quasi-particles can

be indefinitely created.

In this Fock basis, the Hamiltonian with interaction is a random matrix with preferential
basis. For the sake of simplicity, we assume that the one-particle states are more or less uni-

formly extended inside the sample (no one-particle localization) I.e. the Hamiltonian without

interaction 7io is a sum of one-particle Hamiltonians which can be described by a random ma-

trix being statistically invariant under the orthogonal transformation O(M). M
=

L~ is the

number of considered sites for a sample size L. lie, which contains the kinetic and potential

energy of the particles, is combined with a two-body interaction of the form

y~~~~ =

~(ijjif)kl)c)c)c~ c~, (1)
~

zjki

where Iii denotes the Wannier function localized at the ith site, c~
/c) destroys/creates a

particle on site I, and

0
~

fl l~)l~lJ lo l~)

~<j

(~) This dilute limit strictly means that N/M ~ 0 when M ~ m, where M
=

L~ is the number of

sites in a tight-binding model. This should be distinguished from the finite density limit where N/M

is a constant and the Fermi system is degenerate at zero temperature
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is a local interaction of strength measured by a parameter U. We will give estimates assuming
on-site interaction in the following, but the interaction should be obviously extended to near-

est neighbors in the case of spinless Fermions. We write the Hamiltonian in the basis of the

ntot ~
M!/(N!(31- N)!) Slater determinants (Fock states), which are antisymmetrized prod-

ucts )An)
=

jai,
.,

oN) In
=

1,.
,

ntot) of one-particle eigenfunctions ja~). lie is a diagonal

matrix with the different possible sums
£)~i

ea~ of one-particle energies as entries. The in-

teraction term 7iint yields a matrix with entries

(°~ ~~i)l~int)~l °N)
~

~ lfl bo(a, Qojajaia
j

(3)

IJ z#IJ

where
M

QOIOjOI&j ~
~j

~filjlp')~filjlp')"PP~~fiOIIp)~fi&Jlp)> 14)

p,p'#I

~b~i (p) denoting the amplitude of the wave-function in the one-particle eigenstate jai) at the

site p.

The existence of the interaction yields two effects that we consider separately. The diagonal
matrix elements of flint shift the location of the N-body levels, an effect which is predominant

for small system size and large strength of the interaction, and which can yield an important

re-arrangement of the spectrum (see Section 8.4). This situation is shortly described in the

following subsection~ and has been extensively discussed by Kamimura [24j, in the case of

Anderson insulators with a very small localization length. The off-diagonal matrix elements of

7iint give rise to hopping among certain Fock states, and thus to delocalization in the Fock basis.

In this study, we mainly focus on the description of this interaction induced delocalization in

the Fock basis, in the limit where the second effect dominates the first. This delocalization

in the Fock basis is a generic effect of the interaction which should not be confused with

delocalization in real space. It is only when the one-particle states are themselves localized in

real space that Hilbert space delocalization may result in delocalization in real space. A recent

analysis (~) [25j of the sensitivity of the energy levels to a change of boundary conditions has

stressed this difference.

2. I. DIAGONAL MATRIX ELEMENTS OF THE INTERACTION AND LARGE U-LIMIT. For very

large U and small system size L, the previously defined Fock basis is no longer appropriate.
It is more instructive to consider the Fock basis built of the on-site orbitals, and not of the

one-particle eigenstates. The kinetic energy, and not the interaction, can then be treated

perturbatively. In this basis the N-particle states without kinetic terms can be classified

according to the number of next-neighbor configurations, for a next-neighbor interaction. This

limit will be discussed in more detail in Section 8.4, where numerical results show that at

U 1 15, the spectrum of three spinless Fermions is split into three separated bands, with a

density of states approximately given by the sum of three Gaussians centered at E
=

0, U,

(~) In reference [25], it is also shown that the relation between the spectral rigidity and the level

curvature is not direct for the N body problem. For N
=

1, the original definition of the Thouless

number, in terms of the curvature of the energy levels, coincides with our definition, based on the

spectral rigidity. For N
=

2, these two definitions are not the same in the metallic regime, but the

(spectral) Tllouless number
can be expressed in terms of another (topological) curvature, assuming

that distinct Aharonov~bohm fluxes
can be associated to the distinct particles. For N > 3, the study

of those different curvatures is postponed to a further study.
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and 2U. The weights of those three bands are directly related to the number of next~neighbor
configurations in the on-site Fock basis states.

However, for U 1 1 we are far from seeing interaction induced gaps in the spectrum. We

then assume that the diagonal matrix elements of the Hamiltonian in the Fock basis built of

the one-particle eigenstates, are mainly dominated by the one-particle contributions, and that

the effects coming from the interaction can be neglected for those elements. Therefore, we

consider only the delocalization in this basis, which results from the ojf~diagonal terms.

2.2. OFF-DIAGONAL MATRIX ELEMENTS OF THE INTERACTION. For N > 3, one can see

from equation (3) that there are only non-zero matrix elements between Fock states having
N- 2 one-particle states in common. This means that the Hamiltonian (1) is a sparse matrix in

this Fock basis, with a strongly preferential basis. This property was not present in the former

studies [14,15,18] for N
=

2, and a straightforward generalization of the former results to N

particles would require N-body interactions. The two-body form of the interaction introduces

specific problems for N > 3, which has been recently discussed in references [26, 27]. Aloreover,

there is a large degeneracy of these non-zero terms. For instance, when N
=

3, all the elements

(aia2fl)7iint)a[a[fl')
=

Q«~a~al
or bpp, are the same for all of the one-particle states fl

=
fl'.

