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Abstract. We investigate the statistical properties of the scattering matrix S describing
the electron transport through quasi-one-dimensional disordered systems. For weak disorder

(metallic regime), the energy dependence of the phase shifts of S is found to yield the same

universal parametric correlations as those characterizing chaotic Hamiltonian eigenvalues driven

by an external parameter. This is analyzed within a Brownian motion model for S, which is

directly related to the distribution of the Wigner-Smith time delay matrix. For large disorder

(localized regime), transport is dominated by resonant tunneling and the universal behavior dis-

appears. A model based on a simplified description of the localized wave functions qualitatively
explains our numerical results. In the insulator, the parametric correlation of the phase shift

velocities follows the energy-dependent autocorrelator of the Wigner time. The Wigner time

and the conductance are correlated in the metal and in the insulator.

1. Introduction

1,I. PREFACE. Electron transport through quasi-one~dimensional disordered systems is

characterized by the scattering matrix S, relating the amplitudes of incoming and outgoing

waves. The scattering matrix contains information not only about quantities as the conduc-

tance and the characteristic dwelling times for electrons moving through the disordered region,
but also on the energy levels of the system. The universal statistical properties found in the

energy spectrum of disordrred and chaotic systems have been related to the distribution of

eigenvalues of random matrix Hamiltonians [1-3]. On the other hand, the universal conduc-

tance fluctuations of metallic systems have been understood in terms of a statistical description
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of the transfer matrix [4, 5]. To understand the relation between these two universalities, it is

useful to study the statistical properties of the scattering matrix [6-11].

Due to current conservation~ the scattering matrix is unitary and its eigenvalues are repre~

sented by 2N phase shifts (Hi). (N is the number of transverse channels in each asymptotic
region.) Assuming that all matrices S with a given symmetry are equally probable, we ob-

tain Dyson's circular ensembles [12,13] (named COE and CUE for orthogonal and unitary

symmetry classes, respectively), where the phase shift statistics follows universal laws. The

isotropy hypothesis of Dyson's ensembles applies only to ballistic chaotic cavities with no direct

channels [8.14], where the electronic motion is essentially zero-dimensional after a
(short time

of flight. The conductance in this system is always of the order of N/2 since reflection and

transmission are
equally likely. On the other hand, in disordered systems this isotropy hypoth-

esis is not satisfied any longer because transmission is much less probable than reflection. For

quasi-one-dimensional (quasi-ld) metallic samples the conductance is of the order of Nt/L,

where is the elastic mean-free-path, L the length of the disordered region, and t « L. In the

localized regime, when the localization length f
-J

Nt is much smaller than the sample length
L, the typical conductance scales as exp (-2L/f). However, the failure of Dyson's hypothe-

sis for the mean values of S (which is linked to the average conductance) does not prevent

the fluctuations of S for weakly-disordered quasi-Id samples to be (approximately) described

with the universal behavior of the circular ensembles, as shown in reference ii Ii. This good

agreement gets poorer if the disorder is increased, as well as-when the system does not have

a quasi-Id geometry, or when it enters the localized regime. In the first two cases the mean

values of the transmission and reflection amplitudes become strongly dependent on the chan-

nel index and the eigenphase distribution is highly anisotropic. When localization is achieved

by keeping the disorder weak and increasing the length of the sample beyond the localization

length, the scattering matrix was shown to decouple in two statistically independent (almost
unitary) reflection matrices II Ii. This picture is particularly clear if one uses a semiclassical

approach where most of the classical trajectories return to the region of departure instead of

traversing the disordered sample.

A few years ago, another type of universality in the spectrum of chaotic and disordered

systems was discovered by Szafer, Altshuler, and Simons [15,16]. It concerns the adiabatic re-

sponse to an external perturbation (magnetic field, shape of the confining potential, etc. ). The

correlator of the derivatives of the eigenenergies at two different values of the external param-

eter has a universal functional form once a proper rescaling is carried out. Later studies have

found these universal parametric correlations to hold in a variety of other systems, including
interacting one~dimensional models ii?], k-dependent band structures of semiconductors [18j,
eigenenergies of Rydberg atoms as a function of magnetic field jig], eigenphases of the S-matrix

describing electron-ion scattering as a function of the electron-core coupling strength [20j, etc.

Considering the 2N eigenphases of S as a function of the electron energy, a
natural ques-

tion that arises is whether the analogous parametric correlations will have the universal form

found for eigenenergies. In the weakly-disordered quasi-Id case, where the fluctuations of the

eigenphases follow the circular ensemble predictions and N » I, one could anticipate that the

parametric correlations do exhibit the universal form of Szafer et at., and this is confirmed here

by numerical simulations and analytical arguments. More interesting is the question of what

happens to these correlations as we go into the localized regime, and whether or not they can

be described by a simple model as that of the decoupling of the eigenphases.

Directly related to the parametric correlations of the eigenphases, there is the question of

the statistical distribution of the traversing-times in the disordered region. This distribution

and the related correlation functions have recently begun to be addressed [21, 22j, because

the Wigner time appears in a variety of physical phenomena, ranging from the capacitance
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of mesoscopic quantum dots [24] to nuclear resonances [25]. Since the Wigner time is obtained

from the scattering matrix and its energy derivative, the statistical properties of S(E) deter-

mine the correlations of the traversal time. We aim in this paper to study the relationship
between the parametric correlations and the distributions of the traversal times, and their

connection to the statistical properties of the corresponding scattering matrix for metallic and

localized quasi-Id disordered systems.

In the remaining of this section we introduce the basic notation concerning the scattering
matrix and present the substantially different behavior of the eigenphases, conductance, and

Wigner time (as functions of the Fermi energy) between the metallic and localized cases. In

Section 2 we study the parametric correlations of weakly-disordered quasi-Id systems. We

justify their universal character in the framework of a Brownian-motion model for unitary
matrices. We then study the energy correlations of the conductance and the Wigner time and

the cross-correlation between these two quantities, making contact with existing calculations

in the metallic regime. In Section 3 we undertake similar studies for the localized regime. The

non-universal parametric correlations of eigenphases and Wigner times can be accounted for,
at the semi-quantitative level, by a very simple model of resonant transmission through a single
localized state. We present our conclusions in Section 4. In Appendix A, we discuss the validity

of the assumption on which is based the Brownian motion model, when it is used to describe

the energy dependence of S. In this case, it amounts to study the underlying Wigner-Smith
time delay matrix. In Appendix B we consider the simple case of one-channel scattering, where

some exact calculations can be carried out.

1.2. SCATTERING MATRIX OF A DISORDERED REGION. We consider an infinite strip
composed of two semi-infinite, perfectly conducting regions of width Ly (which

we define as

the leads) connected by a disordered region of same width and of longitudinal length Lx (see
the inset in Fig. la). Assuming non-interacting electrons and hard-wall boundary conditions

for the transverse part of the wave function, the scattering states in the leads at the Fermi

energy satisfy the condition k2
=

(n7r/Ly)2 + k(, where k is the Fermi wave vector, n7r/L~
the quantized transverse wave vector, and kn the longitudinal wave vector. For a given k,
each real transverse momentum labeled by the index

n
(n

=
I,..

