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Abstract. We present a macroscopic experimental realization of force-free motion consist-

ing in a mercury drop experiencing alternatively in time two locally asymmetric and periodic
potentials which are spatially shifted. A system of electrodes creates the potentials and the force

applied to the drop is of electrocapillary nature. We study the macroscopic velocity of the drop

as a function of the times during which it experiences each potential and investigate different

regimes of macroscopic velocity. Adjusting the different times allows some of the drops to move

whereas others of different local velocities have a zero macroscopic velocity. This system thus

acts as a filter. We also studj the case of stochastic modulation of the potentials. These results

compare well with theoretical predictions and experimentally validate a model which has been

proposed for motor protein assemblies.

Rdsumd. Nous prdsentons une r4alisation exp6rimentale de mouvement sans force consistant

h appliquer successivement h une goutte de mercure macroscopique deux potentiels localement

asym4triques et p4riodiques, d4ca14s dans l'espace. Chaque potentiel est cr44 par un systkme
d'41ectrodes et la force appliqude h la goutte est d'origine 41ectrocapillaire. Nous 4tudions la

vitesse macroscopique de la goutte en fonction des temps d'adressage de chaque potentiel et

mettons en dvidence diff6rents r6gimes de vitesse. Un ajustement des diffdrents temps permet

h certaines gouttes de se ddplacer h vitesse finie alors que d'autres, ayant des vitesses locales

diff6rentes dans chaque potentiel, ont une vitesse macroscopique nulle. Ce systkme joue donc le

r61e d'un filtre. Nous 6tudions 6galement le cas oh les systbmes d'61ectrodes sont adress6s de fagon
stochastique. Les r6sultats confirment les pr4dictions th60riques et valident exp6rimentalement

un modkle qui a 4t4 propos4 pour expliquer les ph4nomknes mis en jeu dans le mouvement des

moteurs mo16culaires.

Introduction

The ability to produce a Inacroscopic Inotion without having to exert a macroscopic force or

gradient (force-free motion) has been recently largely explored on the theoretical side [1-5].
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Motivation for these studies is twofold: First, the underlying principles can help to understand

how the molecular biological motors work [4, 5]. Second, they provide a templatb to design
original separation techniques whose theoretical separation power can be astonishingly high in

some cases [1, 3].
As

a matter of fact, provided energy is dissipated, a particle can move over a large distance

without any macroscopic force or gradient as long as the local environment the particle is

submitted to is periodic and asymmetric. For instance, it has been theoretically demonstrated

ill and experimentally verified [6] that a Brownian particle submitted to such a potential
successively switched on and off can experience a macroscopic drift.

In this paper, we will concentrate on the case of a particle alternatively experiencing two

asymmetric potentials whose periods are identical but which are shifted by a fraction of their

period.
No diffusive step is required in this Inodel. We have chosen here to illustrate it with a

macroscopic object la I mm mercury drop) and therefore, temperature dependent processes
such as diffusion will be ignored in the following.

The theoretical description we present thereafter is largely inspired &om reference [3]. Let

us first precise a few notations: we consider a particle experiencing alternatively in time the

sawtooth potentials Wi and W2 depicted in Figure la. Its local mobilities in potentials Wi
and W2 are respectively /1i and /12. The amplitudes of the potentials are respectively Wi and

W2, their common period and asymmetry are respectively p = a + b and a16 16 > a). The two

potentials are shifted by a distance 6. We note V the macroscopic velocity of the particle.
It can easily be shown by geometrical arguments that a particle experiencing successively

the potential Wi during a time Ti and W2 during T2 can be set into a directed motion only if

a < 6 < p a.

lvhen this condition is fulfilled, several velocity regimes arise depending on the values of

Ti and T2 which are imposed by an external modulation (this deterministic situation will be

denoted "regular case" thereafter). If Ti < ab/(/1iwi)
or T2 < ab/(/12W2), V

=
0 since the

particle does not have time to escape the energy minimum where it returns endlessly. If Ti and

T2 are increased so that T~ > ab/(/1~W~) for I
=

I and 2, the velocity increases to eventually
reach its optimal value p/(Ti + T2) corresponding to one period per time cycle when:

~llWl7l + ~l2W272
"

Pb. II)

if Ti and T2 are further increased V
=

p/(Tl + T2) is still verified and the velocity thus decreases.

