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Abstract. We present a detailed numerical test of the coarse-graining method proposed by
Sapoval to compute the flux through an irregular interface in the case where the local response

is inhomogeneously distributed. It is shown, through comparison with detailed finite elements

simulations, that this method permits to deduce the flux across an irregular interface from its

topography only, as for example in the case of non-uniform polarizability in electrochemistry.
The interest of the method lies in its computational simplicity. It then constitutes an essential

step towards the understanding of the flux across irregular interfaces in non-linear regimes.

Introduction

We consider here the linear transport across irregular interfaces, a common phenomenon in

many natural
or

industrial processes. One example is the electrical response of electrodes in

contact with electrolytes. Another example is the transport to and across a membrane where

neutral reacting species are brought to the surface by diffusion currents instead of electrical

currents in electrochemical systems. The same problem arises in the Eley-Rideal mechanism in

heterogeneous catalysis where reactants have to diffuse to a catalytic porous surface in order

to react. Its &equent occurrence and its practical importance has justified numerous studies

of the influence of the interface geometry on the net flux across such interfaces ill.
Flactal geometry has been extensively used as a model for extreme geometrical irregularity

for several reasons. It first provided some hope to better understand the ubiquitous constant

phase angle response in electrochemistry [1,2]. The possible role of the fractal structure of

the interface has been extensively studied and several results have been obtained, especially in

2-dimensional systems. For a review 6f the early works on &actal electrodes see [1,2] and the

references therein. Secondly one can hope that understanding the behavior of fractal electrode

would lead to the understanding of the role of geometrical irregularity in general even when it

is not fractal. This second goal has been partly realized for the linear response of 2D-electrodes

of arbitrary geometry [3,4].
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The purpose of this paper is first to extend the finite scale renormalization procedure, pro-

posed in [3], to the case of an irregular (self-similar) electrode with a non homogeneous distri-

bution of the local transport parameter. This finite size real space renormalization procedure

was called the "rope walk" in reference [5]. It is called here "the land surveyor" method because

it is based on geometrical measurements made on the topography of the electrode.

Our second motive is to explore the use of finite elements method to compute numerical

solutions of the Laplacian field with mixed boundary conditions. This type of method is

required in order to study the non-linear response of irregular interfaces.

We study here situations where both the geometry and the local transport properties are

irregular. We first recall briefly the nature of the problem that we address. Consider the

electrochemical cell shown in Figure la. The response of this cell is governed by the resistivity

p of the electrolyte and by the rate of charge transfer occurring at the interface. We restrict

our study to the case where the smallest geometrical feature I of the geoInetry is much larger
than the Debye length. Consequently we may use the Laplace equation AV

=
0 instead of

the Poisson equation for the electrical potential in the bulk of the electrolyte. The transport

equation in the voluIne is J
=

-i7V /p where J is the vector current in the electrolyte.
The rate of charge transfer at the interface is characterized by a resistance per unit surface

r
(known

as the Faradaic resistance) and, if any, by a capacitance r~ per unit surface but

we restrict here to the study of the Faradaic d.c.-response. Hence the current at the surface

is Jn
=

-V/r where V is the local potential in the electrolyte at soIne point "very near"

the interface. Here the Faradaic resistance r has a space dependence r(s)
as a function of

the curvilinear abscissa s as indicated in Figure la. We then consider the DC-probleIn as

illustrated in Figure la where the outer electrode is at potential Vo and the inner electrode at

zero potential. Due to charge conservation, the current jn is
=

-V Iris crossing the electrode

surface Trust be equal to the Ohlnic current jn
=

-i7nV/p reaching it froIn the bulk. As a

consequence the d.c. boundary condition can be written as

v/v~v
~

r(s) /p
=

A(s). (i)

This introduces a local physical length scale A(s) in our problem. From a mathematical point
of view, the problem is to find the properties of the Laplacian field on the surface with the

so-called Fourier or mixed boundary condition (I). The role of the length A on the current

distribution on irregular electrodes was already recognized in the late forties in the case of the

homogeneous response (with uniform r) [6, 7].
The equivalent circuit of a cell like that of Figure la is made of two resistances in series:

the resistance of the electrolyte Ro which is proportional to the electrolyte resistivity p and

depends on the geometry of the cell, and the resistance of the electrode Zode which depends

on r and on the geometry such that

Zcell
"

R0 + Zode. (2)

Our aim here is to compute and discuss the electrode impedance Zode.