,

N) defines a propagating
channel in the leads. Since each channel can carry two waves traveling in opposite directions, in

regions asymptotically far from the scattering region the wave function can be specified by two

2N-component vectors, one for each lead (labeled I and II ). For both vectors, the first (last) N

components are the amplitudes of the waves propagating to the right (left). In mathematical

terms, this reads

i~iiz, »)
=

( )
lA~e~k«x + B~e-~k«xj i~jy) iiia)

n=i
kn

and

~

~ k (x-L
)j ~ 11.l~)~

jc~~ik«(~ x~ + Dne ~
" ~

"
~~ul~,Y) "~ ~@

The transverse wave
functions are

~n(y)
=

/$ sin (7rny/Ly). The normalization is chosen

in order to have a unit incoming flux on each channel. The scattering matrix S relates the

incoming flux to the outgoing flux,

l~
=

S l12)
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Fig. I. Energy dependence of the phase shifts for a quasi- lD disordered strip (inset) in the metallic

la) and localized 16) regimes. The conductance and the Wigner time (thick solid and dashed lines,
respectively, both in arbitrary units) are smooth functions in the metallic regime and exhibit a resonant

structure in the localized regime. The energy range in 16) is chosen to facilitate the visualization of

the resonances. Note the strong correlation between g and rw.

With this convention, S is a 2N x 2N matrix of the form

S
=

l~ ,
(l.3)

t

~

The reflection (transmission) matrix Tit) is an N x N matrix whose elements rba (tba) denote

the reflected (transmitted) amplitude in channel b when there is a unit flux incident from the

left in channel a. The amplitudes r' and t' have similar meanings, except that the incident

flux comes from the right.
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The transmission and reflection amplitudes from a channel
a on the left to a channel b on

the right and left, respectively, are given by [26j

tba
"

~l&jUaUb)~/~ /dY' /dY ~llY') ~a(Y) GklLx, V'i o, V) l~'~~)

and

rba ~
dab I&jvavb)~~~

/ dy' / dy ~j jy') ~ajy) Gk10, y'; 0, y), jl.4b)

where va (vb) is the longitudinal velocity for the incoming (outgoing) channel
a (b). For

hard-wall boundary conditions, v~y =
hk~y/m.

a = a, b. We denote by m the effective mass

of the electrons. For the transmission (reflection) amplitudes Gk(r'; r) is the retarded Green
function between points r =

ix, y) on the left lead and r'
=

ix', y')
on the right (left) lead

evaluated at the Fermi energy E
=

&~k2/2m. Note that, with the convention we
have taken

above, for a perfect, non-disordered sample at zero magnetic field, S is not the identity ma-

trix, but is rather written in terms of transmission submatrices which contain pure phases:
tba

=
t[[

=
dab exp(ikbLx). Since we can pass from one convention to the other by a fixed

unitary transformation, both forms present the same statistical properties II Ii.
In our numerical work we obtain the transmission and reflection amplitudes from the Green

function of the disordered strip by a recursive algorithm [27, 28j on a tight-binding lattice. We

typically use a rectangular lattice of 34 x 136 sites and go from the metallic to the localized

regime by increasing the on-site disorder W. (For details of the simulation see Ref. ill].)
From the transmission amplitudes one can obtain the two-terminal conductance through the

Landauer formula [29]

g =
Tr (ttf). (1.5)

Here
we adopt units of e2 /h for the conductance. (Throughout this work we will treat spinless

electrons and therefore will not include spin-degeneracy factors.) Notice that the Landauer

formula requires that the sample is a
single, complex elastic scatterer. Thus, we are ignoring

any inelastic process giving rise to a loss of phase coherence.

1.3. EIGENPHASES, CONDUCTANCE, AND iVIGNER TIME IN THE METALLIC AND LOCALIZED

REGIMES. For a given sample Ii-e-, impurity configuration) the diagonaiization of the

scattering matrix leads to 2N phase shifts (61) as functions of the Fermi energy E. The

typical dependence is shown in Figure I for the metallic (a) and localized (b) cases for an

energy interval where new channels are not open (N
=

14 in the whole interval). In the

metallic case the on-site disorder in Anderson units is W
=

I, yielding a mean-free-path
t

=
0.2Lx, a localization length f

=
3L~, and a conductance (thick solid line) which fluctuates

around a mean value (g)
=

4.14.

The localized regime (W
=

4, yielding t
=

0.02Lx and f
=

0.3Lx) exhibits a markedly
different behavior, with phase shifts showing step-like jumps where the conductance has peaks.
These peaks indicate that, for certain energies, the probability of traversing the disordered

region is much higher than the average. They are related to the existence of localized eigenstates
in the sample and transport through the strongly-disordered region is dominated by resonant

tunneling.
To illustrate this last point, in Figure I we also show the Wigner time for both metallic and

localized regimes (thick dashed lines). This characteristic time scale is defined as the trace of

the Wigner-Smith matrix [25]

~
~N

~~~~~ ~~~~' ~~'~~
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namely,

rw +
Trjo). ii?)

The unitarity of S trivially implies the fact that Q is Hermitian, and therefore its eigenvalues

are real. In the case of time-reversal symmetry S~
=

S, but Q is not necessarily symmetric

since in general St and dS/dE do not commute. Working in a base that diagonalizes S it is

easy to see that rw admits a simple expression in terms of the energy derivatives of the phase

shifts,

~~~~~ 2~i
~

~~~~ ~~'~~

The Wigner time can be interpreted as the typical time interval a scattered particle remains

in the disordered region ill, 21j. In the localized regime, the Wigner time exhibits the same

resonant-like structure of the conductance, although peak heights can be relatively different.

This behavior can be understood in the light of the resonant-tunneling mechanism, since each

localized state present in the disordered region can trap the electrons for a long time [30j.
From this mechanism one can also understand qualitatively why a Wigner-time peak can be

relatively large when, at the same energy, a conductance peak is small. This may happen, for

instance, when the tunneling probability rates for channels in lead I is much larger than for

channels in lead II. We will get back to this discussion in Section 3.

A strong correlation between g and rw is also obtained in the metallic regime. The correlation

in this case is also intuitive, since transport should probe the available density of states around

the considered Fermi energy.

2. Correlations in the Metallic Regime

2. I. PARAMETRIC CORRELATIONS OF EIGENPHASES. In order to characterize the paramet-
ric dependence on energy of the set (61), we define the eigenphase velocity correlator function

Co (bE)
w

(~j ~ ~~~~~( ~~~ ~()~ ~~~~~ ~j
,

(2.1)
7r dE

together with the rescaling

x m
bEfi@ (2.2a)

co(x)
m

Co(bE)/Co(0). (2.2b)

The average (. can be performed
over different eigenstates n~ over the energy E, or over

different realizations of disorder. These definitions are analogous to the well-studied case [lsj
in which a

Hamiltonian H and its eigenvalues (e~) depend on an external parameter ~ (say, a

magnetic flux) and the eigenenergy velocity correlator is given by