These different velocity regimes are summarized in the diagram of Figure 16. In the exper-

iments, we have chosen to fix the time T2 and to vary Ti For a given value of T2 different

behaviours are then observed according to Tii if T2 < ab/(/12W2) (region I, Fig. lb), V
=

0

whatever the value of Tii if ab/(/1211~2) < T2 < b~/(/12W2) (region II, Fig, lb), three different

regimes of velocity can be reached (zero velocity, intermediate velocity 0 < V < p/(Ti + T2)
and optimal velocity V

=

p/(Ti + T2 )) when Ti is varied; if T2 > b~ /(/12W2 (region III, Fig, lb)
the velocity can only be zero or optimal.

Also of interest, in particular for its possible biological relevance, is the "stochastic case"

for which the particle experiences the potential W~ during a time t~ given by the probability
P(t~)

=

exp(-t~ /T~ /T~. In this case, a maxiInuln of V is also predicted although its aInplitude
is sInaller than p/(Ti + T2). For very sInall values of the average tiInes Ti and T2, the Poisson

statistics allows for long residence tiInes with a non~zero probability. Escape &om an energy

Ininilnurn becoInes then possible and thus V is sInall but finite.

We have here considered the case of a one-state particle alternatively experiencing two poten-
tials. However, this situation is siInilar to a two-states particle experiencing a

single external
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Fig. I. a) Schematic representation of the potentials WI and W2. x is the spatial coordinate. b)
Different regimes of the macroscopic velocity according to the values of Ti(~Liwi)/b and T2(~L2W2)/b

compared to the lengths a and b of the potentials.

potential and transiting between its two states in such a way that its energy landscape is

analogous to WI in one of its states and to W2 in the other.

Experimental System

In this paper, we have studied aInacroscopic droplet of1nercury successively exposed to poten-

tials of electrical origin whose characteristics are siInilar to the ones presented in the theoretical

introduction.

Mercury drops subInitted to an electric field in dilute sulphuric acid Trove toward the cathode.

This electrocapillary effect is a consequence of interfacial tension gradients on the surface of

the drop (Marangoni effect) induced by the electric field. A Inore detailed description can be

found in reference [7] and soIne ofthe characteristics of this Inotion will be discussed hereafter.
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To produce potentials whose shapes reflect the one depicted in Figure la, we have used the

experiInental set up described in Figure 2a. A central 2 1n1n deep square groove is Inechanically
etched in a block of plexiglas. On each side of this groove, transverse pairs of grooves of1 mIn

depth are also etched in a periodic way such as to be connected to the central one.
All the

canals are filled with 10% sulphuric acid (solutions
are prepared &oIn 95% sulphuric acid

(Prolabo, Flance) and are used within two weeks). In each transverse canal a gold (99.99+%,
Goodfellow) electrode dips in the electrolyte at a distance of about 1 cIn of the central canal.

The drop of1nercury (99.99+%, Aldrich) is placed in the central canal and Troves along it. Its

diaIneter is larger than 1 1n1n in order to prevent it froIn entering the transverse canals.

In the following, we call "systeIn of electrodes", all the electrodes
on

the same side of the

central canal. By "pair of electrodes", we mean two electrodes separated by the distance a in

one system of electrodes.

Each system of electrodes is addressed successively. For the system "on", a DC voltage which

can be chosen different for each system is applied between the two electrodes of each pair with

a double output DC generator in the range 0-30 V (Metrix). Practically, the applied voltages

range &om 12 V to 20 V. Taking into account the voltage drop in the transverse canal, these

differences of potential correspond to effective electric fields along the central canal ranging
from about 0.3 V cm~l to 0.6 V cm~l The commutation &om one system to the other is

performed via relays by a PC computer equipped with an I IO digital board (Keithley). The

smallest commutation time that can be obtained with such a set-up is 20 ms. The experimental

error on the imposed residence times is weak (about 5%).
When a DC voltage is applied between the pairs of electrodes of one system (the other system

being left at a floating potential), the drop will be attracted toward the areas of the cathodes

and repelled from the anodes. In Figure 2b, the energy landscape experienced by the droplet
will then be similar to Wi when the system A is addressed and to W2 when the system B is

addressed. The potentials thus produced by the pairs of electrodes on each side of the central

canal have the same periodicity (p
=

25 mm) and asymmetry (a
=

6 mm
and b

=
19 mm) and

are spatially shifted by a distance 6
=

13 mm. Potentials having a period of 50 mm can also

be obtained by removing one pair of electrodes out of two (in this case, a and 6 are unchanged
and b

=
44 mm). The total length of

our set up is 50 cm
which represents 20 (respectively

10) periods of the potential for each system of electrodes and for p =
25 mm

(respectively
50 mm). The drop is observed with

a
CCD caInera and time sequences are recorded on a VCR

for further analysis.