The "Land Surveyor" Method

This method pernlits in principle to compute Zode from the topography of the electrode and

the function A(s) only. It was proposed in reference [3]. We extend it to non-homogeneous
surfaces. The idea is to substitute the problem of Laplacian transfer across the real electrode

(which presents a
finite transfer rate) by a problem of Laplacian field obeying the Dirichlet
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Fig. 1. Top: schematic representation of the type of electrochemical cell under study. The elec-

trode has an irregular geometry schematized here by a self-similar fractal and also an inhomogeneous
resistivity r. In the example shown here the left part presents r =

6pi while the right part presents

r =
25pi. The curvilinear coordinate along the electrode geometry is s. Bottom: result of the coarse-

graining procedure on the upper electrode. The curvilinear coordinate along this new geometry is s'

and the perimeter of this new curve is L~,. This figure is given here as an example: the computations
have been carried on half of this cell.

boundary condition (V
=

0) but with a different geometry, obtained by a coarse-graining of

the real geometry to a physical scale determined by the length A(s).

The Dirichlet Laplace problem (V
=

0) on
irregular electrodes has been thoroughly studied,

at least in d
=

2. Note that the Dirichlet problem is known as that of "primary current dis-

tribution" in the field of electrochemistry. More specifically
an important theorem, Makarov's

theorem, describing the properties of the current distribution on an irregular (possibly frac-

tal) electrode can be used [8, 9j. This theorem states that the information dimension of the

harmonic measure
(here the harmonic measure is the normalized current density)

on a singly
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connected electrode in d
=

2 is exactly equal to I. This very special property of the Laplacian
field can be illustrated in the following manner: whatever the shape of the working electrode,
the size of the region where most of the current flows is proportional to the overall size (or
diameter) L of the electrode under a dilation transformation.

This result has a simple but profound meaning in terms of the screening efficiency of the

geometrical irregularity, and this is what we use here. We consider the simplest description
of an irregular electrode: the ratio S

=
Lp IL of the perimeter length Lp divided by its size

or diameter L [10]. This number S has a direct physical significance: it really measures the

screening efficiency of the irregularity of the structure for Dirichlet Laplacian fields. Whatever

the geometry, if the active zone has a size L, then as L
=

Lp IS the factor I IS
can be considered

to be the "screening efficiency" of the primary current distribution due to the geometrical
irregularity. This is the physical significance of Makarov's theorem.

This result cannot be applied as such to an electrochemical cell because the boundary condi-

tion on the electrode is not V
=

0 but V li7nV
=

A(s). We are then in the situation known as

the secondary current distribution in electrochemistry. The real boundary condition introduces

the physical scale A in the problem. The procedure that was proposed in [3] is to switch from

the real geometry obeying the real boundary condition to a coarse-grained geometry obeying
the Dirichlet boundary condition, with the coarse-graining depending on A. In a second step

one can use the screening efficiency of the coarse-grained geometry to find the active zone of

the electrode, hence its impedance. The discussion that we give now is a generalization of this

procedure as it was proposed in references [3-5].
We allow for the general situation where the surface resistivity r is a function r(s) of the

curvilinear coordinate s. This is what we call the non-homogeneous linear case. In order

to obtain quantities which can be compared to measurements made on real electrochemical

cells ill]
we introduce b which represents the thickness of the cell along the third d1nlension.

We consider a region of perimeter ds around the curvilinear coordinate s. It presents an

elementary admittance l§urf_
= 16

/r(s)]ds which is snlaller than the "local access admittance"

of order b/p. We call "local access admittance" the admittance of the small bulk area which is

in front of this part of the interface. The value of this local access admittance does not depend

on the area size since the admittance of a square of electrolyte with thickness b is equal to

Ya~~_ =
b/p whatever its size.

One can then consider a larger region between curvilinear abscissa si and s2. Depending on

si and s2 there exist two situations: if the curvilinear distance between si and s2 is small, the

current is limited by the surface impedance. On the contrary, if this distance is large enough,
the current is limited by the bulk resistance to access the surface. But in the latter situation

we are, in a first approximation, back to the case of a pure Laplacian field with the boundary
condition V

=
0 since it is the access to the surface that limits the current.