The form of the distribution~o) the degenerate non-zero off-diagonal terms (Eq. (4)) is by
itself a non-trivial one-particle problem. If the underlying classical one-particle dynamics is

diffusive, as in a disordered metal, ballistic chaotic, as in a billiard, or integrable, one gets
different estimates [11, 28] for the magnitude of the interaction matrix elements. For simplicity

we will use the very rough approximation of uncorrelated one-particle wave-functions, with

amplitude of the order lllfl
on each site with a random sign. This corresponds to a one-

particle Hamiltonian being statistically invariant under orthogonal transformations (O(M)
invariance assumed in standard Random Matrix Theory). As pointed out in references [11,28].

this evaluation of the interaction matrix elements only reproduces (~) the zero wave mode

contribution of a diffusion process. This gives Q~,~,~~~~ m +Qtyp ~f
+U/AI~/~ for on-site

interactions. We use this approximation for the sinjp(ified theoretical picture that we present
before the numerical study. This is because we want to compare our predictions to simulations

on disordered systems with too small sizes to have one-particle diffusion. The more detailed

description of the off-diagonal matrix element will modify the quantitative dependence as a

function of the system parameters, but will not change the general scheme of the effect of the

interaction on the spectral correlations.

Moreover, we will neglect the energy dependence of the N-particle density pN, taking
pjj~

=
AN m

Bi/M~ AN denotes the typical N-particle level spacing in the bulk of the

N-particle spectrum and Bi is the bandwidth (one-particle kinetic energy scale).

3. Spread Width over States Directly Coupled by the Interaction

For N
=

2, the full Hamiltonian can be modeled [18] by a Gaussian ensemble of random

matrices with a preferential basis [31]. The structure of the projections Cpn m
(ilp )An of the

many-body eigeiifunctions jilp) (labeled by fl
=

1,.
,

ntot) onto the Fock states )An is well

(~) We note two important modifications to our rough approximation for the matrix elements. For

energy transfer smaller than the Thouless energy Ec, its magnitude is enhanced to the order of +Ai /gi
when gi > 1. In one dimension (gi < 1), it was

pointed out by Ponomarev and Silvestrov [29j that there

are important modifications of the matrix elements. More precisely, as recently shown in reference [30j,
when the one particle states are localized, the fluctuations of the interaction matrix elements are so

large that the effective density of directly coupled Fock states becomes multifractal.
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described by the Breit-Wigner form [18, 21j

~'~~"'~~
"

~~
2~rllEp E()~ + ri/41 '

i~~

where the brackets denote ensemble averaging, and the spread width

~ ~2
(~)~~

=
2~r(Q~)p2 *

2~$
Bi

increases with the interaction according to Fermi's golden rule. This means that (for r2 > A2)

an eigenfunction jilp)
=

£~cpnjAn) has significant projections on typically r2/A2 Fock

states.

For N > 3, this can be generalized to a spreading width rj~~ c~ (Q~)P(~ where pj~~ is the

density of the N-body Fock states directly coupled by the interaction. For spinless Fermions,

one has ntot ~
AI! /(N! iii Nil Fock states and the number of Fock states directly coupled by

the two-body interaction is nj(~
=

N(JI N) + N(N 1) (M N) (Jf N 1) /4. In the dilute

limit N « M, one finds ntot c~
M/~ IN! while nj(~ c~

M~ is much smaller than ntot. Assuming

uniform densities, this means that the effective level spacing A j~~ between Fock states directly

coupled by the interaction is of order A[~ i
Bi/nj(~. For very few particles, A[~

m A2, but

we emphasize that this approximate relation becomes uncorrect if N is large, mainly in the

finite density case where N c~
M.

A quantity closely related to the local density of states is the participation ratio R
=

(£]$[ jcpnj~)~~, which gives the number of Fock states mixed by the interaction. Using

the structure (5) of the eigenfunctions at r2 > A2, one can get the estimate R
r~

7rr j~~
IA

j~~ m

27r~U~(M~B))~~(n$1)~. Therefore we expect to find R c~ U~, since the contribution of the

states directly coupled by the interaction will dominate for small U.

Therefore, the first observable effect of the interaction will be the broadening of a Fock state

over
rl'IA

j~~ other Fock states separated by a characteristic scale A(~
m

Bi/nj$~
m

A[~.
This spreading width is proportional to U~, but does not characterize the coupling of the

original Fock State to the N-body spectrum. In this spread width, there are many Fock states

(of
a density p3 ~

1/A3 for N
=

3) which are not directly coupled to the original Fock state

at this order in U. This is the major difference between N
=

2 and N > 3: For N
=

2, the

width r2 which characterizes the local density of interacting states in the Fock basis is directly
related to the spectral statistics: the energy scale Eu up to which the spectrum exhibits the

universal Wigner-Dyson rigidity is given [18] by this spread width r2, provided r2 > A2. For

N > 3, even when rj~~ > AN, the levels separated by AN are not necessarily coupled and can

be statistically independent. For the level repulsion at the scale AN, the spreading width rj~~
does not provide a relevant energy scale. The N-particle Thouless number gN is not given by
r(~ IA (~, when N > 3.

In the following, we discuss what should provide this relevant energy scale for the spectral
statistics of consecutive N-body levels, with a density pN =

1IAN, and thus the relevant 9N.

We consider first the case N
=

3. The generalization to an arbitrary number N of particles is

straightforward, as far as we are in the dilute limit.

4. Perturbative Regime (U < Uci)

The spectrum without interaction contains only one-particle correlations appearing on energy

scales larger than hi and is close to uncorrelated levels on lower energy scales. The interaction
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re-establishes [20] the universal Wigner-Dyson rigidity up to an energy Eu which depends on

the strength of the interaction. When U is weak, it can couple only quasi-degenerate states

and leads at most to Rabi-oscillations between adjacent levels.

For N
=

2, Eu c~ )U), while one finds Eu
=

r2 c~
U2 at larger U when g2 m

r2/A2 > 1, I.e.

when many Fock states are coupled and Fermi's golden rule applies. This can be understood [18]
from the following arguments. For very weak U (r2 < A2) only the coupling between two Fock

states with a separation < A2 is relevant. This restricts the problem to the analysis of a solvable

2 x 2 random matrix, with diagonal terms typically much larger than the off-diagonal coupling

term. A model with independent Gaussian entries, the variance of the diagonal entries being
much larger than these of the off-diagonal term, was exactly solved in reference [31j. Since a

2 x 2 real symmetric matrix can be diagonalized by a rotation of angle 6, it is easy to write

the probability distribution in terms of the two eigenvalues and of 6. Integrating over 6 gives
the joint probability distribution of the two eigenvalues. One finds for this 2 x 2 matrix model

that Eu is given by the absolute value (r.m.s) of the off-diagonal term. It was interpreted in

terms of Rabi oscillations between two Fock states at typically A2 away from each other in

energy, and the range Eu of the level repulsion was identified (~) with this Rabi frequency.
For energy separation e < Eu, the consecutive levels repel each other as in standard random

matrix theory, while their fluctuations are uncorrelated for
e > Eu.

