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Abstract. The freezing transition of tensionless fluctuating vesicles is investigated by Monte

Carlo siniulations and scaling arguments for
a

simple tether-and-bead model of fluid membranes.

In this model, a freezing transition is induced by reducing the tether length. In the case of planar
membranes (with periodic boundary conditions ), the model shows a fiuid~to-crystalline transition

at a tether length io 1 (1.53 + 0.01)ao, where ao is the bead diameter. For flexible vesicles with

bending rigidities 0.85kBT < ~ < v%kBT, the reduced free energy of dislocations with Burgers

vector (ii, Fdioc/~, is found to scale for small tether lengths with the scaling variable ~/(Ko (ii ~),
where Ko is the Young modulus of a crystalline membrane of the same tether length, and (ii

is the average nearest-neighbor distance. This is a strong indication that free dislocations are

present, so that the menibrane is in a hexatic phase for small tether lengths. A hexatic-to-fluid

transition occurs with increasing tether length. With decreasing bending rigidity, this transition

moves to smaller tether lengths.

1. Introduction

The nielting transition of a planar two-diniensional nienibrane can be a two-step process which

proceeds by a proliferation of topological defects [1-5]. At very low teniperatures, dislocations

are suppressed due to their cost in elastic stretching energy, which increases logarithniically with

systeni size. The translational entropy of a dislocation shows the saute size dependence as the

stretching energy, so that the free energy of dislocations decreases with increasing teniperature.
At a teniperature Ti, free dislocations appear and destroy the quasi-long-ranged translational

order of the crystal; this leads to a hexatic phase, which still retains quasi-long~ranged bond

orientational order. At
a

higher teniperature T2, disclinations proliferate, causing a
transition

to a fluid phase characterized by short-ranged translational and bond-orientational correlations.

It is also possible that a first-order transition takes the crystal directly into a
fluid phase [5, 6].

This scenario changes when the nienibrane is flexible [7-9], so that it can buckle out of

plane. The free energy of a defect is now deterniined by the balance of stretching and bend-

ing energies [8,10,11]. A T
=

0 analysis of defect shapes by Seung and Nelson [11] shows

that the elastic energy of dislocations is so reduced by buckling that these defects destroy
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the crystalline order at any finite teniperature. A flexible nienibrane is therefore expected

to have a Kosterlitz-Thouless (KT) transition front a low-teniperature hexatic to a high-

temperature fluid phase [12,13]. The transition temperature is predicted to decrease with

decreasing bending rigidity [13].
The unusual properties of a hexatic nienibrane have interesting consequences for the shape

of both vesicles [14,15] and open nienibranes with isolated disclinations [lfi,17]. In particular,
it has been shown that vesicles of genus zero have a non-spherical equilibriuni shape which

resenibles an icosahedron with sniooth edges [15].
There have recently been a nuniber of extensive siniulation studies of triangulated surfaces

using both fixed and dynaniic triangulations with the goal of deterniining the properties of

crystalline (or polynierized) and fluid nienibranes, respectively. It is therefore natural to con-

sider the transition between these two classes of nienibranes using a triangulated surface niodel

that contains a parameter which tunes the density of (q
=

6)-fold-coordinated vertices. This

has been done in reference [18] using a niodel of self-intersecting randoni surfaces with the

Haniiltonian

~
=

~iri rJ)~ + ~f
~

iq~ 61~, ii)

liJ) ~

where q~ is the coordination nuniber, and r~ the position, of vertex I. The first
surf runs over all

nearest-neighbor pairs of vertices, and the second over all vertices. Note that this niodel does

not contain a bending elasticity. It is argued in reference [18] that ternis with m > 2 correspond

to higher-order curvature contributions, and should thus be irrelevant for the behavior on long
length scales. For m =

I, the in-plane geonietry is found to get regularized with increasing ~f,

I, e. the nuniber of vertices with coordination nuniber not equal to six decreases. However, the

effect on the external geonietry, I,e, on the radius of gyration, was found to be very weak.

Another niodel for the freezing of self-intersecting randoni surfaces was suggested in ref-

erence [19]. In this case, a terni is added to the Hamiltonian which is proportional to the

distance of the triangulation T front some reference triangulation 7i. This distance is defined

as the niininiuni nuniber of bond flips [20, 21] necessary to change T into 7i. This model is

clearly rather difficult to investigate, and has as yet not been studied for any finite-dimensional

enibedding space. Furtherniore, as a niodel for lipid bilayer nienibranes, it is unclear how such

a highly non-local contribution to the energy would arise front niicroscopic interactions.

In this paper, we present the results of a siniulation study of the freezing of low-bending-
rigidity nienibranes. We eniploy a siniple tether-and-bead niodel of self-avoiding fluid nieni-

branes [22, 23] which has been used previously to study the phase diagrani and scaling be-

havior of fluid vesicles as a function of the bending rigidity and a trans-nienibrane pressure

increnient [22-30], the renornialization of the bending rigidity [30-32], the shape of vesicles in

elongational flow [33], and the driven transport of vesicles through narrow pores [34]. In this

niodel, crystalline order is induced by reducing the tether length. The tethering constraint acts

like an attractive interaction between neighboring beads; the reduction of the tether length is

thus very niuch like the increase of the strength of an attractive interaction in a niolecular

model. The tether-and-bead model is the simplest model for simulation studies of the freezing
of flexible nienibranes since it contains only two paranieters, the bending rigidity 16, which

controls the out-of-plane fluctuations, and the tether length to, which controls the in-plane

density and, more importantly, the in-plane shear modulus. This is the minimal number of pa-

rameters required. Similar models have been employed to study the equilibrium behavior [35]

and the phase separation dynamics [36,37] of two-component fluids in two dimensions which

corresponds to planar two-component membranes.