The idea then consists in coarse-graining locally the real geometry to a scale such that the

perimeter Lpi in a region of size (or diameter) L~g,i is given by the condition that the integral
of [b/r(s)]ds along that part of the perimeter is equal to the access admittance Ya~~

=

b/p.
Equivalently the integral of ds/A(s)

over that same region should be equal to I. Since

such a definition of the coarse-grained diameter is difficult to implement computationally,

we use instead the "local" chord between the curvilinear coordinates si " s
A(s)/2 and

s2 = s + A(s)/2. The chord length Lc(s) is thus defined as the distance between si and s2

in real space. In the case where r is a constant, independent of s, the above relation ex-

presses simply that the curvilinear distance (or perimeter length) between si and s2 is equal

to A
=

r/p.
Because of its definition, such a region can be considered as working uniformly. At the

same time, in the new coarse-grained geonletry, we are dealing with a pure Dirichlet Laplacian
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field. We then shift from the real geometry to the coarse-grained geometry which is made of

successive chords L~(si, s2), L~(s2, s3), L~(s3, s4). In the coarse-grained geometry the curvi-

linear coordinate is named s',
as indicated in Figure 16. The perimeter of the coarse-grained

electrode is named Lp,. Each element or grain of the coarse-grained system presents an ad-

mittance which is equal to b/p
so that the differential adnlittance of an element ds' is equal to

[b/pL~(s')ids'. If there was no screening, the total coatse-grained electrode would be working
uniformly and its admittance would be

llg,no
screening " 16

/pLc(8')jd8' (3)~g

where the integral is taken along the coarse-grained geometry. But due to electric screening
there exist an active zone, where most of the current arrives and a passive zone with receives

only little current [11,12j so that the integral can be split in:

~~'~°
~~~~~~~~~

g,

active

~~~~~~~~'~~~~' ~
~'

P"~~~~

~~~~~~~~'~~~~' ~~~

The electrode admittance (de is simply

(de
"

(b/pLc(s')ids'. (5)
g,

active

Note that the integrand is only a function of the distribution of r(s). The admittance does

depend on the Laplacian field distribution only through the determination of the active zone.

Calling La~t. the length of the active zone of the coarse-grained electrode, the above integral

can be written

(de
"

La~t. lb/p]
/

[I /L~(s')] (ds'/La~t ). (6)
cg, active

The integral represents the harmonic mean of L~(s') along the active zone. We define (L~)a~t.

as:

Our ypothesis, using an abrupt form of akarov's
theorem,

is that the
active

zone

have a size
very

simple

expression

(de ~ (8)

This expression
is universally valid. At this

stage
the

problem
has been mplified

without

any loss of generality but still requires to
in order to compute (L~)a~t.

from quation (7).

One can go one step further for the wide ariety of systems for which
one can approximate

harmonic

namely
Lc)Q].

cg <

Due to the fact that the harmonic
mean

is dominated by the small values of ~(s'), this

approximation is
valid unless the allest values of the hord length L~ are found only

non-active
egion of the electrode. A counter-example

to
equation

(9) could
then

be the pecial

case of deep fjords with narrow ccess annels and small values of Lc only
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Fig. 2. Fractal mesh used in the finite element computation. The figure presents the hierarchical

construction of the mesh skeleton at a given generation. This mesh skeleton will be the basis of a set

of meshes at this generation. Here the building of
a third generation mesh skeleton is shown.

In all other cases the harmonic mean of the chord length will be the same if taken along the

active zone or along the total coarse-grained structure. The admittance is now

lGde
=

ib/P)iL/iLc)). (lo)

We then obtain
a very simple statement: the impedance of an irregular electrode in d

=
2 is

simply the square impedance p16 of the electrolyte divided by the number of chords needed to

measure the size (or diameter) L of the electrode. This apparently simple result is not trivial.

It expresses how the resistance of the electrode depends on the electrolyte resistivity and an

average chord length corresponding to a perimeter of length A(s). The geometry enters here

through the relation between a perimeter of length A(s) and its associated chord.

As there exists an exact mapping between s and s', such that ds'/L~(s')
=

ds/A(s), the

average chord length given by equation (9) can be written also, working on the initial non

coarse-grained geometry

/
Lcls)dS/AIS)

