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Abstract. The smoothing of artificial grooves on a high-symmetry crystal surface below

its roughening transition is investigated in the light of a one-dimensional model. In the case

of diffusion dynamics, a new, kinetic, attractive interaction between steps opposes the contact

repulsion and tends to flatten the top and the bottom of the profile in the transient state anterior

to complete smoothing. This phenomenon, which is absent from continuum models, is weaker,
but still present in real, two-dimensional surfaces.

Kinetic Monte Carlo simulations have been performed for large modulation amplitudes in con-

trast with previous works. The relaxation time T scales with the wavelength as T c~ A~ for

diffusion dynamics and as T c~ A~ for evaporation dynamics. In the case of evaporation dynam-
ics, the transient profile is sinusoidal. In the case of surface diffusion the profile presents blunted

parts at the top and at the bottom, which result from the kinetic attraction between steps.

1. Introduction

The sInoothing of grooves artificially1nade in a crystal surface is a classical probleIn [1-3]
solved by Mullins [5j in the case of a non-singular surface. Mullins's theory predicts that the

shape of the profile will reInain sinusoidal during the relaxation and that its aInplitude will

decrease exponentially with the tiIne.

In the present paper, we address the case of singular (001) and (111) face8, below their

roughening transition temperature, when the profile can be appropriately described as an

alternation of steps and terraces [6, il. Experilnentally, a transient state is observed where

facets form at maxima and minima before the grooves smooth out [2-4]. Such facets are not

expected from the theoretical analyses of Rettori and Villain [6] and Ozdelnir and Zangwill iii
except if the surface is Iniscut [10, llj,

as it is in practice. However, the figures obtained by
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Fig, I. Steps of length M separated by a distance I. The typical distance between kinks along a

step is (, and each step can fluctuate in a distance bx.

simulations of Jiang et al. [15,16j do show facets even for a well cut surface, in agreeInent with

soIne theoretical Inodels [8, 9j.
The Train probleIn in siInulations [14-17] is that the systeIns considered are sInall in the

three directions. Indeed, in order to obtain the correct scaling laws (e.g. the relaxation tiIne

T vs. the wavelength I), the aInplitude h and the average distance between steps I
=

al /(4h)
Trust be large with respect to the atoInic distance

a.

The probleIn related to the width M of the systeIn in the direction of the grooves is different.

In available analytical
or nuInerical theories, elastic or electrostatic interactions between the

steps which forIn the profile are not considered, and then the only interaction which reInains

is the contact repulsion. In analytic theories [6-9] this contact repulsion is taken into account

by introducing an effective free energy equal [12,13] to

Fent
#

M
~)~$~~

(l.1)
'f

for each pair of steps at average distance I. Here,
~y

is the line stiffness related'to the energy
W per kink by the relation

fl~ya
=

1 +
~~~~~~~

(1.2)

where fl
=

1/kBT.
Forlnula (I.I) is correct only for long distances f. Moreover, as noted by Murty and

Cooper [18], (1.1) Inakes sense only for large M (see condition (2.3)). The purpose of this

article is to study the case of short saInples, with sInall values of M, while all other lengths
(h, I) are much larger than a.

2. What is a Short Sample?

More precisely, the average distance between kinks along a step is (Fig. I)

( Gt a

1
+

~~~~~~~
(2.1)

2
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Thus, the average square end-to-end deviation of an isolated step of length M with respect to

its average position is

~~~~~
l

~~~p(~~~~7)
~~ ~

~/~
~~'~~

where x denotes the direction perpendicular to the groove direction (or to the average step
direction)

on the surface. Formula (2.2) is expected to hold if steps are so far apart that

(6x~) « l~, I.e. M < (f~ la~,
so that contact interactions between steps are not relevant.

An exact calculation [19] for instance considering a single fluctuating line between two

straight lines at distance 2f [20] shows that (I.I) holds only if the opposite relation

M » (
~

(2.3)
a~~

is satisfied. This yields a first condition on (

( « M ~~~) (2A)
~

~

Whether this condition is satisfied or not depends on the temperature T, which should anyway
be smaller than TR. An order of1nagnitude of TR is given by writing that the bee energy of

an isolated step per atoIn, which is W kBTln[1+ 2 exp(-flW)] at low temperature, vanishes.