Part of the results described in this paper have been summarized elsewhere [38].
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2. Tether-and-Bead Model

Our model [22, 23] of fluid membranes consists of N hard spheres of diameter ao =
I which

are connected by tethers of maximum extension to <
loo to form a triangular network of

spherical topology. In order to allow for diffusion within the membrane, tethers can be cut

and reattached between the four beads which form two neighboring triangles [20, 21]. A Monte

Carlo step then consists of a random displacement of all beads in the cube j-s, s]~, followed

by N attempted tether cuts. The step size s is chosen such that approximately 50% of the

attempted bead moves are accepted. We use the discretization [39]

Eb
=

16 ~j (I n~
nj), (2)

liJ)

for the curvature energy, where the sum runs over all pairs of neighboring triangles, and n~

is the surface normal vector of triangle I. The parameter16 in equation (2) is related to the

bending rigidity ~ of the continuum curvature niodel [32] by ~ =
lb Il. We have studied both

vesicles with finite
~ as well as planar nienibranes (~ ~ oo) with periodic boundary conditions.

In the fornier case, two systenis sizes, N
=

247 and N
=

407, were used, and averages were

taken over runs of up to 500 niillion Monte Carlo steps (per vertex). In the latter case, systeni

sizes N
=

100, N
=

196, N
=

400 and N
=

800 were studied, with runs of up to 200 niillion

Monte Carlo steps.

3. Planar Membranes

3.I. MONTE CARLO METHOD. In two dimensions, we have performed simulations of ten-

sionless networks with periodic boundary conditions. We use a schenie in which both the size

and the shape of the siniulation cell fluctuates this allowed us to deterniine both Lani6

constants in the solid phase as well as a schenie with fluctuating area but fixed cell shape
which is niore stable close to the crystalline-to-fluid transition.

In order to perforni siniulations at constant tension a, both the lengths and orientations of

the cell basis vectors are allowed to fluctuate. The siniulation procedure we utilize is based on

the isothernial-isobaric Monte Carlo niethods introduced by McDonald [40] and subsequently
generalized by Yashonath and Rao [41]. The siniulation cell shape is described by the niatrix

h
=

la, b) of the two vectors a and b that span the siniulation cell. The position of
a

particle

in the cell is

r~ =
hs~

=
(~a + n~b, (3)

where s~ =
((~, j)~', with 0 < (~, j < I. The siniulation is perforated in the scaled coordinate

(s~). A Monte Carlo step then consists of a
randoni displacenient of all beads in the square

[-d, d]~ followed by N attenipted tether cuts. The step size d is again chosen such that approx-

iniately 50% of the attenipted bead nioves are accepted. Every five sweeps, the independent
elenients of the niatrix h are updated using a

standard Metropolis algorithni with the weight
exp(-bHo~), where [40-42]

>Han
"

Ivan + OjAn AD) NinjAn/Ao). 14)

The area A is given by A
=

det(h), and the subscripts o and n refer to the old and new

states, respectively, bin is the total change in interaction potential on going front state o to

n. Because of the hard-sphere nature of the beads and the fixed tether lengths, it is either zero

or infinite, depending upon whether or not the cell update leads to bead overlap or
neighbor
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distances which exceed the tether length. The last terni in equation (4) arises front the Jacobi

deterniinant of the transforniation (3). Moves are then accepted with a probability equal to

niin(I, exp[- )Han [42].
If the shape of the siniulation cell is kept fixed, only the area fluctuates, and equation (4) is

used to determine the probability that an area update is accepted. In the case of fluctuating
cell shape, the niost general paranieterization of the cell is a =

(al, a2), b
=

(bi, ci ). We choose

the vector a to point in the x-direction, I,e, we set a2 m 0. This choice breaks the rotational

syninietry of the whole systeni, and requires an additional Faddeev-Popov terni [43] in the

weight exp( -)Han), which now reads

~Hon
~

~~n + O(An Ao) N In(An/Ao) In(aInlalo) (5)

By treating the three parameters jai, bi, cl as dynaniical variables, the length of both sides as

well as the inner angle of the simulation cell fluctuate independently. Our initial configuration
is an L x L

=
N triangular array of beads. Periodic boundary conditions were used in order

to niininiize boundary effects.

3.2. ELASTIC CONSTANTS. The elastic constants can be expressed in terms of correlations

of the strain tensor [44, 45]

e =

lihl)-~G hi~ t
,

16)

where i is the unit niatrix and the matrix of reference basis vectors ho is deterniined by the

requirenient (e)
=

0. The nietric tensor is G
=

h~'h. In particular,

A(f~jfkl)
"

kBTS~jkl> (I)

where A is the area of the network and the elastic conipliance tensor

S~jkl " ~~j/
~ ~~

~~j~kl + )(dik~jl + ~d~jk), (8)

where I and ~t are the two-diniensional Lanid coefficients. Using equations ii, 8), one finds

that

~~~~~~~~
~i

4iLl/+ ill ~~~

k~T 1
i~12~121 = mp' i~°)

and

~~~~~~~~ ~~~~~~~~ (~4j~(~~)) (~~~o' ~~~~

where (A)
=

det(ho), and Ko is the Young niodulus.