~~~~~~
i

II ~~~~li
~~~

~~il~ l~~il~
~j

'

~~~~

where b denotes the mean level spacing, or inverse density of states around the u-th eigenvalue.
For chaotic systems, the universal form of this correlator was checked numerically from exact

diagonalizations of suitable Hamiltonians [15,16] and after the rescaling

x W b~ /fi (2.4a)

C~(x) +
C~(/~~)/C~(°). (2.4b)
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Fig. 2. Eigenphase velocity correlator for the metallic regime according to the definitions of equa-
tions (2.1, 2.2). The weakly-disordered metallic case

(W
=

I in Anderson units) with (circles) and

without magnetic field (squares) shows a good agreement with the universal curves characteristic of

the GUE and GOE, respectively. Increasing the disorder (W
=

2, no magnetic field, pluses) reduces

the range of agreement with the universal curve.

A complete analytical expression for c~(x) is not available. However, the small and large-

x asymptotic limits are known exactly from diagrammatic and non-perturbative calculations

[15,16] and match accurately the numerical results. In particular, one finds that

where fl
=

1(2) for spinless systems with preserved (broken) time-reversal symmetry.

In Figure 2 we present the eigenphase velocity correlation (Eq. (2.I)) resulting from our

numerical simulations and the rescaling (2.2). For weakly-disordered, metallic samples where

the statistics of the eigenphases at a fixed energy is well described by the Dyson circular

ensembles Ill ], we obtain a good agreement with the universal parametric correlation found in

Hamiltonian systems [15,16]. Applying a magnetic field perpendicular to the strip, one breaks

the time-reversal symmetry, causing the parametric correlation behavior to go from GOE-like

(squares) to GUE-like (circles) [31]. Increasing the disorder (but still remaining in the metallic

regime) reduces the range of agreement with the universal curve. Further increase of the

disorder drives the system into the localized regime and away from the universal behavior, as

we
will discuss in Section 3.

The system-independent form of parametric correlations for energy eigenvalues of random

Hamiltonians has been studied with a non-linear a model [32]. This treatment has been recently
extended [33j ti show that universality is a property of all systems whose underlying classical

dynamics is chaotic. For a disordered sample, one finds that universality holds when g » I

and the regime is metallic. The same approach has also been used to study the statistical

fluctuations of the S matrix [22, 34j and the conductance [10j of chaotic systems under the

influence of a generic external parameter. However, there has been no attempt to prove

analytically the results shown in Figure 2, namely, that the energy correlator of eigenphase
velocities falls into the analogous curve

obtained from energy eigenvalues when the number of

channels is very large.
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Parallel to the field-theoretical approach, the universality of parametric correlators of eigen-

values has also been justified from the hypothesis of a Brownian motion of the eigenenergies [35],

with the external parameter playing the role of a fictitious time. The Brownian,motion model

(BMM) for Hermitian and unitary matrices was introduced by Dyson [13,36] and used by

Pandey et at. [37] in the case of circular ensembles in order to determine the statistics of the

eigenphases at the crossover between different symmetry classes. More recently, the BMM has

been applied to scattering and transmission matrices describing coherent transport through

chaotic and disordered systems [38, 39]. It has been recognized in these works that the BMM

approach for scattering matrices only obtains correct results for a restricted (energy or mag-

netic field) range, or for sufficiently large number of channels. We will illustrate this point in

the next subsection, where we consider specifically the energy evolution of the phase shifts.

2.2. BROWNIAN-MOTION MODEL OF S AND ENERGY-DEPENDENT PARAMETRIC CORRE-

LATORs. The aim of this subsection is to develop a simple description of the parametric
statistics of phase shifts in the metallic regime numerically investigated (N m I). For this

purpose, we apply a Brownian-motion model to the energy evolution of scattering matrices.

As stated at the end of the previous subsection, we do not expect to obtain a complete quan-

titative agreement between the BBM predictions and the numerical data this certainly
would require a more sophisticated treatment [6]. Instead, we only give a justification for the

agreement observed between the asymptotics of the energy-dependent eigenphase correlation

functions and analogous curves characteristic of Hamiltonian eigenvalues.
A unitary matrix S can always be decomposed as the product

S
=

Y'Y (2.6)

of two unitary matrices. In the absence of time-reversal symmetry (fl
=

2), S is just unitary and

Y and Y'
are independent. For time-reversal symmetric systems (fl

=
I), S

=

S~ and we have

Y'
=

Y~, where the matrix Y is not unique, but specified up to an orthogonal transformation.

Any permissible small change in S is then given by

bS
=

Y'(ibH)f (2.7)

where bji is a Hermitian matrix (real symmetric if fl
=

I). This relationship allows us to define

an invariant measure in the manifold of unitary matrices from the real independent components
of bji [12,13j. The isotropic Brownian motion of S occurs when S changes to S + bS as some

parameter (say, a fictitious time) varies from t to t+bt. To construct the model, the components
of dji

are assumed to be independent random variables behaving according to

lbhp)
=

° 12.8a)

and

~~~~"~~~~ ~" ~"~' ~~'~~~

with gp =
I + d~j and ~t =

1,..., 2N + N(2N -1)fl. As it will be discussed in Appendix
A, when the evolution of S results from a Fermi energy variation bE, the Hermitian matrix
bji

can be given in terms of the Wigner-Smith time delay matrix Q. Thus, the validity of

this Brownian motion model relies on certain assumptions concerning the statistical properties
of the various interaction times. A random matrix approach for Q, assuming a maximum

entropy distribution for
a given mean density of eigenvalues, is proposed and some of its

consequences are numerically checked. Equations (2.8) are then based on certain simplifications
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which we critically discuss in Appendix A, at the light of the statistical properties of the

Wigner-Smith matrix Q.
The effect of the Brownian motion on the eigenphases of S may be found by second-order

perturbation theory,

J6n
=

JHn~ +
~ iJH~n)2 cot

~n j ~m ). 12.g)