Thus

~~~ k~R ~' ~~ ~~

As a Inatter of fact, if one wishes to check the analytic predictions Trade for singular surfaces,
it is safer to choose T much lower than TR. Indeed the aspect of a surface on

short distances

is very similar just below TR and just above TR. In particular, closed terraces are present be-

tween steps, and steps exhibit "overhangs" which are generally ignored in available theoretical

treatments. The choice T < TR/2
seems reasonable. This implies, according to (2.1, 2.5), a

second condition on (
( > 3a. (2.6)

It turns out that conditions (2.4, 2.6) are not always siInultaneously satisfied iri siInulations,
especially when diffusion kinetics is considered. For instance, a typical set of values used by
Jiang and Ebner [16] is I la

=
40, M la

=
32, h la

=
5 initially, at tiIne t

=
0. Then (2.4) yields

the acceptable condition ( la < 8 at t
=

0 and ( la < 2 at a later tiIne, when h is reduced by a

factor 2, which is incoInpatible with (2.6). Moreover, the average distance I
=

la /4h between

steps is so short that il. I) is not acceptable. Erlebacher and Aziz [17j use longer samples, with

Mla
=

256 and a shorter wavelength1 < 64 and height hit
=

0) la
=

4. Then (2.4) yields

( la < 16 at t
=

0 and for h la
=

2, at a later time, ( la < 4, which is not so good with respect

to equation (2.6). Murty and Cooper [18j use longer samples yet, with Mla
=

1000, 1 < 40

and height hit
=

0) la
=

4 too. Now, (2.4) yields ( la < 160 at t=0 and ( la < 40 when h

is reduced by a factor 2. These conditions are fully consistent with (2.6), and actually Murty
and Cooper do find the scaling law T ci

l~ predicted by Ozdemir and Zangwill. Note, however,
the very low value of h in all simulations. A consequence is an oscillation of the shape, which

generally shows alternately a flat top land bottom) and a sharper top (and bottom).
The conclusion of this section is that, for diffusion kinetics, simulations are not always done

in systems which are clearly in the region where analytic theories should apply. The choice of

all lengths (I, h, M) results from a compromise between too large values which would saturate

computers, and too short sizes which would have no relation with reality.
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Fig. 2. A groove cut in a system of width M smaller than the distance between kinks ( (a) and its

representation as a groove along a one-dimensional profile (b).

We are then led to study the behaviour of a very narrow system, with a very low value

M, but large values of I and h. We thus should obtain, in the very particular case of a

narrow system, well-defined informations on the scaling of
T versus I, and on the shape: is the

evolution shape-preserving? Are the top and the bottom flat? Another information which is

expected is the effect of small values of h la and I la. We thus hope to get an insight into the

nuInerical results obtained for interInediate sizes.

3. The One-Dimensional Model

Froln now on, we consider a short saInple, which satisfies the following relation, opposite to (2.4)

M < (
~

(3,1)
4h~ ~

On such a saInple, the position x of each step is defined with an accuracy, given by (2.2),
which is Inuch better than the distance to the neighbouring steps. We shall therefore replace
the Inodel by a one-diInensional one, in which each step has a

well-defined position at any tiIne

(Fig. 2). Our model is different from the one-dimensional one treated by Searson et al. [23].
Indeed, in our model, there are steps which can move by exchanging atoIns between theInselves

or with the vapour, but atoIns between steps are not explicitly considered.

In the probleIn of therInal smoothing, two different types of kinetics are of interest:

I) The evaporation-condensation kinetics,in which atoIns are exchanged between the surface

and the vapour, and the total nuInber of evaporated atoIns is equal on the average to the

total nuInber of condensed atoIns.

it) The diffusion kinetics, in which evaporation and condensation are negligible, and atoIns

can only diffuse on the surface. There are several versions [7j, and we shall use the "fast

attachInent version" in which atoIns are eInitted by steps and stick at a step as soon as

they Ineet one.
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We shall coIne back to evaporation-condensation kinetics in Section 7. In the reInainder of

the present section, we address the diffusion kinetics.

The one-diInensional Inodel with diffusion kinetics is fully characterized by the probabilities

per unit tiIne a+ (f) and a~ (f), for two steps at distance f, to exchange an atoIn in one direction

or in the other one.
The case of two steps of identical sign will be considered first. Consider

the configuration B obtained froIn
a

configuration A by transfering one atoIn downward froIn a