For N
=

3, we denote by jAn)
=

jaia203) the three-particle Fock states, of energy

En
= e~~ + e~~ + e«~, and we consider two energetically nearby Fock states )An and jAn, I.e.

with En En, m A3, the three-particle level spacing. For a weak interaction, as pointed out

by Shepelyansky and Sushkov [27j, the ejfectme matrix element U(~ of the interaction between

those two consecutive Fock states can be estimated using perturbation theory. It is only in

second order that one gets a non-zero contribution resulting from terms like

~j (A")U12)An") (An" )U23)A~i)

~,,

En En,, '

(7)

where particle 1 interacts with particle 2, then particle 2 with particle 3. Since we have a two-

body interaction ((A~ jU12 AS
=

jai a2 )U12 )ol'a[)b~~~j ), the summation over n" is reduced to

a sum over the single-particle quantum number ol'. This sum is of the order of its largest term,

I. e. of a term with an energy denominator of order hi, the one-particle level spacing, and not

A3. This eventually gives for the effective matrix element which couples two consecutive Fock

states a magnitude of order
u2 ~2

~~~
'~

~ ( ~M3Ai ~~~

if one takes for Utyp our simple estimate Qtyp
~

+U/M~/2

Therefore, in this perturbative regime, Fock states at an energy A)~ from each other are

coupled by a matrix element U)~~ i Utyp m
+U/M~/2 while Fock states at A3 from each

other are only coupled by U(~ c~ +Uj~p/Ai m
+U~/(M~AI). From this, we draw two main

conclusions for the three-particle problem that we extend to an
arbitrary number N of particles.

4.I. HIERARCHICAL STRUCTURE IN THE FOCK BASIS. The states in the Fock basis have

a very particular hierarchical structure, as sketched in Figure i. A Fock state is broadened

over a density pj~~ =

I/Ail
m

1/A[~ of neighboring Fock states. This broadening has

(~ IA related effect is known [32-34] for the one-particle problem, where the Thouless sensitivity to

boundary conditions is proportional to the square root of the Landauer conductance when gi < 1 and

to the Landauer conductance when gi > 1.
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Fig. 1. Structure of the eigenfunction at U < Uci in the Fock basis.

a Breit-Wigner form characterized by a width r)I
m

U~ /(M~A)~ ). The projections over the

neighboring Fock states at A/~
away from each other are themselves broadened over a density

p3 #

Aj~, with a Breit-Wigner shape characterized by a width r)~
m (U(~)~Ap~ In the

perturbative regime, r(~ < A3 when U < U~i

4.2. RABI FREQUENCY AND WIGNER-DYSON RIGIDITY. When U is so small that the

broadening r(~ is smaller than A3, the levels are essentially uncorrelated. However, level

repulsion occurs for energy scales smaller than Eu G~ )U(~j < A3. The reason for this is a

straightforward generalization of the argument given for N
=

2: The energy level correlations

come from the very small coupling terms between Fock states which are nearest neighbors
in energy. This reduces the complicated problem of a very large random matrix with a

few

non-zero small off-diagonal terms to the solvable problem of a 2 x 2 matrix with an effec-
tive off-diagonal term of magnitude U(~ Rabi-oscillations between the two coupled diagonal
terms occur. Their frequency, of order jU(~j, characterizes also the scale Eu below which

the universal level repulsion occurs. For N
=

2, this gives Eu c~ )U) (direct coupling), while

Eu ~f )U(~j c~ jU~j for N
=

3.

Let us consider now the case where N
=

4. As for the tl~ree particle case, it is sufficient to

go to the second order in perturbation theory for having a non zero effective matrix element

coupling two consecutive Fock states. One has:

~e~
~_

~ i~niUl2iAn"ii~n"iU341An'i
jgj

~ ~

~,,

En En'J

where the jA~) are now the Fock states for 4 particles. The difference with the case where

N
=

3 is that the summation over
n" is now totally suppressed. This yields a smallest

possible denominator En En» of order Bi and not hi- One finds U(~ i +Uj~~/Bi Sim-

ilarly, one finds U(~ m +U/~~/(BiAi), U(~
m +U/~~/(B)); and the general expression

is given by U(~ m
+Bi(Utyp/Bi)~ for an even number N of particles with P

=
N/2, and

U(~ m
+(Utyp/Bi)~(B)/Ai) for an odd number N with P

=
IN +1)/2. This gives us the

energy range Eu m )U(~j of the level repulsion for weak interaction and arbitrary N.

5. Crossover f+om Poisson to Wigner: U
=

Uci

When rj~~ i (U(~)~/A3
m A3, the Wigner-Dyson rigidity is established on the scale A3 for

the three particle case. This defines the first interaction threshold Uci where a
sharp cross-over
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from Poisson to Wigner should be observed in the distribution P(S) of the spacings between

consecutive energy levels. For an arbitrary number N of particles, the first threshold Uci is

given by the condition

jue~j
gN m

/~
m 1. (10)

AN

Using the estimate for U(~ given by the first non-zero order in the perturbative expansion in

U, and assuming that N is small enough to have A2 m
A[~, (i.e. neglecting a factor of order

1/N~),
one finds the general relation

gN ~
gi, [11)

where P
=

N/2 when N is even and P
=

(N +1) /2 when N is odd. Therefore, the interaction

Uci where the two-particle Thouless number g2, given by (U/Bi)~M in our estimate, is of

order one
(i.e. Utyp m

A[~), does not signify
a Poisson-Wigner cross-over for the two-particle

case only, but also for the N-body spectrum, as far as we stay in the dilute limit. We note

that our general relation (~) implies g3 m
g(, in agreement with reference [27j.

Uci can also be understood from the parametric motion of the energy levels when U increases.

Let us consider again the case where N
=

3. Level repulsion starts to be efficient when a certain

relative characteristic energy change Z(~ (U) of the levels due to the interaction is of the order

of the mean level spacing. The displacement resulting from the diagonal matrix elements of

the interaction induces a parallel motion of the levels and is therefore irrelevant. For the

real part of the self-energy ZR(U) of a given Fock state, perturbation theory gives different

terms involving loops starting from the considered Fock State and visiting one, two, three and

more Fock states being directly coupled among each other by the two-body interaction before

returning to the starting point. The term of order U~ (loop visiting a
single Fock state) cannot

be relevant since it involves an energy denominator of order A[~, and not A3. The first term

involving loops visiting Fock states at A3 away from the unperturbed level is only given by
the term of order U~ (loop starting from the Fock state and visiting three different Fock states

before return). For the real part, this gives terms like

~ (An lU12 lAn, lAn, 1U23 lAn,, lAn>, 1U23 lAn,,r (An,,, lU12 lAnl
j~~j

~,~,,~,,,

[En EnJ )iEn En,,)iEn En,,J