~~~~ f
ds/Ajs)

~~~~
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Fig. 3. Example of different meshes at a given generation (here the third). The initial skeleton

is refined by splitting each triangle in 4 identical triangles (by joining the middle of the sides of the

initial triangle). Each mesh represents a new iteration of this operation.

Note that in the case of a flat but non-homogeneous electrode, the local chord length L~ is

equal to A(s)
=

r(s)/p and equations (8, 9) give:

lGde
=

(b/P)lL/Lp) /d8/AIS) =

b /dS/rls) l12)

since L
=

Lp for a flat electrode. We then recover the known value of the electrode admittance

for p =
0. In the following we will test the validity of this approach in different cases.

Numerical Method

The electrode impedance Zode is obtained by Zode IT)
=

Zceii IT) -Z~eii IT =
0) which corresponds

to the quantity measured in impedance spectroscopy. Nunlerical solution of the Laplacian
problem is performed by using a

finite element method rather than a
finite difference scheme
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for efficiency and accuracy purposes. This method will allow us also to extend later this study
to non-linear regimes. The standard variational formulation of the problem is discretized with

a triangular mesh and Pi-Lagrange interpolation. The linear system obtained in such a way

is solved by using the Cholesky method. To this end
we use the Finite Element Library

Modulef [13].
In order to compute the impedance of the irregular electrode with the greatest accuracy,

we created a "fractal" triangular mesh of the structure (Figs. 2 and 3) which allows at the

same time a detailed discretization of the boundary and an economic meshing in the bulk

areas where the variations of the electrostatic potential are smaller. The mesh of the structure

at generation n + I uses five times the mesh at generation n and a triangular mesh of the

square placed under these five meshes (Fig. 2). The number of nodes of this meshing (which
represents the number of degrees of freedom and thus the complexity of the problem) increases

like 5" where n is the generation of the fractal electrode, instead of 9" in the case of a regular

square mesh.

This method allowed us to compute accurately the impedance up to a sth generation elec-

trode on a standard Unix workstation (Hewlett-Packard C160). The computation time was

from I second to a few minutes for a given value of the surface resistivity r.

Results

We compare now the land surveyor method with direct numerical simulation of the Laplacian
field in the electrochemical cell. Several physical situations have been investigated.

The geometry of the electrode is given by the Viczek fractal (half of the domain described in

Fig. I). The bulk resistivity p is taken equal to I together with the smaller cut-off I. A surface

resistivity r
equal to 1 corresponds then to A

=
I

=
I. The geometry of the bulk electrolyte

under the electrode is roughly a square and it has been numerically verified for various cases

that the computation results do not depend on the distance between both electrodes
as soon

as it is greater than a few I.

We first compute the response of the 4th generation electrode with a uniform surface resis-

tivity r.
In this homogeneous case it is well known that there exist two asymptotic behaviors

for very small A (the Makarov regime for A < I)) and for very large A (the trivial uniform

regime for A » Lp). In both regimes the electrode impedance is proportional to the surface

resistivity r. Between these regimes, the impedance of a "fractal" electrode follows a power
law whose exponent is approximately equal to the inverse of the interface dimension.

The results are shown in Figure 4. The general behavior of the land surveyor method

reproduces the three regimes. The discrepancy that we observe for A
=

r/p smaller than I is

due to an expected flaw of the finite elements simulation consecutive to insufficient mesh at

the interface. This regime (the Makarov regime) would need a much finer mesh in order to

be studied accurately. In this work we focus on the regime where A
=

r/p > I which is the

situation of practical interest. As shown in Figure 4, the "land surveyor method" is in good
agreement with the nunlerical s1nlulation. Not only it follows both power law for I < A < Lp
and A > Lp regimes but it gives also the crossover between these regimes without more complex
computation even though these crossovers extend over a large range of A. Note that the small

oscillations in the land surveyor criterium are due to a peculiarity of our specific geometry:

two points which are far along the electrode can be very near in the real space (this is (he
case

for example when A is equal to the perimeter of a square, for example A
=

4i and A
=

20i)
leading to an artificial small value of (L~). This divergence is not meaningful and could be

avoided by using the diameter of the "grain" instead of the chord length. For all other tests
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Fig. 4. Comparison between the result of the "land surveyor method" and the numerical values of

Z~de for the 4th generation electrode. One can distinguish between three regimes (Makarov regime