step to the neighbouring one at distance f. The transition probability per unit tiIne froIn A to

B is, by definition, a+(f). The transition probability per unit tiIne froIn B to A is a~ ii + 2a)
because the terrace width in B is I + 2a. In the absence of interaction between steps, both

configurations A and B have the saIne energy, and the detailed balance relation writes

a~ ii + 2aj
=

a+jij. j3.2j

One1night have expected the different relation a~(I)
=

a+(I). As will be seen in Section 4,
the forIn (3.2) is crucial, but special to one

diInension.

Dependence of a~ (I) and a+ (I) with respect to I

If the distance I between both steps is large, Inost of the eInitted atoIns go back to the step

where they started froIn. The transfer probabilities a~ (I) and a+ (I) are therefore expected to

decrease with increasing I.

Let p(I) be the probability for an eInitted atoIn to reach the opposite step instead of coining
back to the saIne step. It can be checked that p(x)

= a
lx. Indeed, the probability for an atoIn

to coIne back after having reached the distance x for the first tiIne from a step is the saIne as

the probability of this atoIn to reach the distance 2x, and therefore p(2x)
=

p(x)/2 which is

indeed satisfied if p(x)
= a

lx which also satisfies the obvious condition p(a)
=

I. Therefore,

the probabilities per unit tiIne for two steps at distance I to exchange an atoIn are expected

to be proportional to I Ii for large I. More precisely, it can be shown (Appendix A), that:

" ~~~ "°
i + is + a

~~'~~

and

" ~~~ ~°
i +

/
a

~~'~~

where oo is a constant and is is a length which depends on the detachInent probability of

atoIns froIn steps. In our siInulations, we have assuIned

is
=

0 (3.5)

which corresponds to equal detachInent probabilities upward and downward, I,e., the so-called

Ehrlich-Schwoebel effect [21, 22j is absent.

The values (3.3, 3.4) satisfy the detailed balance relation (3.2).
The Inodel can thus be defined in terIns of steps only, and atoIns can be forgotten. In each

pair of neighbouring, isolated steps of identical signs (I. e, both steps are upstairs or
downstairs)

at distance I, the steps are allowed to jump by I atomic distance in opposite directions with

the probability given by (3.3, 3.4).
In the case of steps of different signs (I,e. at the top or at the bottom) the jumps should

be in the same direction for both steps, and the possibility of terrace annihilation should be

considered. This complication, as well as those arising from step bunches, is addressed in

Appendi~~ B.
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We ignore the possibility of terrace creation. This is justified at low temperatures and far

&om equilibrium, I,e. for short enough times, when the ratio h II is large with respect to the

value compatible with thermal roughness.
Before reporting the results of the calculations, we wish to stress the importance of relations

(3.3, 3.4), and to precise the relation of the one-dimensional model with reality.

4. A Kinetic, Attractive Interaction

The probability (3.3) to increase the distance is smaller than the probability (3.4) to decrease

it. This difference, which is a consequence of the detailed balance relation (3.2),
means that

the system of steps behaves as if there was an attractive interaction between them although
(3.2) results froIn the assuInption that there is no interactionl

This astonishing property is responsible for a blunting of the profile; steps of identical sign

attract theInselves, so that the Inaxilnal slope increases, and consequently the top and the

bottom flatten.

However, the effective attraction, as described in the previous section, is typical of a one-

dimensional system. It will now be argued that it is still expected in a short system (I.e. for

small M) but with a weaker strength. The easiest way to see that is to extend the detailed

balance relation (3.2) to the case M ~ l. As in the previous section, we can consider a state A

where two particular steps have a distance I, and the state B deduced from A by transfering

one atom from one step to the other in the downward direction. The average distance between

the two steps (which is no longer an integer multiple of the atomic distance a) is now increased

by an amount 2a/M. If a( ii) and up ii) denote the transition probability per unit time from

A to B and from B to A respectively, the detailed balance relation is therefore

£XM

~
~ ~~~)

" £X~i
Ii) (~'~)

Since we still want ap(f) and a((f) to be proportional to I Ii for large I, it is reasonable

to assume that they are given by formulae analogous to (3.3) and (3A), with the following
changes: I) a is replaced by a/M in order to satisfy (4.I); it) the factor no is replaced by
aimla, where al is the atom emission probability per unit time and per site of the step and

Mla is the number of sites; iii) (3.5) is assumed to hold. We thus obtain

"~
~~~ "~