These results can be used to deterniine the area conipressibility

kBTKA
#

)
"

(A)((en + e~~)~) (12)
+

~L

and the Poisson ratio

Op =

~
=

(~llf22) 1

(~ + 21~) (fiieii) §~°~A. ji~)
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Equation (12) is the linear-response approxiniation to the exact area conipressibility

kBTKA
=

iiA~) iA)~)/iA). i14)

In the crystalline phase, these two expressions are equivalent in the therniodynaniic liniit.

However, in a finite systeni, the last equality in equation (13) only holds when the linear-

response result (12) is used.

In order to deterniine the strain correlation functions, it is convenient to express the elenients

of the strain tensor in ternis of the basis vectors (a, b) of the siniulation cell. Choosing the

I-axis to coincide with the direction of a, one finds

en "
(a~/c~ 1)/2, (15)

e12 ~ e21 # a
g/(2c~), (16)

and

e~~ t

jg2/c2 11 /2, (ii)

where g a
(2b a) Il. The equilibriuni length, c, of the cell edge is defined by the thernial

averages c~
w (a~)

=
(b~)

=
(g~), and the angle between the average directions of the two basis

vectors is 7r/3. We have checked explicitly that la g) converges to zero in our siniulations of

the crystalline phase.

In order to siniplify our notation, we will set kB
=

1 in the following, I.e. the teniperature
T will be given in energy units.

3.3. MEAN-FIELD APPROXIMATION. in order to gain some insight into the dependence of

the elastic properties of our tether-and-bead niodel on the tether length to, we eniploy a siniple
niean-field approxiniation in which correlations between neighboring triangles are ignored [46].

The elastic nioduli can then be obtained by studying the shape fluctuations of a single triangle.
We fix one corner of the triangle at the origin. Let si and s2 be the position vectors of the other

two beads, and # the angle between theni. The hard-core repulsion and the tethering potential
restrict the lengths of the bond vectors to lie in the range 1 < si < to and 1 < s2 < to, and

#ruin < # < #max> With

#mjn
= arccos [(s( + s( 1)/(2sis2)j (18)

#max
= arccos [(s( + s( t()/(2sis2)j (19)

Averages of sortie quantity Q(si, s2, #)
are then given by [47]

1 lo lo ~max
(Q)

"
27r dsisi ds2s2 d# Q(si, s2, #), (20)

~

m,n

where

lo lo ~max

Z
=

27r dsisi ds2s2 d# 1 (21)
m,n

is the partition function.

Using equations ill, 12, 13) of the previous section, we can now easily calculate the elastic

nioduli KA, Ko and the Poisson ratio op. The nunierical data in the range 1 < to < 1.6 are
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very well fitted by the expressions