~~~

Equations (2.8, 2.9) then imply that the eigenphases follow the relations

jb6n)
=

Fj6n) bt j2.10a)

and

(b8nb6m)
=

brim
~

bt, (2.10b)
ffl

with F(6n)
a

-fiW/fi6n and W
=

~~~~ ln )2 sin[(6n 6m) /2j). Notice that the coefficients

f and fl were introduced to suggest friction and inverse temperature, respectively. The eigen-
phases behave like

a classical gas of massless particles on the unit circle, executing a Brownian

motion under the influence of
a

Coulomb force F. The joint probability distribution of the

eigenphases P((6n); t) follows a Fokker-Planck equation [13, 36j

For t ~ cc
we

reach an

circular ensemble [13j,
~q((6~))

= C2N

We now turn to the solution of the okker-Planck equation for
the joint probability dis-

tribution of the An
exact way

to solve
quation 2,ll)

is

quantum-mechanical
Hamiltonian roblem of

articles in a
ring

nteracting by a wo-body

potential
proportional

to I /r(, where r( is the length of the chord connecting

model
was roposed and studied

extensively
by [40j and yields

for
((6n);t)

[41j.
lternatively,

one may use a hydrodynamical approximation, originally

roposed
by Dyson [42j, which leads to a non-linear diffusion uation for the average density

of eigenphases. Here we will adopt this second
approach, since it is

p(8; t)
a /~~ d61 d82N P((81); t) ~ b(8 6n), (2.12)

o

~i

and starting from equation (2.ll),
one can derive that

f
~~~~' ~~

=

p(6;
t) /~~ d6'p(6'; t) In 2 sin

~

~') (2.13)
fit t 6

o
2

(This equation is approximate in the sense that it does not take into account accurately short-

wavelength oscillations in the density.) Since fluctuations in the density are smaller than

the density itself by a factor of the order O(I IN), one can linearize this diffusive equation
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by considering small deviations around the homogeneous solution, p(6;t)
= pea + bp(6;t),

where p~q =
N/7r. One then obtains

~~~'~~
= /~~ d6'D(6 6') ~~j)~'~~, (2.14)

t
o

where the kernel is given by D(6)
=

-p~qf~~In)2sin[(6 6')/2j). The periodicity in the

eigenphase space calls for a solution of the diffusion equation in Fourier series. Writing
bp(6; t)

=

£)Z~ bpk(t)e~~°, one finds that

~Pkl~)
~

~P1°) ~~P
~~~~)~~~)

12.15)

The above result can be readily used in the evaluation of parametric correlators, which will

be the subject of the rest of this subsection. We therefore introduce the two-point density
correlator

Rj6, 61; t, t')
a

jJpj6; t)Jpj6'; t'))~~, j2.16)

where (. )~q means that the average is weighted by the joint distribution at the equilibrium,
Peq((61)). Since the average density is constant in both time and angle, there is translation

invariance in t and 6 at the equilibrium. Consequently, R depends only on the differences

6 6' and t t'. From equation (2.15),
we

find that the dependence on time and angle can be

decoupled in k-space,

Rk It)
=

Tk exp

')'~~~~)
,

(2.17)

where Tk is the Fourier coefficient of the "static" correlator T(8)
a

R(8;t
=

0), which, for

circular ensembles, is known exactly [13j. In the limit of N » I, one has that Tk ~f )k) /(27r2fl)
for )k) < N, whereas for )k) m N it saturates at the value Tk Cf

N/(27r)2. If we keep
7rpeqt/ f » I IN, we can neglect the contribution of terms with )k) > N and then easily sum

the Fourier expansion of R(8; t) to find that

~~~'~~ ~

~~fl~~ (i
~

)2~
'

~~'~~~

with z =
exp(18 7rpeqt/f). Hereafter we will denote the energy (or time) in terms of a

dimensionless parameter, with the natural choice being X a
E/Es, where Es

=
f/(7rp~q).

The knowledge of R(8; t) permits the evaluation of other two-point parametric functions.

Two of them are of particular interest. The first one is the Wigner time correlator

C~ (bE) w (rw (E + bE)rw (E)) (rw(E))~

=

(~)~ f
(~~~~~(

~~~ ~~(/~ ~~()~ ~~~(/~ )j
,

(2.19)
1,~=j

which has also been the subject of recent calculations [21, 22]. The second parametric function

is the modified level velocity correlator [16~ 35]

C(8 8'; E E')
m

f ~~"~~~ ~~~~~'~
b(8 8n(E))b(8' 8m(E')) (2.20)

~,~=i
~~ ~~~

eq
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It is straightforward to check that

~~~~~ (2~)2 /E2
/

~~ ~~ ~~~~~~'~~ ~~'~~~

and ~/
=

~~[. (2.22)

In equation (2.21) one uses that R(6; E) is an even periodic function in 6 and Rk(E)
=

0 for

k
=

0. Moreover, the two correlators are connected by the relation

which also
implies

that C(0; E) =
(N/7r)2C~(E).

Two emarks are
pertinent

here.
First,

C~(E) and ©(0; E) have asymptotic forms similar to

Co (E) in the limit of large E. This is ecause distinct eigenphases ecome

quickly for large enough energy ifferences, causing the ain ontribution to both orrelators to
come from the diagonal terms. The second remark is that,

independently
of

proximation
adopted above, interlevel rrelations

are completely
ignored in the

BM
(see

Eq. (2.10b)). This leads to a ~(E)
dentical,

up
to

a proportionality factor, to the ne-level

elocity correlator Co(E) for all vat~tes of E. Such a coincidence between

is never observed in practice because terlevel
orrelations

among neighboring levels at small values of

C~(E)
=

(e ~~ l + 2X2)
~fl~~Ei sinh~(X2 /2)

(2.24)

and

fi~ 2 ~ ~2 ~ji ~ x2)
~~~'~~

7r

~~~~~
7r2flE)

~~
(l z)2

~~'~~~

We find the following asymptotic limits:

(I) For X < I, C~(E)
ci -2 /(flN2E2) and d(0; E)

ci
-4/(7r~flE2);

(it) for X » I, C~(E)
ci

-4X2e~~~ /(flN2E)) and ©(0; E)
ci

-8X2e~~~ /(7r2flE)).
An exponential decay at large distances does not occur for the analogous correlators involving
eigenvalue velocities [35], which actually retains the form (I) for arbitrarily large values of the

external parameter. As pointed out before [39], technically, the difference appears because a

Fourier series is used to treat phase shifts oscillations (since they are bounded by the finite

interval lo 27rj instead of Fourier transforms, as in the case of energy eigenvalues. Nevertheless,

if N » I, one naturally expects that there should exist a range of values of E in which ©(6; E)
has a form similar to its counterpart for eigenenergies. In order to understand this point, let us

find the relation between Es and another, more commonly used scale, Co(0)~~/2 [15,16j (see
Sect. 2.I). From equation (2.10b) we have that

C~(0)~~/~
=

~, (2.26)
Peq

which means that E~
=

Co(0)~~/2 2N/(7r2fl). Therefore, if N is large enough, it is possible
to have E « Es and E » Co (0)~~/2 simultaneously. Consequently, there is an intermediate
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range of values of X where ©(0;X) falls exactly into the same power-law, universal curve

predicted for the case of energy eigenvalues [16, 35]. Deviations in the form of
an exponential

decay occur only for values of X ( I, which may be large in units of Co (0)~~/2/Es. Notice

that this is still compatible with the restriction E/E~ » I IN used to derive equation (2.18).
We stress again that equations (2.24, 2.25) are approximations. A simple inspection is

sufficient to prove this point: Because the correlators diverge at E
=

0 as
1/E2, they cannot

satisfy the sum rules ff dE ©(61E)
=

0 (for any 6) and ff dE C~(E)
=

0. This limitation

cannot be overcome within the hydrodynamical approximation we have considered here. In

fact, equations (2.24, 2.25) break down for E $ Co (0)~~/~ To go beyond this limitation, one

has to treat equation (2. II in a non-perturbative way.

There is an additional, appealing relation connecting E~ to another scale inherent to the

scattering region. Recall that E~
=

(h/N)/~/fl((r$) (rw)2). The variance of the Wigner
time was evaluated in references [21, 22] using a microscopic formulation to relate S to the

Hamiltonian of the scattering region, which was modeled as a member of a
Gaussian ensem-

ble [6]. (We remind the reader that Gaussian ensembles are supposed to model the statistical

properties of ballistic chaotic cavities as well as disordered electronic systems in the diffusive

regime. It was shown that