i + /M ~~'~~

and

~~~~~ "~
i

~/M ~~'~~

These formulae are the simplest generalizations of (3.3, 3.4), but their validity is not so well

established. They express the fact that an adatom which is exchanged between two neigh-
bouring steps has a shorter path to diffuse if it goes up than if it goes down. The difference

is exactly 2a on a one-dimensional surface, but it decreases when M increases. The real be-

haviour is certainly more complex than (4.2, 4.3), and should depend among other things on

the kinetics of kinks on steps. Indeed, in the denominator of (4.2, 4.3), the correction a~ /M is

the averaged recoil of a step which emits an atom. The average is done on the whole step, as

would be correct if atom diffusion along a step were infinitely fast. In fact it is not, the correct

averaging should be local, and the effective attraction presumably does not vanish for infinite

M, as
would be expected from (4.2, 4.3).
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The effective attraction between steps, described in this section, is a purely kinetic effect,
which does not violate the laws of Physics. It has no effect on the thermodynamic properties.

For instance, the equilibrium probabilities of two step configurations with identical energies are

equal, and not affected by the kinetic attraction. Indeed, this equality can be derived from the

detailed balance principle, which is also the source of the effective attraction derived above.

Moreover, the effective interaction vanishes in the continuum limit a =
0 as readily seen

from (4.2, 4.3).
Forlnulae (4.2, 4.3) will now allow us to relate the basic paraIneter ao of the one-diInensional

Inodel, which appears in (3.3, 3.4), to the physical paraIneter al

5. Relation between the One-Dimensional Model and Reality

In order to siInplify the arguInent, it is appropriate to focus the attention on a pair of steps and

to ignore the atoIns they exchange with the other steps. The generalization will be straight-
forward.

In order to exploit the atoIn exchange probabilities in the one-diInensional Inodel and in the

physical one, it is appropriate to introduce the net nuInber of atoIns n
transfered from the

upper step to the lower step after a tiIne t. This nuInber can be positive or negative and a

variation of in iInplies a variation of I equals to

11
=

26na~ /M. (5.1)

For a short bidiInensional systeIn of width M, the probability pM Ii, t) that I has a particular
value at tiIne t obeys the Inaster equation:

(PM if, t)
=

jai if) + Ok if)i PM if, t)

+aj ii 2a2 /M)pM ii 2a2 /M, t)

+O& ii + 2a~/M)PM ii + 2a~/M, t) 15.2)

Using the detailed balance relation (4.1), forInula (5.2) can be written

(PM Ii, t)
=

alit)
PM Ii + 2a~/M, t) PM Ii, t)j

+ap(I) pM(I 2a~/M,t) pM(I,t)) (5.3)

If I is regarded as a continuous variable and if pM(I, t) is assumed to be a twice differentiable

function off, relation (5.3) yields

~~2 ~~4 @2
jPM Ii> I)

" ( [°~i (I) £XM(I)j ~PM Ii> I) ~ @ ~~~i(I) ~ ~M(I)j @PM Ii> I). (~'~)

Insertion of (4.2) and (4.3) into (5.4) yields, if f~ a~/M~
ci f~,

~~~~~' ~~
~"~

~~~
~~~~~' ~~ ~ ~"~ i~i ~2 ~~~~'

~~
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In the one-diInensionallnodel defined in section 3, the probability pill, t) satisfies an equation
analogous to (5.5). In the derivation, M should be replaced by a, and the relations (4.1, 4.2,
4.3) should be replaced by (3.2, 3.3, 3.4):

)pi If, t)
= 4aoa~~ 1)~pi(f,t)j (5.6)

t

The equations satisfied in the one-diInensional Inodel and in the physical one are therefore the

saIne if
~

ao " alp (5.7)

In the above derivation, we have considered a set of two steps. However, the general evolution

equation can be obtained by combining all equations of type (5.5) corresponding to all pairs
of neighbouring steps, and the rule (5.7) is therefore general.

6. Calculations

At t
=

0, the profile is described by the function:

fix)
=

ho sin l~~~ (6.I)
1

where I is the wavelength and ho is the initial profile amplitude. The discretization of the

profile is given by the relation:

h(I, 0)
=

Nint If i
+ i e [0,1- lj (6.2)

2

where h(I, 0) is the altitude between I and I + I at t
=

0 and, in order to be as close as possible
of the initial curve, we use the function Nint, which rounds a real to the closest integer.