Motion of the Drop in a DC Field

In order to quantify the velocity of the drop in each state W~, we have characterized the Inotion

of a drop of1nercury in a DC field in our experiInental set-up.
Figure 3a displays the position verstls time plot of a drop when submitted to a field of

0.32 V cm~l imposed between one of the pairs of electrodes of our set-up. As shown in this

figure the Inotion is uniforIn and can thus be characterized by a velocity u. For a given drop
and field, the velocity proved to be constant whatever the distance and tiIne during which the

Inotion was observed. Nevertheless, as shown in Figure 3b, the velocity is an increasing non

linear function of the field within the applied range of field intensities.

This result differs from our previous study [8] where we
had observed that the velocity of

a

drop in a DC field varies linearly with the intensity of the field. However, in the present study,

the imposed fields are larger than in the previous one. They range from about 0.3 V cm~~ to

0.6 V cm~l (compared to about 0.I V cm~l in Ref. [8] and the resulting force is such that the

drop goes under deformations during its motion. This velocity regime thus involves inertial
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Fig. 2. a) View of the block of plexiglas. The central canal is 2
mm deep and 2 mm wide and

the transverse ones are I mm deep and I mm wide. The electrodes dip in the electrolyte which

entirely fills the canals. The electrodes a
(respectively b, c, d)

are interconnected. An experiment
proceeds as follows: one of the systems of electrodes (for instance the system formed by the electrodes

a and b) is first addressed which consists in imposing a difference of potential corresponding to Wi
between electrodes a and b during a time Ti The electrodes ofthe other system (c and d) are then

left at a floating potential. We then switch to the other system by imposing a
difference of potential

corresponding to W2 between the electrodes c and d during a time T2, the electrodes a and b being
left at a floating potential. We then address the first system again and so forth... b) Schematic top
view of the experimental set-up and approximate shapes of the potentials created by each system of

electrodes along the central canal. The two systems are addressed successively. WI corresponds to

system A when system B is floating, W2 to system B when system A is floating.

effects and, to our knowledge, has never been studied in detail. However, as shown in [7], one

can get a qualitative picture of the phenomenon by equating the driving electric force and the

dynamic pressure (Bernoulli's law). In this approximation, the viscous drag is neglected and

one gets for the velocity:

u «
vi (2)

where E is the electric field.
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Fig. 3. a) Position of a drop of mercury as a function of time in a dc field of 0.32 V cm~~.

b) Velocity of a drop of1.9 mm diameter as a function of the electric field. The solid line is fitted to

the data following equation (2).

As shown in Figure 3b, our experimental data seem to roughly fit this law. To compare

our results with the theoretical predictions of reference [3], we have systematically measured

the local velocities vi and u2 in potentials WI and W2 for each drop. Besides, aInobility
cannot be strictly defined in each potential as ~1~ =

u~b/W~ would be a function of the potential
aInplitude W~ and in the following we have replaced the expression ~I~W~16 by the velocity

u~ over the length b of the potential W~ (the different threshold tiInes do not depend on the

local velocities over the length a of each potential). In the following, we will refer to the

electrocapillary velocities u~ as the "local" velocities which are to be distinguished &om the

macroscopic velocity V of the drop resulting &om several transitions between the two systems
of electrodes.

Experimental Results

REGULAR CASE. We have first studied the motion of the drop for different values of Ti

and T2 imposed in the regular case. Figure 4a shows a typical position verstls time plot when

Ti and T2 are long enough to enable the drop to move a distance p = a + b every time cycle.
The macroscopic velocity V is thus p/(Ti + T2). Figure 4b shows an example of motion for

intermediate values of Ti and T2. Several time cycles are then needed for the drop to move a

distance p as local backward motion occurs.

The macroscopic velocity of the drop is obtained by analysing the recorded sequences of

motion. When the drop is in a regiIne where it regularly Troves a distance p every time cycle,
its velocity is given by p/(Ti +T2 ). Hence there is no Ineasurelnent error in the regiIne of optiInal
velocity. lvhen the Inotion of the drop is Inore coInplex (such

as in Fig. 4b) the velocity is

obtained by Treasuring the tiIne needed for the drop to Trove along the length of the central

canal which represents 20 periods of each potential. In this regiIne, the vertical error bars

represent the measurement errors.