~~~~ ~~~~~
~

~
l(~N)2

~~'~~~

when the scattering region is maximally connected to the external propagating channel (I.e.,

open leads) and N » 1. Based on this result, we infer

Nb
(2 28)Es

=

This relation says that in the metallic regime of a quasi-1D wire, only one fundamental energy
scale, the mean level spacing, is required to characterize the decay of energy-parametric corre-

lators. Other system-dependent scales, like the Thouless energy E~
=

huff/L2
are irrelevant.

One should recall that, for energy levels, the analogous quantity to Co (0)~~/2 is the root-mean

square velocity C~ (0) ~~/2 (see Eq. (2.4)), which is a direct measure of the average dimensionless

conductance (g)
-J

E~16 when the system is in the metallic regime [16, 43j. There is no direct

relation between Co (0)~~/2 and C~ (0) ~~/2 and one cannot recover any quantitative information

about the conductance of the system by calculating Co (E) alone in the metallic regime.
In Figure 3 we present the Wigner time correlator (2.19) with the energy rescaled according

to equation (2.2). Notice that the shape of C~ is very similar for different symmetry classes

(fl
=

I and 2). This property also emerges in the context of the stochastic approach to

scattering [6j when we take the large- N asymptotics of C~ [21, 22j: the form of the correlator

becomes
~

~~~~~ ~~~~~ [/+ (~~(~j2' ~~'~~~

with r
=

Nb/7r. This curve matches reasonably well our data when we let r be a free fitting

parameter.
From a semiclassical point-of-view, the existence or absence of time-reversal symmetry in

a chaotic system does not affect the shape of any energy-dependent, two-point correlator of

elements of S [44,45) or rw [46j. That is, we expect the correlator to be the same in any

pure symmetry class. This is because, after energy averaging, these correlators are solely

determined by the exponential decay with time of the classical probability to escape from the

scattering region, in which case
r~~ is interpreted as the escape rate. The presence or not

of time-reversal symmetry affects only numerical prefactors in the correlators (for instance,
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.oo

$z 0.75

(
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j
d 0.25

jj
~~ 0.00

-0.25
0 2 3 4

X =
E C~(0)~~~

Fig. 3. Autocorrelations of the conductance g (squares) and the Wigner time rw (circles) and

the cross-correlation between g and rw (triangles) for the metallic case without magnetic field. The

autocorrelator of Wigner times in the presence of a magnetic field is also plotted (pluses). The dotted

curve is a plot of equation (2.29).

time-reversal symmetric orbits are counted once or
twice). The fact that large N corresponds,

in general, to a semiclassical regime becomes clear when we notice that taking ~ 0 for
a

fixed lead geometry effectively increases the number of propagating channels [47j. We should

remark, however, that in the crossover cases, the situation is not so simple and the shape of

the energy-dependent correlators can depend explicitly on the symmetry breaking parameter.
A good example that illustrates this point is given in equation (8) of reference [23j.

2.3. CORRELATION BETWEEN THE WIGNER TIME AND THE CONDUCTANCE. In the pre-

vious subsection we discussed the Brownian motion model for S and the importance of the

probability distribution of the time-delay matrix (further developed in Appendix A). We now

focus
on the statistical properties of the trace of Q, the Wigner time rw in the metallic regime.

As evident from Figure I, there are strong correlations between the Wigner time and the

conductance, that we discuss below. We start by writing the scattering matrix in its polar
decomposition [4j

s
=

or u. (2.30)

The 2N x 2N unitary matrices U and U are built out of unitary N x N blocks, namely,

~
U~~) 0 1(3

~ (2~
and tf

=

'~ °

'~ 0 ~(4)
(2.31)

For systems with broken time-reversal symmetry, the matrices u(~)
are independent of each

other. If time-reversal symmetry is preserved, then S is symmetric and one has u(~)
=

u(~)~

and u(~)
=

u(2)~ The 2N x 2N matrix r has the block structure

r
=
l~~ ~

,

(2.32)
7 ~
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where lZ and T are real diagonal N x N whose non-zero elements can be expressed as

~ l/2 i/2

7Za
=

~ and T
=

(2.33)
1 + ~a I + ~a

in terms of the radial parameters ~a. The convenience of this representation is that it allows

the two-probe conductance of equation (1.5) to be expressed simply as

N
~

g =

~j
,

(2.34)

a=1
~ ~~

that is, independent of the unitary matrices U and if.

In the absence of a magnetic field there is time-reversal symmetry (S
=

S~, 0
=

U~), and

we have

St (
=

utr I(u
+

r(
(~* uTruj (2.35)

E

Since r2 =1, taking the trace of the above equation simplifies it, yielding

TwlE)
=

-1
~

1Y (ui
dU

dU*~~j~N dE dE
(2.36)

Moreover, because U is unitary, its infinitesimal variations are given by dU
=

bU U, where bU

is antihermitian. Therefore,

~~~~~ ~
2N

~ ldE
dE

~~'~~~

Writing for the block components of U

du(1)
~

j~(1) ~(i)
~~ ~ j~(1)

~

~~(i) ~ j ~~(i) j~ ~~)

t
=

1, 2. where da(~) (ds(~~) are real antisymmetric (symmetric) N x N matrices, we have

~ 2 N ~~jij
(2.39)~W(~~

N
[ (

d~

Notice that here (rw)
=

0, since the polar decomposition (2.30) yields the identity for S in the

absence of disorder. However, with the convention of equation (I.I) which we took for defining

our scattering matrix in the numerical simulations, we do not have S
=

I in the absence of

disorder. As a consequence, the mean average value of the Wigner time obtained numerically
is given by the density of states of the disordered region ill, 48j. However, as expressed in