We impose periodic boundary conditions with a period equal to I.

The attachment and detachment of particles can only occur at the corners of the profile
(Fig. 3a). We made the distinction between corners and steps since the existence of macrosteps
(for instance double steps) is allowed (Appendix B). We call the corners which "point outside

the surface" the possible donors of the configuration. On the other hand the possible acceptor
locations are the corners which "point inside the surface". Due to the detachment or attachment

of a packet of atoms ("particle"), each step can move to its left or to its right. For diffusion

dynamics, the particle has to travel along a distance I between donor and acceptor.
We performed

a Kinetic Monte Carlo simulation [24j defined by the following algorithm:

.
At a given time t, one has to determine all the possible events, I.e. all sites which can

be donors and all the possible displacements (right and left). We calculate their lengths
I[ (where I represents the donor and e the direction), their probability per unit time

ail)) (given by Eqs. (3.3, 3.4)) and the sum of all those probabilities per unit time,

£Y #

£~
~

Oil( ).

.
We increment the time by a lifetiIne T of the profile which is a random nuInber distributed

as

p(T)
=

oexp(-aT). (6.3)

.
We choose the event which occurs with probability ail)) la. This event changes the

profile for a new iteration.
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Fig. 3. Mechanism of diffusion and evaporation-condensation. Figure (a) displays all the possible
displacements by diffusion. All those events are independent, and their probabilities depend on the

length of the displacement. In Figure (b),
we have the same configuration but the mechanism is

evaporation-condensation. The six events are independent and occur with the same probability.

We stress that the detailed balance relation is satisfied in the general case since we use equa-

tions (3.3, 3.4) for the transition rates and also in the particular cases of top and bottoIn

terraces, as addressed in Appendix B.

Calculations have been performed with ho
"

10 and 20 and ~
=

200 to 600 to deterInine

the scaling properties. To characterize the time evolution of the profile,
we

have performed

averages over N different realizations starting from the same initial profile.
The averaged altitude is given by:

N

h(I,t)
=

£ hn(I,t). (6.4)
~

n=i

One can define the amplitude of the profile for the realization n by

hnjtj
= (maxjhnji, tjj minjhn ii, t)j) j6.5j

and its average:
~

hit)
=

j L limit). 16.6)

n=i

Figure 5 displays the averaged profiles, i.e., the altitude h(x,t) versus x, for different times.

We observe that after a short transient, the profiles exhibits maxima and minima which are

flatter than a sinusoid. This is the signature of the presence of facets which can be seen directly

on each profile in Figure 4; these facets have been already observed by Jiang and Ebner [16j
for a

(2+1) SOS model. When the amplitude h(t) becomes smaller, of the order of ho/3, the

broadening is less pronounced, but still exists.

Figure 6 displays the evolution of the amplitude with scaled times t/~~ for three different

wavelengths I and two initial amplitudes ho- The observed scaling behaviour agrees with the

theoretical prediction (Appendix C). We observe that for sufficiently large initial ratios la /4ho
(this implies relatively large values of the distance I between steps, say I > 4a), the scaling is

really perfect. However, if we consider too large amplitudes which imply I Ge a, the scaling can

be affected.
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Fig. 4. Di?usion mechanism: profile for ten realizations without averaging. This figure exhibits

real facets. Making averages over many realizations smooths the pr6file and hide the sharp angles.

7. Evaporation-Condensation Kinetics

In the case of evaporation-condensation kinetics, the relevant quantities for the one-dimensional

model are the probabilities per unit time ~y~
and ~y~, for a step to exchange an atom with the

vapour, respectively by evaporation and condensation. Consider the configuration B obtained

from a configuration A by evaporating one atom from a step to the vapour.
The transition probability per unit time from A to B is, by definition, ~y~. The transition

probability per unit time from B to A is ~y~. Since the energies of both configurations are equal
if we neglect interactions between the atom and the surface, the detailed balance relation writes

'f~ #'f~ "'to (7.1)

where
~yo

is a constant.