°~
3

~
5

to
+

~
~~~~

TKA
" ~~

~
(to 1)~

i
1.53

°
(23)

5
o +

~ ~

Ko/T
=

27.713(to 1)~~
i

+ 1.23
°

(24)
° ~

The diniensionless ratio (to 1)/(to +1) appears naturally since the average bond length is

very well approxiniated by iii
cd

ii + to /2. Note that the niean-field results satisfy the relation

ap =
1 KOKA/2 exactly.

3.4. MONTE CARLO RESULTS. For a tensionless nienibrane, the density is deterniined by
the tether length to- It is easy to see that for to < v§, steric constraints niake bond flips
inipossible; a glass transition therefore occurs at this value of to Our siniulations indicate that

the solid phase reniains stable as the tether length in increased, until at to
"

1.53 + 0.01 there

is a nielting transition.

In the crystalline phase, our Monte Carlo data for the area conipressibility (see Fig. 5 below)
and for the Young niodulus are well fitted by the expressions

T KA
"

£
(to 1)~

i
+1.8

°
(25)

° ~

Ko/T
=

11.33(to 1)~~
i

2.1
°

(26)
o + 1

~

200

m~
~w

v

~
/

loo

0
1.20 1.30 1.40 1.50 1.60

lo

Fig. 1. Dimensionless Young modulus lto
=

(Ko/T)(I)~ for flat niembranes as a
function of the

tether length lo Monte Carlo data are shown for N
=

100 (+), N
=

196 xi, and N
=

400 (~, ~).

The solid line shows the fit (26). The dashed line is the stability limit (lfo
=

16x) predicted by the

KTHNY-theory.
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lo

Fig. 2. Area compressibility TKA for flat membranes as a function of the tether length lo- Monte

Carlo data are shown for N
=

100 (+), N
=

196 x), N
=

400 (~) and N
=

800 (O). The lines are

guides to the eye.

+
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. ~
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+ °+

.
O~ ~

O+~ . O

+~
O +~

o+ .~ .~

~ O~+

o .a) b) .
~ +~ .~+

Fig. 3. Typical configurations of planar, two-dimensional membranes of N
=

400 beads near the

fluid-to-crystalline transition, with (a) lo =1.53, and (b) lo =1.55. Fivefold (sevenfold) disclinations

are shown by open (full) circles, sixfold-coordinated vertices by crosses.

The diniensionless Young niodulus, ko
"

(Ko /T) (ii ~, is shown in Figure I. Note that ko given
by equation (26) reaches the stability liniit of the crystalline phase predicted by the KTHNY-

theory [1-4], Ko
"

167r, at to
"

1.579. The area conipressibility (see Eq. (14)) deterniined in

siniulations with a fixed cell shape is shown in Figure 2. Note that the niaxiniuni of KA nioves

to snialler tether lengths with increasing systeni size, so that to
"

1.545 the peak position for

N
=

800 is an upper liniit for the transition point. The critical tether length, t[
=

1.53+0.01,
which we obtain front an extrapolation (to infinite systeni size) of the peak position of the

area conipressibility, is therefore considerably lower than this stability liniit, iniplying that the

transition is first order. In contrast, the stability liniit of the two-diniensional hard-sphere solid

has been found to be extreniely close to the nielting transition [48]. Two typical configurations
of the two-diniensional nienibrane near the transition are shown in Figures 3.

Our Monte Carlo results for the Poisson ratio for tether lengths in the interval 1.40 < to <

1.50 all fall in the range ap =
0.34 + 0.02, with a weak tendency towards larger values with

increasing to- The Monte Carlo data are therefore consistent with the niean-field expression
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~ i

io~

io~

~
i

~io

~~5

~ 6

.20 1.30 1.40 1.50 1.60 1.70
lo

Fig. 4. Bond-flip acceptance rate UJR;p -of flexible vesicles as a function of the tether length lo-

Monte Carlo data are shown for N
=

247 with Ab/T
=

1.0 (O), Ab/T
=

1.5 (D), Ab/T
=

2.0 (/L),
Ab/T

=
2.5 (o), and Ab/T

=
3.0 (VI, and for N

=
407 with Ab/T

=
1.5 (.), Ab/T

=
2.0 jai, and

16 IT
=

3.0 (Vi.

(22). This agreenient is quite reasonable, in particular since the nunierical values of the ani-

plitudes in the expressions for Ko (conipare Eqs. (24, 26)) and KA (conipare Eqs. (23, 25))
typically differ by factors of order 2, and the higher-order ternis in (to -1)~

even have different

signs.
It is interesting to conipare these results for the freezing transition of the tether-and-bead

model with the freezing paranieters of the two-diniensional hard-sphere fluid. The latter nielts

at an average density p 1 0.90, or an average nearest-neighbor distance iii
ci 1.13 [49-51]

(which corresponds to to ~f 1.26 in our tethered systeni). Since density fluctuations are sup-
pressed by the tethering potential, the tethered fluid should indeed be expected to freeze at a

lower density.

4. Fluctuating Vesicles

4.I. INTERNAL PROPERTIES OF FLUCTUATING MEMBRANES. For vesicles with finite
~

IT,
bond flips occur for any tether length with sortie (possibly very sniall) probability. We have

nionitored the bond-flip acceptance rate uJfljp in our runs. The result shown in Figure 4 is

a
sniooth to-dependence for all bending rigidities (~/T < vi) studied. A glass transition

therefore does not occur when the niembrane is allowed to buckle out of plane. The acceptance
rate varies roughly exponentially with to in the regime of the smallest tether lengths we are

able to simulate and reach thermal equilibriuni. The exponential behavior has to break down

at very sniall tether lengths, since uJflip ~ 0 for to ~ 1+ In the liniit of16 IT ~ oo, uJflip niust

already vanish for to ~
v§~

With increasing 16 IT, the flip acceptance rate begins to deviate from the exponential be-

havior at to
Cf 1.33 for16 IT

=
1.5, to

C£ I.4I for 16 IT
=

2.0, to
Cf 1.55 for 16 IT

=
2.5, and

to m 1.55 for 16 IT
=

3.0. This change in the behavior of uJflip yields a first indication of a

phase transition front a hexatic or crystalline phase at sniall tether lengths to a fluid phase

at larger tether lengths. The data show that with decreasing bending rigidity, this transition

occurs at snialler and snialler tether lengths.
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lo

Fig. 5. Scaled area compressibility TKA(io -1)~~, with TKA
=

((A~) (A)~)/(A), of flexible

vesicles and flat membranes as a function of the tether length lo The symbols denote the same system

sizes and bending rigidities as in Figure 4 for vesicles, and the same system sizes as in Figure 1 for

planar membranes. The dashed line shows the fit (25).

The conipressibility KA of the internal area of fluctuating vesicles is shown in Figure 5 in

scaled forni, together with our data for planar nienibranes. The curves show that the aniplitude
of area fluctuations slowly decreases with decreasing bending rigidity. The effect beconies niore

pronounced for larger tether lengths. Thus, the area fluctuations of a flexible nienibrane are

snialler than in the planar case, a result which is difficult to understand intuitively. Since the

difference between the values of KA which were nieasured for vesicles and planar nienibranes

never exceeds 20% for the range of bending rigidities and tether lengths studied, it seeni
justified

to use expression (25) for the area conipressibility and (26) for the Young niodulus for flexible

vesicles.

The area
conipressibility is closely related to the average nearest-neighbor distance, iii,

and its fluctuations. We find in our siniulations that iii
can be very well approxiniated by

iii
cd

(I + to) /2
+ t. The deviation, dt

=
iii t is shown in Figure 6; it is less than 0.3% for

all tether lengths studied. However, the excess nearest-neighbor distance shows a reniarkable

structure; for 16 IT > 1.5, dt has a pronounced peak. The position of this peak is to Cf 1.30 for

16 IT
=

1.5, to Cf 1.3fi for ~b IT
=

2.0, to
Cf 1.39 for 16 IT

=
2.5, and to Cf 1.40 for 16 IT

=
3.0.

No peak is found for 16 IT
=

1.0. The reason for this difference is that fluid vesicles of the sizes

studied are in the branched-polynier phase for 16 IT
=

1.0, whereas they are in an "extended"

phase for values of the bending rigidity 16 IT > 1.25 [30] for all tether lengths.

The change in behavior of uJflip and the peak position of the excess nearest-neighbor distance

dt will be used in Section 4,fi below together with several other quantities to deterniine

the phase diagrani of flexible vesicles.

4.2. VESICLE SHAPES. Several vesicle configurations for bending rigidity 16 IT
=

2.0 and

various tether lengths are shown in Figures 7.

In order to characterize the vesicle shapes and shape fluctuations, we have deterniined the

average volunie (Vi, the conipressibility

x =

iiv~) iV)~l/ivl, (27)
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0.002

bi

o.ooi

I.20
1.30 1.40 1.50 1.60 1.70

lo

Fig. 6. Excess nearest-neighbor distance, di
=

(ii (1+ lo) /2,
as a function of the tether length

lo- Monte Carlo data are shown for N
=

247 with 16 IT
=

1.0 (O), 16 IT
=

1.5 (D), 16 IT
=

2.0 (/L),
Ab/T

=
2.5 jai, and Ab/T

=
3.0 (VI, and for N

=
407 with Ab/T

=
1.5 (.), Ab/T

=
2.0 (ii, and

~b IT
=

3.0 (Vi.

and the asphericity