Section I, when we go from one convention to another by multiplying S by a fixed unitary
matrix, we do not change the statistical properties of the eigenphases. In the same way, the

constant shift in rw given by the density of states does not change its statistical properties.
One interesting feature of equations (2.37, 2.39) is that rw only depends on the infinitesimal

variations of the unitary matrix U and not on the radial parameters ~ of the polar decom-

position. Within the isotropic hypothesis (a necessary condition for S to be Dyson-like), the

matrices U and r are statistically independent, leading to vanishing correlations between g

and rw. The obvious correlations between the Wigner time and the conductance (as shown
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in Figs. la and 3) point to the limitation of the applicability of Dyson hypothesis for disordered

strips.
In Figure 3 we present the g r

correlator

~~
jJgjE + aE) JrwjE)j

~ ~~~~~
" llbg)~)~/~llbTw)~)~/~ '

'~

together with the g g and r r
correlators. (Here

we
define brw

a
(r$) (rw)2. Analogously

for bg.) The correlator of Wigner times in disordered systems has been recently calculated

[21, 22j using supersymmetry methods, while the g g correlator is only known analytically in

the metallic perturbative regime [49j when E » b. The calculation of the g r correlator will

be very interesting, given the numerical evidence provided. For chaotic cavities, semiclassical

expansions provide a way to calculate the correlator of Wigner times [46] and conductance [45j
within a diagonal approximation (where only trajectories with identical action survive the

energy average). The same approach would give vanishing g r
correlators since there is an

odd number of propagators involved (rw is given as a sum over trajectories [46j, while g results

from a sum over pairs of trajectories [45j).

3. Correlations in the Localized Regime

3,I. RESONANT TRANSMISSION MODEL FOR LOCALIzED TRANSPORT. As evident from

Figure I, transport through a localized strip presents important differences for the eigenphases,
conductance, and Wigner time as compared to the metallic case of Section 2. The peaks of

g(E) and rw(E) and the jumps of 61(E) show that now we are in a resonant regime, where the

transmission occurs through tunneling into localized eigenstates in the bulk of the disordered

region. The dependence of transport properties on resonant states can be established within

the R-matrix formalism [50j, which allows the scattering matrix to be expressed as
[slj (see

Appendix B)

~~~~~~ ~"~ ~" ~
E

~)~i~/2 ~~'~~

The sum is over the (localized) eigenstates of the disordered region, the matrix elements Wm~

describe the coupling of these states with the different channels in the leads, and

r~
=

27r£(~~ )Wn~)2 is the resonance total width for the eigenstate u.
Equation (3.I) is

valid only to lowest order in r~/b, namely, when resonances do not overlap. (Higher order

corrections imply traversing the disordered region by sequential tunneling through more than

one localized state.) Within this approximation, the energy dependence of the conductance

and the lN~igner time appears in the form of Breit-Wigner functions

r)I)r)r)
~~~~ ~

~
E E )2 + r2 /4 ~~'~~

and
~ ~

~~~~~
2N

~
(E E~)~ + r$ /4' ~~'~~

respectively [52j. The left (ri~) and right (r(~) partial widths are given by the overlap of the

corresponding eigenfunction ~fi~(x, y) with the channel wave functions ~n(y), I.e.,

N Ly
~

~f~
#

/~ ~
Cn

/
dy ~n(Y)lily(X

~
0, Y) (~.~)

n=1 °
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and similarly for r(~, exchanging x =
0 by x =

L. The total width is r~
=

ri~
+

r)~. The

coefficients cn =

h~kn/(2mb)
are smooth functions of energy on the scale of b (kn is the

longitudinal wave vector defined in Sect. 1.2). In the strongly localized case assumed here,
the typical total width r~ is much smaller than b and only the eigenstate u whose energy

is the closest to E contributes significantly to the sum. Hence, from now on we will neglect

any smooth energy dependence in r~ and omit the index u.
The fitting of g(E) by

a single
Breit-Wigner resonance works quite well for our numerical data when W

=
4 or larger; other

numerical models of disorder [53j also yield Breit-Wigner shapes.
The statistical properties of r are connected to the fluctuations in the eigenfunction in-

tensity. Using some very simple arguments one can estimate the probability distribution

P(r). First we recall that the envelope of a localized state decays as one moves away from

its center ro "

(xo,yo). The scale of this decay is the localization length f, such that

)~fi(r))
-J exp (- jr ro

)If) Consequently, we may write that

r(1)
~

~-2xo If /(i) j ~j ~~ ~~)

and
r(r)

~

~-2(L-xo)/j /(r) j ~j ~~ ~~)

The factors IN arise from the fluctuations of the eigenstate on the scale of kj~. However, since

we
work with

a large number of channels N, IN follows approximately a Gaussian distribution

and therefore
can be substituted by the its average value. Factorizing away the energy scale

given by the level spacing b,
we define

~(0
~

~~~~

~

e~~~°/f (3.6a)
cb

and

~~
(r)

~~
-2(L-xo)/f (3 6b)~

cl~ ~ ~
'

where c is a numerical constant proportional to N. Analogously, we define the dimensionless

total width ~ =
~(~) + ~l')

Our statistical assumptions will be the following:

1) xo is uniformly distributed along the disordered strip,

P(xo)
"

~; (3.7)

2) xo and f are independent random variables;

3) z =
2L/f has a normal distribution [54j

~ ~ )2P(Z)
#

F eXp
~

,

(3.8)
2a

where the mean and the variance are related by a2
=

2zo. The two first assumptions are trivial.

The third assumption originates from the standard log-normal distribution of the dimensionless

conductance [54j, g =
e~~, with

varjll~g)
=

-2 jll~ g). j3.9)

The mean value zo is a measure of the disorder, and in the strongly localized regime we have

zo » I. The normalization factor F
=

[fill + 4l(@/2))j~~ takes into account the fact
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Fig. 4. Probability distribution for the dimensionless total width ~ for increasing disorder (param-
eterized by zo). Dashed line: zo =

4, corresponding to the case shown in Figure 16; dash-dotted:

zo =
6; dotted: zo =

8; solid line: zo =
10. Inset: blow up of the small ~ region showing how the most

probable value of the distribution moves towards the origin with increasing disorder.

that z is always positive. (4l denotes the error
function.) Nevertheless, to leading order

in I/zo,
we can ignore this restriction over z and recover the standard Gaussian prefactor

F ci
[2/%]~~ The probability distribution of ~ can be constructed as

Pi~)
C~ 2F

~~~
d3 £°° dz exP 1~~

zi°~~l
bi~ 2e~/~ c°shisz)1 13.10)

with s =
xo/L 1/2. Carrying out one integration, we find that

z2d~ j~ ~)2
~~~~ " ~~