For a short system (with small M),
we can consider a state A and the state B deduced from

A by evaporating one atom from a step to the vapour. If ~y[ and ~yb denote the transition

probability per unit time from A to B and from B to A respectively, the detailed balance

relation is therefore

~/& =
~/L

=
~/imla (7.2)

where ~yi is the atom evaporation-condensation probability per unit time and per site of the

step and Mla is the number of sites along the step.
Now we will relate the basic parameter ~yo

of the one-dimensional model to the physical
parameter ~yi, in an analogous way as it was done for the diffusion dynamics, but in the

present case the transition rates do not depend on I.

As before, we focus the attention on a pair of neighbouring steps of identical signs sepa-

rated by a distance I and ignore the others. For a short bidimensional system of width M,

the probability pM(I,t) that I has a particular value at time t obeys the master equation:

~pmv, t)
=

12~ii + 2~iii p~v, t)

+ l'fli +'flit PM Ii a~ /M, t)

+ [+t[ + 'i[] pM (I + a~ /M, t). (7.3)
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Fig. 5. Diffusion mechanism: average profile versus the position x for different times. For all times,
sinusoids have been superimposed. N is the number of realizations for each size.

Using the detailed balance relation (7.2), and under the same assumptions as before for diffu-

sion, formula (7.3) can be written

~3 @2
fi~~~~' ~~ ~'~~

M 012
~~~~' ~~' ~~~~

For the one-dimensional model, the probability pill, t) satisfies an equation analogous to (7.4).
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Fig. 6. Diffusion mechanism: averaged amplitude hit)
as a function of time. For A

=
200, ho

"
20,

the condition A/4ho » 1 is not well satisfied IA /4ho
=

2.5) and the scaling is not so good as for other

sizes.

In the derivation, M should be replaced by a, and the relation (7.2) should be replaced by
(7.1)~

~

~~~~~ ~~ ~'~~~~ ~~ ~~~~ ~~' ~~'~~

The equations satisfied in the one-dimensional model and in the physical one are therefore the

same if
~

'~° '~~
M

~~'~~

As before, the general evolution equation can be obtained by combining all equations of type
(7A) corresponding to all pairs of neighbouring steps, and the rule (7.6) is therefore general.

The steps can
then be seen as particles which can now jump independently (except when

they are in contact), with the same jumping rate, in a one-dimensional medium. Steps of

opposite signs annihilate when they get in contact. This model has been studied in detail by
Galfi and Racz [25] and by Leyvraz and Redner [26]. However, since our initial conditions are

rather special and the problem is fairly simple, we have done our own computations.
The initial profile and discretization are the same as for diffusion (Sect. 6). We also consid-

ered periodic boundary conditions. The particles which can evaporate and the sites which can

receive a particle by condensation are represented in Figure 3b.
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adjustable parameter la
=

32 ~ 0.5).

considered in this paper. For instance, Tang considers grooves of wavelength 1= 300a, width

M
=

19200a/Vi and initial amplitude ho
"

Isa. His simulation results, for evaporation
kinetics, are compatible with a relaxation time scaling in l~ and the profiles obtained are

sharper than a sinusoid at the top and the bottom but have more rounded shapes that the

ones predicted by Langon and Villain [10j.

8. Conclusion

The thermal smoothing of
a

grooved, high-symmetry surface below its roughening transition

is considered. To compare the mean field theoretical predictions (which consider the entropic

interaction between steps), with the simulations results using the SOS model in (2 +1) di-

mensions, two conditions over the distance ( between kinks along the steps must be satisfied:

( « M(4h/1)~ and ( > 3a temperature T < TR/2). These two conditions are not always
simultaneously satisfied in the simulations, since they are restricted (due to the slow diffusion

dynamics) to samples which are in general too small in the three directions.

We then introduced
a model to study the relaxation of a profile which mimics a very narrow

two-dimensional system at temperatures T < TR. The atomic diffusion is treated as effective

jumps between steps (which
occur with an appropriated probability) in order to save time in

our simulations and then allow us to consider greater amplitudes ho and longer systems.
There are two main contributions in this paper. On one hand, kinetic Monte Carlo simula-

tions have been done on profiles which have a reasonably large amplitude ho and wavelength ~,

but a very short width M, in contrast with usual simulations where M is moderately large (not
always enough) but ho is too small. On the other hand, a new kinetic, attractive interaction

between steps has been evidenced, and its effect has been found to be important. This inter-

action is particularly strong on a one-dimensional surface, but should not vanish on a physical
surface.