where Al < A2 < A3 are the eigenvalues of the nionients-of-inertia tensor. The asphericity
varies in the range 0 < A3 < 1, with A3

=
0 for spheres, and A3

"
1 in the liniit of very

elongated objects.
The coupling between vesicle shapes and in-plane defect structure is most pronounced for

sniall bending rigidities, since a hexatic (self-avoiding) nienibrane should be in a sniooth "crin-

kled" phase [12,13, 52] (with
an algebraic decay of the correlation function of surface nornials),

while a fluid nienibrane is crunipled at sufficiently large length scales [32, 53-55]. On the other

hand, a vesicle with a large bending rigidity is essentially spherical, independent of the internal

state of the nienibrane. This behavior is indeed observed in the siniulations. With decreasing
tether length (at fixed ~b IT of order unity) the vesicle beconies niore spherical. This can be seen

in the increase of the scaled volunie v a
(Vi N~~/~ iii ~~, which is shown in Figure 8. Note that

for a perfect sphere (of equilateral triangles of side length iii ), v =

2~~/~3~~@7r~~/~
=

0.0758,
and for a perfect icosahedron, v =

2~~/~3~~5~~/~(v$ + l)~
=

0.0690. Thus, the vesicles with

the largest bending rigidity or sniallest tether length still deviate appreciably front a sphere,
and, in fact, seeni to have a reduced volunie closer to that of an icosahedron than of a sphere.
This is qualitatively consistent with the niean-field shapes calculated in reference [15]. In

the fluid phase, larger vesicles have a snialler reduced volunie due to increased thernial shape
fluctuations [32].

The evolution of the vesicle shape with decreasing tether length can also be seen in the

decrease of the volunie conipressibility [38] and of A3, see Figure 9. The behavior of A3 deserves

sortie further discussion. A strong decrease with decreasing to is observed for ~b IT
=

1.0 and

~~ IT
=

1.5. However, for ~b IT > 2.0, the value of A3 depends only very weakly on the tether

length. This can also be seen in the probability distributions P~(r~) of the ratios r~ a A~/A3
(with I

=
1, 2) of the eigenvalues of the nionients-of-inertia tensor. The peak positions of P~ (r~)



N°11 THE FREEZING OF FLEXIBLE VESICLES OF SPHERICAL TOPOLOGY 1379

a)

b)

Fig. 7. Vesicle shapes for a system of N
=

407 beads, with Ab/T
=

2.0, and tether lengths (al
lo

=
1.330, (b) to

=
1.360, and (c) lo =1.389. Fivefold (sevenfold) disclinations are shown as large

grey (black) spheres. Note that the sphere radius is unrelated to the radius of the beads in the

simulation (which is identical for all beads).
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C)

Fig. 7. (Continued)

0.065

o.055

v

o.045

0.035

0.025
1.20 1.30 1.40 1.50 1.60 1.70

lo

Fig. 8. Scaled volume u =
(V)N~~/~ (ii ~~, as a function of the tether length lo (the synibols are

the same as in Fig. 6).

slowly increase with decreasing tether length, while the peak widths slowly decrease. Thus,
even for the smallest tether lengths studied, there are still pronounced shape fluctuations.

4.3. DEFECTS. Typical defect configurations for ~b IT
=

2.0 and various tether lengths are

shown in Figures lo. The configuration for the sniallest tether length, to
"

1.330, shows that

the nuniber of dislocations is sniall, but that free dislocations are already present, in agreenient
with the result of reference ill]. The configuration for the largest tether length, to

"
1.389,

denionstrates that the dislocation density is niuch larger, but free ?-fold disclinations
are

still
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o.15
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o.io
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~~i.20
1.30 1.40 1.50 1.60 1.70

lo

Fig. 9. Asphericity A3 as a function of the tether length lo for various bending rigidities and system
sizes (the symbols are the same as in Fig. 6).

rare. Finally, a coniparison of Figures 10 with the defect configurations of
a planar nienibrane,

see Figures 3, indicates that the defect energy niust be strongly reduced by buckling out of

plane.

The defect configurations are characterized by averages of the nuniber Nj of j-fold coordi-

nates vertices, with j E [4, 5, 6, 7, 8]. We identify a "free" dislocation with a 5 Ii-pair which has

only sixfold coordinated vertices as nearest neighbors. Their nuniber is denoted Ndioc. The

quotation niarks indicate that our definition of "free" dislocations includes both free discli-

nations as well as loosely bound dislocations pairs (with
a niininiuni separation of two bond

lengths). Note that not all free dislocations appear in Ndioc, because they alight sit next to

sortie other defect, like a dislocation pair. Siniilarly, a "free" five- or sevenfold disclination

is identified with a five- or sevenfold coordinated vertex which has only sixfold coordinated

neighbors. Their nunibers are denoted N5-dciin and N7-dciin.

The average densities of four-, six- and seven-fold coordinated vertices as a function of the

tether length are shown in Figures 11. For the sniallest tether lengths studied, the density

n6 %
(N6/(N -12)) of 6-fold coordinated vertices approaches unity, see Figure lla. The

vesicles have a very sniall number of defects at these small tether lengths. For the largest
tether lengths studied, n6 is typically between 1/2 and 3/4. This corresponds to a high defect

density, so that the membrane niust certainly be in its fluid state. This picture is confirmed

by the average nuniber n7 a
(N7/(N -12)) of I-fold coordinated vertices (see Fig, lib):

there are only
a couple of these defects present for the smallest tether lengths. Note that the

presence of a sniall nuniber of I-fold coordinated vertices is necessary to allow for diffusion

within the nienibrane. The density n7 increases roughly exponentially with increasing tether

length, and begins to saturate at large tether lengths. The density n4 of four~fold coordinated

vertices (Fig. llc) also increases roughly exponentially with to, but is niuch snialler than

n?. Furtherniore, it shows
a very strong dependence on the bending rigidity: an increase

of the bending rigidity front ~b IT
=

1.5 to 16 IT
=

3.0 decreases the density n4 by two orders

of magnitude. There are also pronounced finite-size effects: for sniall tether lengths (in the

hexatic phase), all three defect densities decrease with increasing system size.

It is also interesting to study the average coordination number of the vertex with the largest
number of nearest neighbors, (qmax). This is shown in Figure 12. For the smallest tether
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al

b)

C)

Fig. 10. Distribution of topological defects on flexible vesicles (with N
=

407) for bending rigidity
Ab/T

=
2.0 and three different tether lengths, (a) lo

=
1.330, (b) lo

=
1.360, and (cl lo

=
1.389.

Fivefold (sevenfold) disclinations are shown by open (full) circles. The figure is a projection of the

vesicle surface onto a plane; the projection of vertex I is given by (#~ sin(0,), ii, where #~ and [ are the

polar angles with respect to the vesicle's center of mass. The vesicle shapes of the same configurations

are displayed in Figures 7.
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Fig. 11. Densities nj =
(NJ /(N -12)) of j-fold coordinated vertices. (a) j

=
6, (b) j =

7, and (c)

j
=

4. The symbols are the same as in Figure 6.

95

8.5

7.5

~'i.20
1.30 1.40 1.50 1.60 70

lo

Fig. 12. Average coordination number (qmax) of the vertex with the largest number of nearest

neighbors as a
function of the tether length lo (the symbols are the same as in Fig. 6).
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Fig. 13. Number of "free" dislocations, Ndioc, averaged over 20 000 subsequent Monte Carlo steps,

as a function of Monte Carlo time, for N
=

407, Ab/T
=

2.0 and lo
=

1.30.

lengths studied, (qmax) is slightly less than 7, which indicates that the membrane is occasionally
conipletely free of defects. This can be seen explicitly by nionitoring qmax as a function of

Monte Carlo tinie. With increasing tether length,
a

plateau region is found where (qmax) cd 7.

For larger tether lengths, (qmax) increases again. The plateau region ends approxiniately at

lo Cf 1.30 for ~b IT
=

1.5, to
Cf 1.40 for ~b/T

=
2.0, to

Cf 1.43 for ~b/T
=

2.5, and to C~ 1.48

for ~b IT
=

3.0. No plateau reginie is observed for ~b IT
=

1.0.

4.4. DISLOCATIONS. The number of "free" dislocations (averaged over 20 000 subsequent
Monte Carlo steps)

as a function of Monte Carlo tinie is shown in Figure 13 for ~b/T
=

2.0

and to
"

1.36. The figure denionstrates that the (subaveraged) dislocation nuniber fluctuates

around sortie integer value over long tinie intervals, and then junips to a new integer value as

"free" dislocations forni or reconibine. This supports our conclusion that free dislocations are

present at sniall values of the tether length.
The results of reference ill] suggest that the free energy of a free dislocation with Burgers

vector (b(
=

iii should have the scaling forni