/
z

~~~
zo~

~2 4e~z' ~~ ~~~

with zi =

21n(2/~), z2 =

+cc11 0 < ~ < l, or z2 "

-In(~ l) if1 < ~ < 2. We cannot

simplify equation (3. II further, and in Figure 4 we show the result of a numerical integration.

Obviously, our estimate of P(~) is accurate only when ~ « l. Working the various asymptotic

limits, we see that for very small ~ (zi » zo), the probability distribution vanishes as

Ph)
«

)
exp

-fi 13.12)) ~~

The distribution has a maximum around ~mp ci
2e~z/~, which becomes more pronounced for

increasing disorder, namely,

Pl~mp) «

)
exp

) 13.13)
o

The large values of ~ are not exponentially damped by disorder, as we have

P(~
ci

I)
c~

(3.14)
zo
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The knowledge of P(~) allows us to estimate various averages. For instance, let us show that

the model is consistent. From the Breit-Wigner form of the conductance (3.2)
we can write

iin~)
-

I (fl~dE in li~/£I/l~~/~

= (In
~(~)~(~)j In ~~ In ~)

+ lj
4 ~ C

+2 1 ~c arctan
,

(3.15)
~C~ ~

with the averages taken with respect to P(~). The first term on the right-hand side gives the

dominant contribution,

(in 'f~~~~~~~j
"

l~Zl
~f ~Zo. 13.16)

Since P(z) selects values of
z -J zo » I, the remaining terms of (3.15) give the next leading-

order contribution, which is independent of zo,

In (~)~ ()
+ ljj + 2 ci 2 In(2c) + 2. (3.17)

2 ~ C

The fluctuations of lng are characterized by the correlation function

Cg(bE)
=

(In g(E + bE) In g(E)) (In g(E))~, (3.18)

with the average running over energy E and disorder. Following the statistical assumptions
introduced above, we have

~
l

lj~/~ ~
~(ij~(r)

~~~ ~~ ~ £
-~/~

~~ ~~
iE/ca12 + ~2/4

ci (In~
~(~)~(~)j

+
In~ (~ + 2 ((In ~~~~~(~~j In ()) (In (~2c~) + 1)

+ l~~~ l~~~~)1 + ~ l~~ l~~C~)

ci
z( 2zo [2 In(2c) + Ii (3.19)

The variance of the distribution of In g is then given by Cg(bE
=

0) ci 2zo, showing that our

resonant model for localized transport is consistent with the standard log-normal distributiun

of the conductance [54] characterized by equation (3.9). In Subsection 3.3, we will apply the

resonant model to the correlation function (3.18) and will determine its energy-correlation
length.

3.2. iVIGNER TIME IN THE LOCALIZED REGIME AND CORRELATIONS WITH THE CONDUC-

TANCE. The resonant model can be applied to the Wigner time, whose average is given
by

~ i 6/2
~

j1~~~~ " 2Ncb~~laj2~~ (E/C/~)~+~~/4

~

~ ~ arctan
2N b ~C

h 27r
(3 20)~ @ £'
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This result also checks the consistency of our model. Notice that although rw fluctuates

strongly with energy and from sample to sample, (rw) essentially does not depend on disorder.

This is due to the fact that the mean slope of the eigenphases as a function of energy is

proportional to the density of states [ll~48j (or equal to zero, depending on the particular
convention adopted for S). Large values of rw at the resonances are compensated by the flat

parts in between. These large fluctuations are not appropriately represented by the usual linear

correlation function (2.19), which, within our resonant model, is given by

~~~~~~
2~i)~

/~2 /~ ~~ ~)~ [bE/(c/b)j2 +1
~~~~~' ~~'~~~

In order to see why, we calculate the second moment of rw.

The lower and upper limits of ~ for a given z are ~m;n =

2e~z/~ and ~max =
I + e~~ In

obtaining the above result we have used the fact that the relevant values of z are of the order

of zo m I. The (exponentially) large fluctuations of rw reflect a very wide distribution. Hence,

we will describe these fluctuations in terms of the logarithm of rw. Moreover, for the remaining
of this section we will adopt the dimensionless Wigner time

where tH
=

27rh/b is the Heisenberg time. Similarly to the calculation of the average log-
conductance, we write

(in Ti
-

I C~ dE in~ 1~~/£lii~~~/~l

ci (In ~) + 2 + In ~~j. (3.24)
~r

The first term in the right-hand side gives the dominant contribution and, to leading order in

zo, we have

(lnT)
ci

-~° (3.25)
4

Therefore, in the asymptotic limit of zo » I, the mean logarithmic of the conductance and the

Wigner time are simply proportional to each other,

(lnT)
"

(lng). (3.26)

To investigate the fluctuations around this average value, we proceed in a way analogous to

equation (3.19):

~~~~ ~~

~2
~~ ~~~

~/~~~~~~~~/~~

~2
ci (In~ ~) ci

) (3.27)
2
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Table I. Simulations of strips in the localized regime with aspect ratio Lx /L~
=

~, mean

disorder W, and number of channels N. The averages are over energy and impurity configura-
tion. (ln g) and jib In g)~) are the mean logarithmic conductance and its vaTiance, respectively.
The mean Wigner time (T) has been normalized to its average value 7rh/Nb, and therefore
the fifth column checks the validity of equation (3.20). (lnT) and ((blnT)~)

are the mean log-
arithmic Wigner time and its variance, respectively. The last column is the value of the cross

correiator between the conductance and Wigner time calculated as in equation (3.29).

W N (lug) llbIng)~) lT) llnT) lib

4 14 -4.1 7.0 1.3 -0.01 0.40 0.67

4 10 -6.2 9.2 1.2 -0.21 0.62 0.74

5 14 -9.8 8.6 1.2 -0.43 0.71 0.62

5 10 -9.0 13.8 1.1 -0.49 0.79 0.60

6 14 -16.1 29.I 1.2 -0.69 0.80 0.53

6 10 -17.2 28.8 1.3 -0.99 0.93 0.55

7 14 -24.5 39.3 1-1 -0.92 0.81 0.52

The variance of lnT is then given by

~2
var(In T)

=
C~ (bE

=
0) ci

° (3.28)
48

The existence of correlations between the conductance and the Wigner time, as we presented
in the Introduction (Fig. lb),

can be easily understood from equations (3.2, 3.3). Moreover,

our resonant transmission model for localized transport allows us to quantify such correlations.

For this purpose, instead ofworking with the cross-correlator (2.40), we define the logarithmic
correlator