Figure 5a shows two plots of the normalized velocity V* (Ti + T2) /P as a function of Ti for two

fixed residence times T~ in state W~. In order to explore the diagram depicted in Figure 16,

we
have investigated several regiInes. We have taken three fixed values of u2T2 in the three

regions of Figure 16: u2T2 < a, a < u2T2 < b and u2T2 > b.
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al Plots for a drop
of diameter 1.9 mm

for two different times T2. The local velocities in each state W~ are respectively:

vi =
4.0 cm

s~~ and u2 =
3.5 cm

s~~ b) Three velocity regimes for a drop of velocities vi =
8.I cm

s~~

and u2 =
4.I cm

s~~. cl Plots for a drop having different local velocities in state Wi This situation

is equivalent as two drops of different mobilities in the same set-up.
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In each case, we have Trade uiTi vary and we have1neasured the Inacroscopic velocity.
Practically, we have here u2 "

3A cIn
s~~ and vi "

4 cIn
s~~

1. If T2 "
0.I s then u2T2 < a

and we have verified that V
=

0.

2. If T2 "
0.52 s (Fig. 5a, stars)

we are then in the case where a < u2T2 < b. According to

the value of Ti we then observe several different regimes:

2.i if Ti < 0.12 s then V
=

0 (region I, Fig. lb),

2.2 if Ti "
0.22 s we are in a situation where the velocity is finite but slightly smaller

than the optimal velocity (V Ge 0.8 p/(Ti + T2)),

2.3 if Ti > 0.24 s, the optimal velocity is reached: V
=

p/(Ti + T2).

We have thus observed the three regimes predicted in that situation (region II, Fig. lb).
Flom the basic equations we can calculate the two threshold times. The transition from

V
=

0 to intermediate velocity is expected when Ti "
ii

#
a/ui, the other transition from

intermediate velocity to optimal velocity is expected at Ti "
T(

=
(p u2T2)/ui Numerically,

we get ii
"

0.15+ 0.02 s and T(
=

0.18 +0.04 s both values being compatible with the measured

threshold times.

3. In this last case, T2 #1.02 s
(Fig. 5a, dots).

We observe only two regimes, V
=

0 or V
=

p/(Ti + T2) and
we

have not succeeded in

identifying a third one of intermediary velocity. Again this result is in accordance with theo-

retical predictions (region III of Fig. lb). The value of the threshold time is the same as in the

preceding case: ii
"

0.15 s and is compatible with our observations.

We have thus observed the different velocity regimes predicted by theory. In particular, we

have shown that adjusting one of the times leads to very different behaviours: in one case only

two values of the normalized velocity of the drop (0 or
I)

are allowed whereas in the other case

intermediate values can be reached.

Figure 5b more accurately describes the three velocity regimes that occur when u2T2 < b.

The calculated values of ii and T( are respectively 0.07+ 0.01 s and 0.10+0.03 s. In that case we

have investigated the variations of the velocity in the intermediate regime which experimentally

occurs for 0.08 < Ti < 0.12 s. In this regime, the velocity exhibits irregular variations. As the

velocity should be an increasing function of the time Ti in this regime, this behaviour probably
mirrors both the influence of small variations of the lengths a and b of the potentials (due to

the finite width of the lateral canals) and the fact that the velocity is averaged over a restricted

number of periods. The high sensitivity of the velocity to these features of the potentials may

also be revealing of a complex dependence of V versus Ti in this regime. However, the lack of

sensitivity of our set up has prevented us from further studying these variations. Nevertheless,
if Ti is long enough (I.e. is not too close to the threshold value ii this influence disappears
and the velocity regularly increases with Ti in this regime.

In order to check the influence of the mobility in each potential on the velocity, we have

taken advantage of the non linear behaviour of the local velocity when the electric field varies.

In Figure 5c arj displayed the normalized V(Ti)
curves of the same drop submitted to two

different potential amplitudes Wi The aInplitude W2 and thus the local velocity u2 is the

same for both curves and is such that the drop moves a distance u2T2 < b in state W2. The

amplitudes WI and thus the local velocities vi differ: vi "
3.5 cm

s~l (Fig. 5c, dots) and

vi =
4.6 cm

s~~ (Fig. 5c, stars). Although these results are obtained with the same drop
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they mimic the behaviour of two different objects submitted to the same potentials and having
different mobilities.

Because of the different local velocities, the calculated threshold times are different (respec-
tively ii

"
0.17 + 0.03 s and ii

#
0.13 + 0.02 s). At Ti "

0.12 s, the drop whose velocity vi

is the smallest has a zero velocity whereas the other drop moves almost a half period during

a time cycle. The system thus acts as a filter whose characteristics are fully controlled by the

operator just by changing a residence time or the aInplitudes of the potentials.
Of course, as our set-up is one~diInensional, this "filter effect" cannot be directly observed

but these observations suggest that the transposition of such
a device to Inicroscopic scales Tray

result in highly effective adjustable filters and therefore to powerful separation techniques.