~~~~~°~
~

Ko~jt)2~
'

~~~~

if the systeni size is niuch larger than the buckling radius, Rb t
127~/(Ko Iii ), of a dislocation.

For the parameter range studied in our simulations, we typically have ~/(Ko(t)~) < 0.025,
which corresponds to the regime where defects easily buckle out of plane.

If the interaction between "free" dislocations is weak, the dislocation density, ndioc, is there-

fore given by

1in indioc)
-

~dioc
J~~iij~

1301

Our Monte Carlo data for the dislocation density for various tether lengths (in the range

1.249 < lo < 1.483) and bending rigidities ~b are shown in the Figure 14. They confirni the

scaling ansatz (30). Furtherniore, the data are well fitted by a scaling function

Hdioc(x)
=

-2.25 In(15.6x). (31)
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Fig. 14. Scaling behavior of the density ndioc of "free" dislocations for various bending rigidities,
tether lengths, and systems sizes. Data are shown for N

=
247 with 16 IT

=
1.5 (D ), 16 IT

=
2.0 (/L),

and for N
=

407 with 16 IT
=

1.5 (.), lb IT
=

2.0 A), and 16 IT
=

3.0 iv ). The full line shows the

approximation (31) for the scaling function Eldioc(x).

This result indicates that the dislocation free energy alight diverge in the inextensional liniit

Ko ~ oo.

Finally, we want to conipare our result (31) with the scaling function

~~~°~~~~
l

~~i127x) + cG, ~~~~

where cG is a constant, which was proposed by Seung and Nelson in reference [11]. The scaling
function (32) is derived in the liniit where the buckling radius is large conipared to the lattice

constant, I.e., for
x » 1/127. Nevertheless, for values of cG E [0,1], the two expressions fit

together reasonable well, with a crossover near x ci 0.025 (where Rb/(t)
1 3); they should

therefore be considered different limits of the saute scaling function.