These sums are of the order of the term having the smallest possible denominator, e.g.

(En En,,) m A3, which fixes the state jAn,,) and thus suppresses the summation over
n".

Then, the two-body character of the interaction yields for the energy differences E~ En,

and En En,,,, with En and Enrr fixed, a smallest possible value of order hi- One can see

that Z(~(U)
m A3 precisely when g3 =

r(~/A3
" 1, for U

=
Uci It is straightforward to

check that it is also at U
=

Uci that the term of order U~ of the perturbative expansion of

the imaginary part of the self-energy is of order A3. Moreover, this argument can be easily
extended to an arbitrary number N of particles, with a conclusion in agreement with these

previously presented in order to obtain Uci

(6) In equation (10), the Thouless numbers are defined by the energy scale below which level repulsion

occurs, in units of the mean level spacing AN This definition, valid in the perturbative regime only,

differs from the definition used in reference [27] (gN + r $~ IAN
m

(Ui~lliN )~ ). However~ this subtlety

(see the previous footnote) does not matter for equation (11).
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6. Breakdown of the Perturbation Theory and Non-Ergodic Wigner-Dyson
Regime: Uci < U < Uc2

The argument that we propose to characterize the relevant Thouless numbers gN is reminiscent

of a
locator expansion [35, 36j "h la Anderson", where the self-energy of the Fock states in the

presence of the hopping terms yielded by the interaction is evaluated using perturbation theory.
For one-particle localization, the breakdown of this perturbative expansion in the basis built of

the site orbitals was related to a metal-insulator transition due to delocalization in real space.

One knows from the scaling theory too that this transition occurs for gi m 1. This is a closely
related consideration which has led the authors of reference [11] to conjecture that interactions

should give an
Anderson transition in Fock space, for a critical value e* of the excitation

energy of the extra quasi-particle injected above the Fermi sea. This led us to determine up

to what maximum vahie of U the relevant Thouless numbers gN can be given by perturbation
theory. If one follows Shepelyansky and Sushkov [27], who assume that perturbation theory

remains valid when g3 > 1 for N
=

3, the relation g3 ~
gj gives g3 ~

r~l/A3
c~

U~ above

Uci However, in our numerical study (see Sect. 8) we observe above Uci a
jUj-increase of g3,

following the perturbative U~-increase (Rabi regime). Moreover, all the quantities calculated

for three spinless Fermions (local density of states, participation ratio, spectral rigidity) have

not given any trace of a
U~-proportional behavior when U > Uci

This leads us to suspect that perturbation theory can only be used up to Ucj, where level

repulsion is established at the scale A3. Above this threshold, the relevant r3 does not coincide

with the perturbative estimate r~l. This breakdown of the perturbation theory above Uci,
when Utyp > A[~,

can be shown if one evaluates the effective matrix element coupling nearby
Fock states at higher orders in U. Let us present the argument for N

=
4. The coupling term

of order U~
was found to be U(~ m

+U(p/Bi This corresponds to a process where particle

1 interacts with particle 2, then particle 3 with particle 4. A term of order U~ is given for

instance if particle 3 interacts with particle 4 once more.

The smallest energy denominator is the product of two energy differences. The first one is

of order Bi, but one has extra degrees of freedom for the choice of two one-particle quantum

numbers of An»> since particle 3 interacts with particle 4 two times. This reduces the second

energy difference to a smallest value of order A[~, and gives U[~(order 3) m
U(~(Utyp/A[~).

This means that the terms in U~ and in U~ of the perturbative expansion are of the
same order

for Utyp m
A[~. The generalization is straigthforward: For arbitary N, one finds

u P-P
U(~(order p)

m
U(~ ~~( (14)

l~~

for the terms of order p > P, where P is the order giving U(~. This indicates that the sum

to all orders in U does not converge above Uci Similar considerations, used here to evaluate

to all orders the effective matrix element coupling Fock states which are nearby in energy,

can be given for the self-energy. From this emerges the general result that the perturbative

sum in U has terms with similar magnitude to all orders when Utyp ~f
A[~. One can then

conclude that perturbation theory breaks down at the Poisson-Wigner cross-over in the N-body

spectrum. If one compares our conclusions with the ones presented in reference [27j, we also

find that the threshold Uci corresponds to g2 m 1 for very few particles. However, in contrast
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j~
j2

b3 < r)~ <
b/~

fin

3

3

A~ E

Fig. 2. Structure of the eigenfunction at Uci < U < Uc2 in the Pock basis

to the conclusions of reference [27], we have shown that the relation g3 G~
g( for N

=
3 cannot

be extended for g2 > 1 and holds only when g2 < 1. For finite N in a finite size system,
the spectral statistics exhibits

a cross-over from Poisson to Wigner. When N increases, this

cross-over should become sharper and sharper to eventually give a real transition. It is natural

that such a transition is accompanied by a breakdown of perturbation theory of the self-energy
of the Fock states, for Utyp m

A[~,
as it happens in the locator expansion of the self-energy

for the one-particle problem at gi is I. In both cases the condition is that the matrix element

of
a state to the "first generation" of states directly coupled to it by the interaction, becomes

comparable to the level spacing of the latter states. A similar picture and delocalization

condition applies also to the analogous transition in the Hilbert space of different numbers of

excited quasiparticles in a degenerate Fermi system, suggested ii Ii recently by Altshuler et al.

As mentioned above, g3 does not increase as
U~ when g3 j~ I (see Fig. 9). We are however

not able to explain the observed linear increase for U > Uci. Nevertheless, one can say that

the interacting states for U > Uci should not be ergodic in the energy window where they

are broadened, but still have a structure as sketched in Figure 2. When r3 +
g3A3 is much

smaller than A/~
m

A[~, there are still many Fock states inside the energy width r/~ where

an interacting state has essentially
a zero projection. This will disappear only at a second

threshold Uc2, characterized by the condition: r3(Uc2)
= A~~~

7. Ergodic Wigner-Dyson Regime and Self-consistent Theory: U > Uc2

We present here a conjecture for the regime of rather large interactions, when a Fock state

is well coupled by the interaction to the three-body spectrum. We consider again the case

(Cp~(~
~~~ ~~~a~ < r~