where A < I, intermediate regime where I < A <~L~, and purely ohmic regime where Lp « A),
connected through two crossovers: one around A

=
I and the other around A

=
Lp. Here I

=
1 and

Lp
=

625.

and due to computation time considerations, the geometry of the irregular electrode will be a

3rd generation Viczek fractal.

The second test case is a study of a deterministic inhomogeneous distribution of the local

resistivity r(s). The resistivity r varies from rmin to rmax =
10rmin along the curvilinear

coordinate s of the interface going linearly from the minimum value (on the left edge of the

interface) to the maximum value (in the middle of the interface) and then decreasing until

the opposite edge. The comparison between the exact numerical simulation results and the

land surveyor method is shown in Figures 5 and 6. In this case, the results of the land

surveyor method match almost exactly the numerical simulation in all parts of the curve. The

approximation (7) is extremely good since the harmonic mean of the chord length is dominated

by the smallest values which are found in the active regions of the electrode.

We then study the opposite non-homogeneous case, where the minimum resisitivity is located

in the least accessible regions, here the upper region of the electrode. The ratio between rmjn

and rmax has been kept constant equal to 10. As expected, the land surveyor method fits

the numerical simulation better in the large resistivity area of the curve. In the "fractal" or

"power law" regime, tfie land surveyor method overestimates the admittance contribution of

the low resistivity part of the interface, since this portion is partly screened. Nevertheless the

ratio between both methods never exceeds a factor 2 which means that our criterium can still

be used to determine the order of magnitude of the electrode impedance without any further

computation. Note that, for this type of situation, it is possible to compute the Laplacian field

on the new coarse-grained geometry to obtain the location of the active region and then use

only the first part of equation (7). This would give a very good approximation of the electrode

impedance at a minimum cost (solving numerically a Laplace equation with Dirichlet boundary
conditions in a simplified geometry).

In the third case, Figure 7, we studied the validity of our method in the case of a ran-

dom distribution of the resistivity along the interface,
a most common case in real devices.
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Fig. 5. Comparison between the "land surveyor method" and the numerical simulation results for

an inhomogeneous distribution of the resistivity along the electrode: the local resistivity is small on the

lateral edges of the electrode and large in the middle part of the electrode. Note the perfect matching
due to the good quality of approximation ii).
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Fig. 6. Comparison between the " land surveyor method" and the numerical simulation results for

an inhomogeneous distribution of the resistivity along the electrode: the local resistivity is large at the

edges and small in the middle part of the electrode. In this case the poor validity of approximation
ii) leads to a significative discrepancy between both methods, but even in this case they never differ

by more than a
factor 2.

The ratio between maximunl and minimunl resistivity is kept equal to 10. As in the homo-

geneous case, results show very good agreement between numerical computation and the land

surveyor method. This result was expected since the smallest values of the chord length are

homogeneouslj distributed along the interface, in both active and passive regions.
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Fig. 7. Comparison between the land surveyor method" and the numerical simulation results for an

inhomogeneous and random distribution of the resistivity along the electrode: as in the homogeneous

case, the repartition of small resistivity values between active and passive regions of the electrode leads

to a good matching between both methods.

Conclusions

In summary we have developed a new method of computing the transfer properties of irregular
interfaces such as electrodes or rough absorbing membranes. Apart from the interface geometry,

all that is needed are the values of the microscopic transport coefficients (here for instance the

electrolyte resistivity and the Faradaic resistance). We have tested this method for various

non-homogeneous distributions of the surface resistivity.
The general conclusion that one can draw from this work is that the measurement of the

electrode impedance is a good approximate measurement of the harmonic average of the chord

length corresponding to a perimeter A(s). The simplicity of the method makes it a
good

candidate for the study of the response of irregular interfaces in non-linear regimes for instance

when the local current across the electrode is related to the local voltage by a non-linear

relation j
=

f(V). All these results can be applied to the study of particle transfer across

inhomogeneous and irregular porous membranes or
catalysts as

indicated in ill.
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