4.5. DISCLINATIONS. The average number (N5-dciin) of "free" five-fold disclinations is

shown in Figure 15. For a perfectly ordered system, N5-dciin
"

12. With increasing tether

length, (N5-dciin) decreases, because dislocations appear, some of which are attracted to the

free 5-fold disclinations. This effect can be understood as a screening of the strain field near

disclinations by free dislocations. Since N5-dciin counts the number of five-fold coordinated

vertices which have only 6-fold coordinated neighbors, disclination-dislocation pairs do not

contribute. Although dislocations also begin to dissociate into weakly bound disclination pairs,
this effect is apparently not strong enough to balance the screening effect.

The density of "free" I-fold disclinations is shown in Figure 16. It shows the same sigmoidal
shape as the other defect densities. The decrease of the density for ~b IT

=
1.5 for large tether

lengths is again due to an over-crowding of defects, which does not leave enough space for "free"

disclinations. A very remarkable property of (n7-dciin) are its finite-size effects: the density
decreases with system size for small tether lengths, but increases for large tether lengths. The

density curves for different system sizes therefore intersect; the point of intersection is located

at to Cf 1.315 for ~b/T
=

1.5, and to Cf 1.375 for ~b/T
=

2.0. Note that the intersections

almost coincide with the points of inflection of the curves.
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Fig, 15. Average number (N5-dci,n) of "free" five-fold disclinations as a function of the tether

length lo (the symbols
are the same as in Fig. 14).

Fig. 16. Average density (n7-dci~n) of "free" seven-fold disclinations as a function of the tether

length lo (the synibols are the same as in Fig. 14).

The decrease of the density (n7-dciin) as a function of systeni size for sniall tether lengths
(in the hexatic phase) is difficult to understand theoretically. In a hexatic phase, there should

be no free disclinations in the therniodynaniic liniit, but only (weakly) bound pairs, which

interact with a potential
V(rl

=
aIn(flat, 133)

where a cd
iii is a short-distance cutoff, and the aniplitude o depends on both the bending

rigidity ~b IT and the tether length to- In the hexatic phase, a IT > 4. The density of loosely
bound disclination pairs is then given by [48, 56]

npai~s =
e~~~C/~'Z(a), (34)

where Ec is the core energy of a disclination, and

Z(a)
=

j(~ [expi-V(r)/Tj (35)

"

~

~j)~ (rminla)~~~~°~~~~
iRla)~~~°~~~~j (361

where rmin ci 2a for
our definition of "free" disclinations, and Rla

mu

li is proportional to

the linear systeni size. Strictly speaking, the integral in equation (35) has to be replaced by a

surf over all possible distance vectors on the triangular lattice. Nevertheless, the result (36)
indicates that the disclination density should exhibit only very weak finite size effects, and

niore iniportantly in the,present context that the density should increase with increasing
system size. The latter conclusion contradicts our Monte Carlo data.

The partition function (35) is dominated by closely bound disclination pairs. We have

therefore tried to analyze our data for the density of "free" disclinations by assuming that

most of the pairs we observe have a separation of just two bond lengths. In this case, their

density should scale in exactly the same way as the dislocation density, equation (30), although

with a
different scaling function. However, the data do not scale very well in such a plot.

Finally, it has been argued recently by Park [57] that the finite-size effects on a fluctuating

sphere are niore
complicated than for an almost planar membrane. Based on the analysis
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of a sine-Gordon Haniiltonian [13] for nienibranes of arbitrary topology, he shows that for

a fluctuating sphere the non-zero Gaussian curvature leads to a niass terni proportional to

KH/(~R~), where R is the vesicle radius [57]. The interaction between disclinations then

follows the logarithniic behavior (33) only for length scales r < rD, where rD ~

Rfif, and

decays exponentially for
r > rD. In the case where ~/KH « I, this leads to

Z(Ol
~f

~

~)_
~ [(rm~nlal~~°/°~~~~ (rDlal~~°/°~~~~j + 7r(1 ~/KH)(Rlal~. (37)

The doniinant R-dependence is given by the second part of equation (37). The finite size effects

are niuch niore pronounced than in the case of
a planar nienibrane. However, this niodel again

predicts an increase of the density of "free" disclinations which systeni size, in contrast to

the data presented in Figure 1fi. On the other hand, the broadening of the peak in the excess

nearest-neighbor distance dt with decreasing tether length, see Figure 6, could be an indication

for a niass terni as predicted by Park [57].