STOCHASTIC CASE. As we have investigated the behaviour of a drop in the regular case,

we have also studied the V(Ti) curves in the stochastic case. In this case, the potential W~ is

experienced during
a tiIne t~ occurring with the probability P(t~)

=
exp(-t~ /T~)/T~ for given

tiInes Ti and T2. As pointed out in reference [3], the interest of the stochastic case is that it

could provide a paradigIn for Inotor protein asseInblies. Moreover, aInong all the Inodels of

force free motion, the
case of shifted potentials seems to be the more appropriate to describe

the motion of motor proteins [9].
As shown in reference [9], in the stochastic case the displacement can be analytically calcu~

lated for each times Ti and T2 and a given set of parameters. We are therefore able to compare

our results with the calculated expression of the velocity using the same set of parameters as

in the real experiInent.
As for the experiInental values of the velocity, the problem is to Treasure the velocity of the

drops with good enough precision. Averaging the Inotion over different runs is not enough, the

nuInber of needed runs being too large. To improve the statistics, we cut each trajectory into

shorter ones whose duration is the average time T2. We thus obtain about 100 displaceInents
that we average. As the tiInes are stochastic, these displaceInents are independent froIn each

other. We repeat the process for trajectories of duration 2T2, 3T2 etc. [10]. We plot these

average displacements as a
function of time and the average velocity is then the mean 810pe of

this curve.

Figure 6 displays the plot of the normalized velocity-V" (Ti +T2 )/P
as a function of Ti of a drop

in a given potential geometry and for both the regular and stochastic case. The vertical error
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as a function of T2/Ti in the stochastic case. The experimental results (circles)

and the theoretical values (solid line) correspond to the same parameters. a =
6 mm, b

=
12 mm,

p =
25 mm, vi =

4.0 cm
s~~ and u2 "

3.5 cm
s~~

bars on the curve corresponding to the stochastic case represent the statistical uncertainty.
The distance u2T2 is smaller than b. Compared to the regular case, curves in the stochastic

case are smoothed out. When Ti < ii
"

0.17 + 0.03 s, the zero velocity regime is no longer
observed as the velocity is weak (at Ti "

0.07 s, the drop moves about 0.lp per time cycle) but

finite. The optimal velocity is reached for the same time Ti "
0.32 s but is smaller than in the

regular case. The drop actually moves about 0.6p instead of one period during a time cycle.

We have not systematically investigated the influence of the mobility as the stochastic case

is not adapted to separation purposes. Indeed, unlike in the regular case, no filter function

can be achieved in tills stochastic case since there is no zero velocity regime. Besides contrasts

between velocities of different particles are expected to be much weaker.

In Figure 7, we have compared experimental results (dots) in another stochastic case with

theoretical expression of the velocity (solid line). As in reference [3], we have plotted the

normalized velocity V*T2/P as a function of the stimulation rate T2/Ti between potentials I

and 2. The agreement between theory and experiment is very good. Here, we have used the

experimental values of p, vi and u2.

Although the agreement is not always as quantitative, qualitatively the main features of the

experiInents are well described by theory.

Conclusion

In conclusion, we have investigated the behaviour of a droplet of1nercury subInitted alterna-

tively in tiIne to two periodic and locally asyInlnetric potentials spatially shifted. We have

identified the regiInes of1nacroscopic velocity predicted by theory in the regular and stochastic

cases. In particular, in the regular case, aInaxilnal velocity V
=

p/(Ti +T2)
can be obtained by

correctly adjusting the residence tiInes in the potentials provided the condition a < b < p a

is fulfilled. Moreover we have verified that if the drop experiences one of the potentials during

a time shorter than a threshold value, the macroscopic velocity is strictly zero. The threshold

times between the different observed regimes not only depend on the characteristic lengths
of the potentials but also on the local velocities of the particles in the potentials. The sys-

tem thus acts as a
filter selecting particles according to their local velocities in the potentials.

The potentiality of such a system in the field of separation techniques thus clearly appears,
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as it could provide not only high velocities of separations but also strong resolutions due to

this "filter effect". In the stochastic case, the experimental values of the velocity are in good

agreement with the theory. In particular, the velocity is finite for small residence times and

presents an
optimal value smaller than in the regular case.
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