a~ a~ E

Fig. 3. Structure of the eigenfunction for U > Uc2 in the Pock basis
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where N
=

3 and a sufficiently strong interaction for having r3 > A)~, but nevertheless small

enough for not being in the large U-limit dominated by the diagonal terms of the interaction.

For U > Uc2, one can assume that the interacting states are not unambiguously related to the

previous hierarchy of Fock states, but are closer to random mixtures of g3 consecutive Fock

states, each of them contributing with a projection of random sign and of typical amplitude
of order lllfi. In other words, one has a simpler case where all the Fock states in an energy
window r3 are now well coupled, and remain decoupled from the other Fock states outside this

window. This is what we mean by "ergodic Wigner-Dyson regime", where the sparsity of the

3-body Hamiltonian yielded by the pairwise character of the interaction becomes essentially
irrelevant. A self-consistent evaluation of g3 becomes possible if one assumes that an interacting

state [lYpi has the following structure in the Fock basis:

[lYp) =

~j C(~~~~~[aia203). (15)

a~a~a3

For N
=

3, we calculate the interaction matrix element Qp,p between two states [lYp) and [lY~,)

at nearby energies, each of them being superpositions (with amplitude C(~~~~~ m
I/@) of

g3 "
r3/A3 Fock states (A3

"
Bi /ntot) for L < Li:

Qfl'fl
~

~
t7~~~j~jt7i~«2aa(°~°~~~(i~int(Ol£X2£E3) (~~)

m'«'«'m(«(«(

where the sums have to run over g3 basis states. This means that each of the a-summations

runs over g(~~ values. As can be seen from (3), the matrix elements between the Fock states

contain three terms of the form Q~,
~, ~~~~d~,

~~
where (I, J, K) are the different cyclic per-

mutations of (1, 2, 3). The Kronec~e/d redu)s the relevant summations occurring in (16) to

5 summations, each of them running over roughly g(~~ values. Thus, QP'P consists of a sum

of 3g(~~ terms of typical size Qtyp/g3 with random sign, which yields the result

iioPPi~i
~

91/~il~
~
i)(/3 ~~~~

Plugging this into a Fermi golden rule evaluation of the spread width

p
2SrllQp,pl~)

j~~j
~ a~ '

~~~ ~~~~~~~

P3 (~7T)~~~ ~ ~~~
(19)~~ b3 fl/f~~~ ~~~~ ~l

At U > Uc2, we therefore expect the decay width of the eigenfunctions and the participation
ratio R to increase like U~/~

For N spinless Fermions, this ergodic Wigner Dyson regime is characterized by

gN oc
U~/(~~~),

as it can be seen from a straightforward generalization of the self-consistent

argument presented above for N
=

3.

8. Numerical Study of Three Spinless Fermions

In order to illustrate our theory, we have performed a numerical study of the many-body
eigenstates and eigenenergies for three spinless Fermions in a disordered cubic lattice.
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8.I. NUMERICAL MODEL AND CHARACTERISTIC SCALES. For the numerical simulations,

we use a three-dimensional tight binding model on a cubic lattice containing 3 x 3 x 3 sites.

The disorder and the hopping terms are described by the usual Anderson Hamiltonian with

on-site potentials drawn from
a rectangular distribution of width 2W with W

=
2 and nearest

neighbor hopping terms V e I which set the energy scale. We use rigid boundary conditions

in all three directions. In addition, we use a two-body interaction of the form (I) with u~j =
U

when the sites I and j are nearest neighbors on the lattice and u~j =
0 otherwise.

In such a cube, there are M
=

27 one-particle states with a typical density of pi "
I /Ai

" 4

in the center of the band. For spinless Fermions, this leads to M2
"

M(M -1)/2
=

351

two-particle states and ntot "
J~I3

"
M(M I)(M 2)/3!

=
2925 three-particle states.

For U m I and in the center of the band, the density of the three-particle levels is about

p3 "
1/A3

* 270, while the density of two-particle levels amounts to p2 "
1/A2

G~ 40. The

density of three-particle Slater determinants directly coupled to a given state by the interaction

is larger: with the number n)$~ =
N(M N) + N(N I)(J~I N)(fit N 1) /4

=
900 of

non-zero off-diagonal interaction matrix elements in a line of ~int, one finds p)~
=

l /A)~
m

I /A[~
is n)$~ /(ntotA3)

* 83.

For the analysis of the numerical results, we will slightly improve our estimates of the inter-

action matrix elements, taking into account that the interaction is not strictly on-site, but of

range I, since a particle on a given site can interact with another one when the latter is on one

of the adjacent sites. The matrix element coupling two states of the Fock basis (4) contains a

double sum over the sites p and p' of the lattice. There are non-zero contributions to the sum

whenever site p' is a next neighbor of site p on the lattice. In the cube we consider, there is

one site which has 6 next neighbors (NN), 6 sites with 5 NN, 12 sites with 4 NN and 8 sites

with 3 NN. The mean number of next neighbors is Z
=

4 and the sums in (4) run over a total

number of ZM terms. Assuming the statistical invariance of the one-particle Hamiltonian un-

der orthogonal transformations, this yields a typical size of the off-diagonal interaction matrix

elements Qtyp ~3
~U/2/M~/~

=
~0.014U.

In the same way, one finds Qa~a~nia~ G~ 3ZU/M
m 0.45U for the diagonal terms of the

interaction, which lead to a shift of the diagonal elements of the Hamiltonian and conserve the

sign of the interaction. The factor of three is due to the combinatorial factor which counts

the number of different pairs out of three particles. For not too large U we neglect them as

compared to the fluctuations of the diagonal elements (which
are of the order of the band-width

Bi m 10) for U
=

0.

This must be carefully taken into account when estimating statistical properties of these

matrices. In the Fermi golden rule formula for the spread width of the levels (6) one must

introduce the effective level spacing A)~ of the directly available levels and finds the expression

r/~
=

2x(Q~) /A[~
m 2xU~ZM~~pj~~ m

0.llU~. (20)

The effective interaction between basis states which are coupled by second order processes only,

can therefore be estimated to be

U(~ is ~
(()~

m
0.002U~, (21)

1

leading to the spread width

r)~
is 2x