4.6. PHASE DIAGRAM. Due to the complex quasi-spherical geometry and the relatively
sniall systeni sizes we are able to siniulate, we cannot hope to distinguish the fluid and hex-

atic phases by the asyniptotic decay of the bond orientation correlation function. Instead,
the internal order of the nienibrane has to be detected indirectly front its influence on the vesi-

cle shapes and on the local defect nunibers. We have already argued above that the transition

is visible in (Vi and the compressibility x for a single systeni size. It should also show up in the

scaling behavior of the conipressibility with N [38]. In the hexatic phase, there should only be a

weak N-dependence, while in the fluid phase, x ~w
N~ with

~f cd 1.5 [30]. The tether lengths at

which the behavior of different observables changes niarkedly are suniniarized in Table I. Front

these nunibers, we estiniate that a phase transition occurs at to Cf 1.10 + 0.10 for ~b IT
=

1.0,
to Cf 1.31+ 0.04 for ~b/T

=
1.5, to Cf 1.37 + 0.04 for16/T

=
2.0, and to Cf 1.43 + 0.04 for

~b IT
=

3.0. In fact, we cannot exclude the possibility that for ~b IT
=

1.0, a hexatic phase
does not occur for any tether length. Thus, we find that decreasing the bending rigidity (at
fixed tether length to) leads to a transition front the hexatic to the fluid phase, in agreenient
with the predictions of references [12,13]. In the liniit ~b IT ~ oo, we expect the transition

to occur at the saute tether length as for planar membranes, where our 2D siniulation data

are consistent with a fluid phase for to > 1.53 + 0.01. The resulting phase diagram in the

T/(Ko(t)~) T/~ plane is shown in Figure 17.

Because we have not been able to obtain good estimates for the hexatic stiffness, KH, it is not

possible to directly compare our phase diagram with theory. However, since KH is a monotonic

function of Ko (for fixed ~/T), the general features are consistent with the predictions of

Table I. Estimates for the tether lengths to at the hexatic-fluid transition.

~b/T dt qmax u x n7-dciin

1.0 1.2

1.5 1.33 1.30 1.30 1.33 1.33 1.315

2.0 1,4I 1.36 1.40 1.36 1.38 1.375

2.5 1.55 1.39 1.43

3.0 1.55 1.40 1.48 1.40 1.41
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Fig. 17. Phase diagram in the (T/~)-(T/(Ko(1)~))-plane.

references [12,13]. Our present data also do not allow us to characterize the transition in any

detail or even distinguish between a true phase transition or a rapid crossover.

We want to remark parenthetically that the result of reference [18] that the second

term in equation (I)
was able to regularize the internal geometry, but had little effect on the

external geometry can now be rather easily explained by the lack of a bending energy in

the Hamiltonian, which implies that the membrane should remain fluid for all values of ~f.

5. Summary and Discussion

In this paper we have investigated the properties of a siniple tether-and-bead niodel of nieni-

branes and vesicles as a function of tether length and bending rigidity using Monte Carlo

siniulations and scaling argunients. For planar nienibranes, we find a first-order phase transi-

tion between a crystalline and a fluid phase at a tether length of to
=

1.53 + 0.01. This shows

that the standard tether-and-bead niodel for flexible nienibranes can be used to study freezing.
We have also deterniined the elastic constants the area niodulus KA and the Young niodulus

Ko of the flat, crystalline phase, since they are needed for a detailed analysis of the behavior

of flexible nienibranes.

For flexible vesicles, we give strong evidence for the presence of a hexatic phase for suffi-

ciently sniall tether lengths, in agreenient with the predictions of Seung and Nelson [11]. In

particular, we show that the density of dislocations with Burgers vector (ii scales as a function

of ~/(Ko(t)~) in the hexatic phase. The position of the hexatic-to-fluid transition has been

estimated for several values of the bending rigidity, as sumniarized in Table I. We find that

the tether length at the transition decreases with decreasing bending rigidity, in qualitative
agreenient with the field-theoretic calculations of references [12,13].

The results summarized above confirm the current theoretical understanding of the freezing
of flexible vesicles. Our results for the finite-size behavior of the density of "free" disclinations,
however, seems to be inconsistent with theory. Whereas current theories lead us to expect

that the disclination density in the hexatic phase increases with increasing system size, the

Monte Carlo data shows that it decreases. Similar finite-size behavior is also observed for the

densities of four- and seven-fold-coordinated vertices.

There are a nuniber of conceivable explanations for this discrepancy. The niost obvious

difficulty is our
identification of "free" disclinations. Since only sevenfold-coordinated vertices
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which have only sixfold-coordinated neighbors are counted as "free" disclinations, all disclina-

tions which are adjacent to a free dislocation or sortie other defect are not taken into account

in (Ndcim). Thus, we certainly underestiniate the nuniber of weakly bound disclination pairs.

It is less clear, however, how this will affect the finite-size behavior of (Ndciin). Another pos-

sible explanation is on the theoretical side. The calculation of reference [57] is for a weakly
fluctuating sphere. However, it has been shown in reference [15] in qualitative agreenient
with our Monte Carlo results that hexatic vesicles are not spherical, but have the shape of

a snioothed-out icosahedron. There is therefore a non~uniforni distribution of Gaussian curva-

ture, which is not taken into account in the analysis of reference [57]. Again, it is difficult to

estiniate how this alight affect the finite-size behavior of the disclination density.

On a quantitative level, several questions require further investigations. First, for a direct

coniparison of theory and siniulations, the hexatic stiffness KH has to be deterniined. This

is a rather difficult task, which to our knowledge has not been attenipted even for niodels of

planar two-dimensional systenis. Second, the finite-size effects in the hexatic phase have to

be better understood. We are planning siniulations for larger systeni sizes in the future in

order to see if the finite-size behavior observed here is an artifact due to the relatively sniall

systeni sizes studied. It is quite obvious, however, that systenis with niore than 1000 vertices

cannot be siniulated at present. Finally, it will be interesting to allow for out-of-plane fluctua-

tions of (aIniost) planar nienibranes with periodic boundary conditions. The finite-size effects

in this case are expected to be quite different front those of vesicles [57]; this would allow a

niore detailed coniparison of siniulations and current theories of freezing.
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