The most remarkable effect of the attractive interaction is a blunting of the profile, I.e. the

top and the bottom of the profile are flatter than those of a
sinusoid. This effect seems to

have been observed in standard Monte Carlo simulations [16]. Thus, our work sheds light



N°11 RELAXATION OF A CRYSTALLINE SURFACE 1469

on the effect of too small sizes in simulations. However the scaling of the relaxation time
T

with the wavelength ~ (T «
~~ for evaporation dynamics and T ct

l~ for diffusion dynamics)
does not correspond to those obtained for finite M by other authors. Instead, the exponent 4

obtained by Jiang and Ebner for diffusion dynamics is intermediate between the exponent 3

obtained here for M
=

I and the exponent 5 valid for M
= cc [7,18]

The relevance of the present results for experiments is questionable. Firstly, real samples

are often miscut [10, llj. Secondly, elastic and electrostatic interactions are important in real

systems, and neglected, to our knowledge, in all simulations. The edges of a top or bottom

terrace are coupled by these interactions, and this coupling may have a strong effect on the

transient profile shape. This effect is not generic, but depends on the nature of the coupling,
which may be attractive or repulsive. This problem will be addressed in another article.
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Appendix A

Derivation of n+(f) and n~(£)

Consider the system composed by two steps shown in Figure 9. In order to have a steady state,

we impose that every particle reaching the position ila + I is immediatly placed at position 0.

Let p~(t) be the probability for an atom to be at position I for I e [I,L
=

ilaj. The

probabilities (p~(t)) satisfy Master equations:

(Pi it)
= a

a'Pi it) aiPi it) + aiP2 it)

]P21t) = aiPi it) aiP2 it) a2P2 it) + aiP3it)

~
p~_i(t)

= a
L-~pL-~(t) al ~p L-I

It) aL-IPL-I It) + al ipL(t)
0t

~
pL It)

# £YL-IPL-I It) al ipL(t) -'tpL(t).
0t

Since the system is in a steady state all those time derivatives must be equal to zero. Hence:

a+(f)
= ~ypL

= aL-IPL-i ai-IPL

" aL-2PL-2 a~-2PL-1

= alPl a[p2

= cx
a'pl.
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Fig. 9. Notations for Appendix A.

Through a recurrence procedure one then obtains that:

a+v) i
+

fi
+

)fi
+ +

)i~''')I )j
=

~t]~-~'''),~], IAi)
-I -i L-2 L-i I L-i I

(A.I) is a little complicated in the general case, and we will consider a simpler one.

..
We assume that, for diffusion, all site energies are equal on the terrace except for I

=
0

and L + I, thus the detailed balance relations give:

cx~ = cx[ Vi e [I, L lj. (A.2)

(A.I) becomes

a+yj Ii +
'f

+
'~

+ +
~

+ )j
=

~( lA.3)
a~-i a~-~ ai a a

.
The second hypothesis is that all the barrier energies for the diffusion are equal, I.e.

al = ~ fYz " " fYL-i lA.4)

and then (A.3) yields

cx+ (f)
1

+
~

l
'~

+
(

= 'i (A.5)
a al cx cx

Multiplying lA.5) by @a,

cx+(I) f + a + a

~~
+ ~) 21= al

(
a.

(A.6)
~y a o

An analogous calculation gives

a~ ii + 2a)
1

+ a + a ~") +
"~ 2)j =

al'~'a. (A.7)
° 'f 'f



N°11 RELAXATION OF A CRYSTALLINE SURFACE 1471

If the site 0 and L + I have the same energy, the detailed balance relation a+(I)
=

o~ (1+ 2a)
is verified if

ar~ =

a'r~' (A.8)