~~~~~~
is

0.0067U~ (22)
A3

in the perturbative regime where r)~
< A3. From these estimates, we get the first threshold

Uci m 0.85 for which Utyp *
A[~.
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Fig. 4. The projections (Cpn(~ of a typical eigenstate (~p) (Ep m 0) at interaction strength U
=

0.5

(left) and U
=

2.0 (right)
on the basis of Pock states (An ). The data are for N

=
2 (upper) and N

=
3

(lower) spinless Fermions in a cube of 3 x 3 x 3 sites with interaction U between next neighbors and

on-site disorder W
=

2.

8.2. STRUCTURE oF THE WAVE FUNCTIONS. We first concentrate on the structure of

the eigenstates in the Pock basis. Examples are shown in Figure 4. In each of the pictures,
only one eigenstate [lYp) at an energy Ep m 0 is shown. Each point represents the overlap
[Cpn[~

=
[(lYp[An)[~ with a Fock state [An) and is plotted as a function of the energy difference

Ea En between the eigenstate and the Fock state.

It can be seen that in the case of two particles, almost all of the Fock states which are in

a certain energy range around the energy of the unperturbed eigenstate have a non-negligible
overlap with it. For three particles, however, many very small values of the projections onto

Fock states occur, even when they are quite close in energy. However, it is difficult to observe

the hierarchical structure of the three-particle states because the scales A3 and A[~ differ by

a factor of 3 only in our case and because of the statistical fluctuations.

From these overlap matrix elements, taking into account several different realizations, we

have computed the local density of interacting states in the Fock basis (Wigner strength func-
tion). In spite of the fact that there are many very small values in the individual overlap

matrix elements, the average is well described by the Breit-Wigner form (5). Its spread width
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Fig. 5. Upper curve: participation ratio R for 3 spinless Fermions in a 3 x 3 X 3 disordered lattice

(V
=

1,W
=

2) with rigid boundary conditions and nearest neighbor interaction U. The dashed,
dotted and solid line represent power law fits in the different regimes yielding R

=
16U, 60U~, and

67U~/~, respectively. Lower curve: spread width r3 character12ing the local density of states of 3

spiuless interacting Fermions in the Pock basis. The dotted and solid line represent power law fits in

the different regimes yielding r3
=

0.23U~, and 0.33U~/~, respectively.

r3 is shown in Figure 5 (lower data points) as a function of U. Therefore by r3 here, we mean

the total spread width extracted from the average local density of interacting states in the

Fock basis, and not the partial spread widths r/~ and r)~ introduced previously. r3 behaves

quadratically down to rather low interaction values while r3 oc
U~/~ above U m 1.5.

For weak interaction, we are in the regime where the hierarchical structure of the eigenstates

should be important. The spread width is then dominated by the spread width r)~ Our

estimates presented above give r)~
m

0.llU~ which is the correct order of magnitude.

From our theoretical considerations, we expect to obtain a regime in which the wave-functions

are ergodic and the sparseness of the Hamiltonian irrelevant when U > Uc~ i 1.8. Taking into

account the refined estimates of this section, the spread width is expected to be given by the

self-consistent expression

~ =

x
2 3 4

~ ~~ ~~~~( "
0.25U3/2 j~

In the numerical data, one observes indeed a transition at U
+~

2 to a regime in which r3 oc
U~/~

with a prefactor whose order of magnitude coincides again with the expected value.

The upper points in Figure 5 show the participation ratio R
=

(£(t[ [Cpn[~)~~ The

behavior of R is quite similar to the one of the spread width r3. The participation ratio, which

goes to R
=

I at U
=

0, increases proportionally to the square of the interaction in the regime
0.25 < U < 1.5 and, as r3, exhibits the signature of the ergodic regime for U > 1.5. When

calculating the participation ratio R, one has also to take into account, that not all of the

states which are in the available energy interval can participate. Again. one has to replace the

level spacing A3 by A[~ to obtain R m
xr3/A[~

m
2x~U~Z(M~(A[~)~)~~

m
28U~. In the

ergodic regime, the self-consistent estimate presented above gives R 1
212U~/~ However. at

low U, a difference arises since R
=

I and r3
"

0 at U
=

0.
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Fig. 6. Parametric dependence of the three-particle spectrum as a function of U, around the band

center. The change in spectral correlation can be seen. For U < 0.2, many levels seem to cross
(weak

level repulsion), while for larger U, the crossings are avoided (strong level repulsion).