and (A.6, A.7) can be viritten

"~
~~~ ~°

l +
~+ is

~~'~~

a~ (I)
= no

~ IA.10)
f a + is

with

no " al "

al'~ (A.ll)
a

is
= a

") +
"~

2 (A.12)
° 'f

Appendix B

Complications Arising from Top and Bottom Terraces and Step Bunches

The case where we consider donorlacceptor steps at the top or at the bottom of the profile
requires special attention, since terrace annihilation can occur.

Consider a top (or
a bottom) terrace of width f. If I > 2a, an atom can be exchanged

from one side to the other side of the terrace. In this case, the terrace width is the same for

both initial and final configurations and, since they have the same energy, the detailed balance

relation in this particular case is written

O~~~~~ii) =
a~~~~lf). lBl)

If the width is minimal, a, the top terrace represents an entire row of atoms and the energy of

this configuration A is very high. Let us consider the configuration B where this terrace has

disappeared, the detailed balance relation is written

expj-fIEA)ajA ~ B)
=

expj-fIEB)ajB ~ A). jB.2)

Since EA is very high, we assume cx(B ~ A)
=

0 to satisfy the detailed balance relation and

we do not allow the creation of a new terrace (one row of atoms) above the top one
(and the

similar situation for the bottom terrace), since the energetic cost to move simultaneously an

entire row of atoms is too high as soon as M is larger than a few atomic distances.

The physical reason for the annihilation of
a terrace of minimal width is that, if we think

in terms of the surface, when two step§ (which can
fluctuate) touch each other, a region of

different curvature (and therefore, different chemical potential) is created (a step "loop"). In

this region the detachment of atoms is favoured in comparison with the attachment. The whole

terrace will disappear and its mass will, in principle, be distributed to the next neighbours.
In our procedure this mass distribution is not done, the terrace (in reality a

row) of minimal

width is removed as a whole and attached to a neighbouring step. At the end this deficiency
is compensated by the average over several runs of the program, and this can be seen through
the shape of the averaged relaxation profile, which exhibits a right-left symmetry. Similarly,
if the acceptor step limits a bottom terrace (groove) with minimal width, this terrace can

also disappear. Indeed, when the bottom groove is interrupted (filled) at some region, this will
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create a region of different curvature (and of different chemical potential) where the attachment

of other atoms will be favoured. At the end this groove will be completely filled.

In the simulations it is also necessary to take into account the formation of macrosteps in

the profile, I.e., more than one step at a given position, a double step for instance.

In a macrostep only the highest step can be chosen as a possible donor of a packet of atoms

to another step, otherwise an overhang will be created in the profile, a situation we do not

consider here. Furthermore, jumps along macrosteps must be allowed, otherwise the atoms

are not able to go down and the macrostjp would remain as a stable structure. The inverse

movement (climbing of a macrostep) must also be allowed if we want to respect the detailed

balance principle.
The existence of macrosteps then implies that we have to precise carefully what steps we can

choose for donors and acceptors. The following definitions are used in the program: donors

are the corners of the profile which point outside the surface, acceptors are the corners which

point inside.

In order to evaluate the total distance I an atom has to diffuse from the donor to the acceptor,

it is necessary to consider carefully also the vertical distance along the possible macrostep in

between.

Appendix C

Dependence on the Period

Consider a system of
u

parallel steps. Let p(ii,12,
,

i~, t)dir ...df~ be the probability that the

distances between steps have the values ii,12;.. ,i~ at time t. In the case of surface diffusion

dynamics, if these distances are large enough (and in particular if there are no multiple steps)
the probability satisfies the following equation which generalizes (5.5):

jP@1,12,
,

iv, t)
"

4ai p
£

j £ jP(fi,12,
,

iv, t) (C.I)
~ ~~ ~ r r

r=1

If pill,12,
,

i~, t) is a solution of (C.I), another solution is k"p(kit, k12,
.,

kl~, k~t), where

k is any positive number. In other words, one can consider at time t
=

0 two systems with

the same number u of steps but two different periods, I and lk
"

kl, which are similar in the

sense that the step positions are

xm(t
=

0)

and

xm,k It
=

0)
=

kxm(t
=

0).

Then the probability that the first system has step distances ii,12;.. ,l~ at time t will be the

same as the probability that the second system has step distances kfi,kf2;...,kf~ at time k~t.

This implies that, if the relaxation time of the first system is T, the relaxation time of the second

system is k~T. Therefore, the relaxation time is proportional to the ctlbe of the wavelength.
Similarly, in the case of evaporation dynamics the probability pill, f2, l~, t)dfi. df~ sat-

isfies the following equation which generalizes (7.4):

(P@i, i~,
,

iv, t)
= 2~/1~

f $
bJlfi, i~,

,

iv, t)I lC.2)

~ ~
r=

If pill,f2,
,

l~, t) is a solution of (C.2), another solution is k"p(kli, k12,
,

kl~, k~t), where

k is any positive number.
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This implies that for the evaporation dynamics the relaxation time is proportional to the

sqtlare of the wavelength.
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