The ratio R/r3
m 260 in the quadratic regime is much smaller than the one expected from

a democratic participation of the Pock states according to (5), which yielded R/r3
"

x/A3
~3

850. This is a consequence of the fact that individual states can
show strong fluctuations

around (5), thereby lowering the participation ratio. Furthermore, the sparse structure of the

Hamiltonian, and the resulting hierarchical structure of the eigenfunctions reduces the number

of participating basis states as has been seen in Figure 4.

8.3. SPECTRAL STATISTICS. The evolution of some energy levels in the center of the band

as a function of U is shown in Figure 6. First of all, the positive slope of all of the levels is

visible. This is due to the diagonal matrix elements of the interaction which lead to a shift in

energy of the order of 0.45U as expected from the typical size of these elements.

But we can also observe changes in the statistical behavior of the spectrum. At low U, there

are strong fluctuations in the level spacing while the spectrum becomes more rigid around

U m 0A. This happens when neighboring states in energy (which usually are not directly
coupled by the interaction) become correlated.

This Poisson-Wigner transition can be studied more systematically by calculating the local

fluctuation properties of the spectrum. The first quantity we look at is the level spacing
distribution P(s) in the center of the many-body spectrum around E

=
0. P(s) for three

particles is shown for
a

few values of U in Figure 7 (left). A is the corresponding mean level

spacing (A2 or
A3). At low U, P(s) is quite close to the Poisson limit of uncorrelated levels,

while it tends towards the universal Wigner result (GOE) at stronger U. This transition is

described in a quantitative way by the integral

I
:=

/
ds P(s), (24)~2

which is shown in the right hand side picture of Figure 7. The transition is much more abrupt
for N

=
3 than for N

=
2. This agrees with the expected U-dependence of the Rabi frequency
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Fig. 8. E2(E) for the spectrum of two (left) and three (right) spiuless Fermions in a 3 x 3 x 3

disordered lattice (V
=

1, W
=

2) for different values of U.

((U( for N
=

2 and [U[~ for N
=

3) which characterizes the range of the level repulsion for

weak U.

The energy scale Eu characterizing the universal spectral Wigner-Dyson rigidity can be

extracted from the variance L2(E)
=

(N(E)2) (N(E))2 of the number of energy levels in an

interval of width E. Comparing the behavior of the spectrum to the GOE-behavior, one can

identify this energy Eu [18] (up to which the GOE-rigidity can be observed and above which

one can see significant deviations). L2(E) is shown in Figure 8, near the band center. One

can observe, for two as well as for three particles, the Wigner-Dyson rigidity up to the energy

scale Eu where the spectrum becomes less rigid.

For N > 3 particles, one can see that the characteristic energy Eu does not coincide with the

spread width r3 of the eigenfunctions (as it is the case for two particles when r2 > A2 [18]).
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Fig. 9. The characteristic energy Eu up to which the 2/3-particle spectrum exhibits the universal

Wigner-Dyson rigidity.

For N
=

3, the crossover from the Poissonian behavior ofuncorrelated levels to the universal

behavior of the GOE is sharper. As can be seen in Figure 9, Eu increases as
U2 for weak

interaction. This corresponds to Rabi-oscillations due to second order coupling between nearby
Fock states. This [U2[-increase when Eu < A3 for N

=
3 is the analog of the [U[-increase

observed for N
=

2 when Eu < A2. Above Uci, Eu seems to linearly increase as a function of

U.

8.4. LARGE U-LIMIT. For large U and small M, it is instructive to consider the Fock

basis built of the on-site orbitals. In this basis the 3-particle states, and the role of U, can be

classified according to the number of next-neighbor configurations. For a 3 x 3 x 3 cubic lattice,

we have 1746 out of the 2925 basis states where no next neighbor pairs occur and the Fock

state is not shifted when the interaction increases. For 1008 basis states, there is one pair of

particles nearby and the energy of the Fock states is E(U
=

0) + U. For the remaining 171 Fock

states the particles are clustered such that their energy increases like E(U
=

0) + 2U. Since

the non-diagonal elements in this representation are only due to one-particle kinetic energy

which does not depend on U, the different shifts of the Fock states lead to a splitting of the

band into three parts, 1746 states around E
=

0, 1008 states around E
=

U and 171 states

around E
=

2U.

This can be seen for U
=

15 in Figure 10, where the integrated density of states

IDOS
=

f~~dE'p(E') is plotted for one realization of the disorder and different values of

the interactions. The density of states can be fitted by a sum of three Gaussians centered at

E
=

0, U, and 2U with weights corresponding to the above mentioned numbers of occurrence

of these shifts when U m 15. For U m I, the interaction induced gaps in the spectrum are

totally removed by the one-particle kinetic contributions.

8.5. EVIDENCE FOR THE EXISTENCE oF Two THRESHOLDS. The numerical results for the

three-particle spectrum clearly exhibit two different characteristic interaction strengths. First,
the local fluctuations of the level spacing changes from Poisson to GOE when

U 1 0.3. as it can be seen from Figure 7. This is consistent with the results obtained for

22 where Eu ~3 A3 when U10.3. Thus, adjacent energy levels are correlated when U > 0.3.

This gives Uci ~3 0.3. Below Uci, Eu increases as
U2 in agreement with Rabi-oscillations
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Fig. 10. The integrated density of the three-particle states for different values of the interaction.

in the perturbative regime. Above U
=

Uci, g3 "

Eu/A3 > 1 and the perturbation theory

breaks down. An indication for this is that Eu oc U and not Eu oc
r)~

oc U~, as implied by the

perturbation theory. Though we have no explanation for this linear behavior, we emphasize
that this absence of a

U~-behavior gives a strong hint that the range of validity of perturbation
theory is limited to Utyp < A[~.

Note that nothing striking is observed in the behavior of the total spread width r3 of the

states at U
=

Uci. There seems to be a crossover from R oc U to R oc
U2 in the participation

ratio R, but since R
=

I at U
=

0, it might also be the signature of a saturation which is not

connected to a characteristic energy scale but which becomes irrelevant when R » I.

However, there is something interesting happening at U m 1.5 where both, r3 and R undergo

a transition from a regime where they increase as
U~ to a regime where they increase as

U~/~

This is clear evidence for a change in the structure of the eigenstates as it is expected from

our theoretical considerations at U
=

Uc2. At this strength of the interaction, we expect the

indirect spread width r)~ to be of the order of A[~. The problem is now to estimate rj when

U > Uci since the perturbation theory does not work. If one uses the numerical result for

Eu m
r( in this non-ergodic Wigner-Dyson regime, one gets for three particles Uc2 Uci m 0.8

since A[~
i 3.3A3.

In summary, we find a clear evidence of the existence of two distinct thresholds Uci and

Uc2, as well as a strong indication that the self-energy of an individual Fock state cannot be

evaluated by perturbation theory for gN > 1.

9. Implication for Quantum Localization in Real Space

Very recently, scaling-type concepts have been applied to two particles with a local interac-

tion. When Shepelyansky [14] had pointed out that in insulating systems certain two-particle
wave-functions could be delocalized with respect to the one-particle states, Imry extended the

Thouless Block-scaling picture [15] and introduced a "two-particle conductance" g2 "
ru/A2,

where ru is the decay rate of the states in boxes of size Li due to the interactive coupling to

other boxes. This ru is identical to the r2 characterizing the spectral fluctuations for a given

block. A~ is the mean spacing of the two-particle spectrum in a block. Using Fermi's golden

rule for the estimate of ru, this yields a pair localization length L2 oc
U2L(, in agreement with

the results of Shepelyansky. The existence of this delocalization effect has been confirmed in

numerical studies
11

6, 17, 22].
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While in this paper we have considered the metallic phase, away from the localization tran-

sition, our treatment may form the basis for finding the localization length for an N-particle

system (where N > 3). This localization length too is increased for large enough interactions.

The scaling theory prescription for obtaining this localization length is straightforward, in prin-
ciple. One has to increase the system size, L, and watch the L-dependence of both the effective
spacing Afl of the N-particle levels which are re-organized by the interaction when L > Li

and the energy Eu above which the Wigner-Dyson rigidity does not apply for this subset of

levels. The L at which Eu IA jf becomes of order unity is the N-particle localization length.
The parametric dependence embodied in our estimate of g3 (gN) can be used for this purpose.
We expect the delocalization to become even stronger for N > 3. It is tempting to suggest that

such effects are at the origin of the recent observations [37, 38] of a two-dimensional metallic

phase driven by the interactions in Si-MOSFET.

10. Quasi-Particle Lifetime and Localization lkansition in the Fock-Space

We conclude by stressing the analogies and the differences between this study and the recently
proposed ii Ii approach to quasi-particle lifetime in an isolated system. In these two studies, two

characteristic energies are identified and a transition appears when their ratio is of order unity.
This is the transition from weak perturbative mixing to the golden-rule decay, as mentioned

in the introduction. This is also the threshold where the perturbation theory in U or e
breaks

down. In this sense, the two studies use very similar concepts, but the considered characteristic

scales are not the same. This is because two different situations were considered (quasi-particles
in a finite-density Fermi gas, versus a dilute gas of "real" particles). It may be argued, as in

reference [15], that the difference between these two systems is mainly in the counting of

the densities of excited states, and that in principle both could be treated by similar scaling
considerations.

We have mainly discussed what is the ratio (Thouless number) which controls the transition

from Poisson to Wigner in the bulk of the N-body spectrum. The threshold Uci corresponds

to Utyp m
A[~. Therefore, for very few particles where A[~

m A2, and gn m g2 m I at Uci, this

first threshold is eventually related to the ratio g2 of the two-particle decay width r2 over the

two particle spacing A2 This is not due to the fact that AN is not a relevant energy scale, but

because this is the contribution of order P
=

N/2 or
(N +1) /2 (depending

on the parity of N)
in the perturbation theory of the decay width rN which matters for the spectral fluctuations

at the scale AN- Therefore, as previously proposed by Shepelyansky and Sushkov, we just
need to have the two-particle levels well coupled by the interaction in order to have the same

thing for the N-body levels. In this case the conditions for the establishment of Wigner-Dyson
rigidity and to have an effective decay are similar and both are Utyp

+~

A[~.
For the lifetime of quasi-particles in a zero-dimensional Fermi system, the relevant ratio is

made from the two different scales: the decay width of a single quasi-particle rsp(e) (resulting
from the disintegration of a single quasi-particle into two quasi-electrons and a

hole) and

the accessible three quasi-particle level spacing A3(e). In this connection, a quasi-particle
is considered at an excitation energy e

above the Fermi energy of an isolated system. The

corresponding Fermi vacuum is assumed to always provide a new electron-hole pair at each

interaction process, such that the relevant decay width is not the one characterizing the decay
of

a certain Slater determinant to those with the same quasi-particle content, but to those

with a quasi-particle content increased by a new electron-hole pair. It should be emphasized
that this does not correspond to the dilute limit discussed in our work, but to a limit of finite

density of particles, such that the Fermi vacuum can be considered as an unlimited reservoir

of particle-hole excitations. rsp(e)
m U/~~/A3(e) m

A3(e) defines the (second) excitation
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threshold e* in reference ill]. The threshold is obtained when the typical magnitude of the

interaction matrix element Utyp is of order A3 If), unlike the value A[~ which was relevant

in our dilute limit. In reference ill], it is suggested that the two problems of level statistics

and golden rule decay are unrelated: that delocalization in Fock space does not mean that

the spectrum should have Wigner-Dyson statistics. For a Cayley tree, this disagrees with the

results of recent supersymmetric calculations [40] using a non-linear sigma model formulation.

For the "dilute" case of
a small number of particles in a large volume, it follows from our work

that these two properties are very intimately related.

In this work, the transition (?) from an uncorrelated spectrum to a fully ergodic one seems

to occur in two stages: Uci and Uc2. We do not have a qualitative understanding of the

behavior in the intermediate regime. Whether this regime will survive with increasing number

of particles, and what is the precise relationship (~) with reference ill]
are questions which

deserve further investigation.
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