~~~~~~~
~l~~$~~)~~~~)~~~~~

~~'~~~

and calculate

1

lj~/~
~(i)~jr) ~/j~~~)

~~~~ ~~~~
/~

-a/2

~~ ~~
lE/Cl~l~ + ~~/4

~~
lE/cb)2

+

2/4j

ci (In ~~~~~(~~j In~) +
In

(~~j + 2 + 2
n(c)j

(In ~(~~~(~~j

7r

+2[In(2c) + Ii (In~)

ci

j
zo

In ~
+ In(2c) +

j
(3.30)

7r

To leading order in zo we have

Cg~(bE
=

0) ci

~

,

(3.31)
/~

showing that the cross-correlation decays slowly (not exponentially) with disorder.

In Table I we present our simulations in the localized regime for different disorder (W) and

number of modes (N) in a strip with aspect ratio Lx /L~
=

4. The results displayed show
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a qualitative agreement with the predictions of our resonant model (Eqs. (3.16, 3.9, 3.20, 3.25,
3.28, 3.31)). For the range of disorder that we are able to simulate, it is likely that the next-

leading order in the large-zo asymptotic expansions of the above equations is required for a

quantitative agreement. The c-dependent terms should be calculated consistently with the

value of zo that best describes each sample. We will not attempt here this detailed compari-

son between the model and our numerical simulations because we would need a much better

statistics than the one we dispose. The relationship (3.9) between the mean logarithmic con-

ductance and its variance is only approximately verified in our numerical simulations. It has

already been noticed [53j that in order to obtain the agreement with equation (3.9) one should

simulate long strips with weak disorder.

The fluctuations in In g are larger than those in lnT, despite the fact that in our resonant

model the former depends linearly on zo, while the latter goes quadratically with zo. It is the

difference in the prefactors that makes, for the values of the disorder that we have simulated,

the fluctuations of In g larger. One interesting aspect of the last column of Table I, the value of

the cross correlations, is that the results of simulations seem to show an even slower dependence

on zo than that of equation (3.31).

3.3. ENERGY AND PARAMETRIC CORRELATIONS. The energy-dependent correlation func-

tions for the log-cbnductance and log-Wigner time can be calculated from the resonant model

along the same lines that we
followed in the previous subsections. In particular, the various

energy correlation lengths can be estimated from the initial curvature of the corresponding
correlation functions. For the energy correlator of equation (3.18) we have

Ci~iaE
=

0) C~

t II
£lll~ dx il+l~~ (in ~~~~~~~~l in

Ill
in i~~ + i) II

m

~ i
+ (ln ~~~~~(~~j + 2 In(2c) -1) (3.32)

h 2C ~

The term proportional to (1/~) gives the dominant contribution and its calculation is analogous

to that of equation (3.22), yielding

Assuming that the
orrelation

function g(bE) has approximately a orentzian form, its

relation

will
be

related
to

the
curvature

~~~ ~ fi~ ~t ~~ ~~~ ~~i~~~' ~~'~~~

For the
ogarithmic correlation of the Wigner time we have (to leading order in zo)

curvature
than for g(bE) since lnT and lng have the same energy ependence (Eqs. (3.2,

3.3)).
The difference in the

correlation
lengths

Although
the

resonant model
predicts

that C~(0) and Cg(0) have a quadratic and a
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Fig. 5. Logarithmic autocorrelations of the conductance (solid), Wigner time (dotted), and eigen-
phase velocity (long-dashed) for the strongly localized case (W

=
4 in Anderson units) without mag-

netic field. The cross-correlation between g and rw is shown by the short-dashed curve. The use of

the logarithmic was required in view of the broad distributions of g and rw
(see text).

var(In r) within the range of disorder and strip lengths simulated. Therefore,
we expect that

bEj > bE(, which is indeed the behavior observed in Figure 5. The energy-correlation length
of Cg~ is intermediate between bEj and bE(. In all three cases, the correlation length shrinks

exponentially with zo, due to the fact that the conductance and Wigner-time peaks become

narrower with increasing disorder. This is the reason why we have used in Figure 5 the energy
rescaling appropriate for the parametric correlations of eigenphase velocities which also turns

out to depend exponentially on zo (see below).
The correlation functions in the localized regime can be calculated with the aid of the

resonant transmission model. The analysis is more involved for eigenphase velocities than for

g or rw because we do not have a simple expression like (3.2) and (3.3) relating eigenphases to

energy. However, there are obvious relations between correlators of eigenphases and Wigner
times. The eigenphase velocity introduced in equation (2.1) is simply the diagonal part (I

=

m)
of the sum defining the Wigner time correlator of equation (2.19). In particular, C~(bE) and

C~(bE)
are identical in one trivial limit of the localized case, namely, the N

=
I, when we

know the relation exactly (see Appendix B): Close to a resonance with energy E~, we have

6~lE)
m

+) + arCtanl2lE Ev)/rl, 13.36)

from which we recover the Breit-Wigner form of (3.3)

~~~~~
(E E(~

+ r$ /4 ~~'~~~

In the large-N limit and for strongly disordered samples we can assume that the (61) move

almost rigidly, repelling each other simultaneously when a resonance occurs. Therefore, there

is approximately no distinction between diagonal and off-diagonal correlations because all

eigenphases follow a similar pattern of energy evolution. This is confirmed in our numerical

simulations by the close agreement between C~ and Co over a wide energy range. The large

fluctuations for the Wigner time translate into very large values of Co(0), as evident from

Figure 16. (Notice that the sharp steps of the phase shifts give rise to very large derivatives.
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The broad distribution of eigenphases forces us to work with the logarithmic correlator

C~(bE)
=

In ~~~~~jj
~~~j In ~~~(~j In ~(~~~j

)~, (3.38)
d E

but still adopting the rescaling used in the metallic regime (Eq. (2.2)),

x =
bE /@ (3.39a)

co(x)
=

Co(bE)/Co(0). (3.39b)

The average in equation (3.38) is over energy E, disorder, and channel index I. In Figure 5

we present co(~) for in the localized regime (disorder W
=

4). The universality found for the

corresponding eigenphase velocity of the metallic regime is lost in a way consistent with our

resonant model. On the other hand, when properly rescaled, we obtain an agreement between

co(~) and the Wigner time correlator.

4. Conclusions

In this work we have studied parametric correlation functions in disordered quasi-one-dimen-
sional systems in the metallic and localized regimes. For this purpose we have considered the

fluctuations in energy of the eigenphases of the scattering matrix, as well as fluctuations of the

conductance and the Wigner time, and their cross correlation.

In the metallic regime, when disorder is weak and the fluctuations of the eigenphases (61) are

well described by Dyson's circular ensembles ill], the parametric correlations obtained from

our numerical simulations follow closely the universal behavior discovered by Szafer, Altshuler,
and Simons [15,16j for the spectra of chaotic and disordered systems. This finding is justified
from a Brownian-motion model similar to that developed by Beenakker [35j for the energy

spectrum. The Brownian-motion model also allows us to obtain the energy correlation function

of the Wigner time in the large-energy asymptotic limit. We have compared these analytical
results with our numerical simulations. Our simulations in the metallic regime display a strong

correlation between the conductance and the Wigner time.

Transport in the localized regime is resonant-like and, therefore, its statistical properties

are given by those of localized wave functions in the disordered strip. From the well-known

fact that wave functions are
(I) localized around centers uniformly distributed in the sample

(2) with inverse localization lengths following a Gaussian distribution, we recover the basic

features observed in the simulations where disorder was strong. Our model is consistent with

the standard log-normal distribution for the conductance and allowed us to estimate the typical

energy correlation length of conductance fluctuations. The very large fluctuations of the Wigner
time led us to study the distribution of its logarithm; the variance of this distribution was found

to be related to that of the conductance. We also investigated the correlation between the

conductance and the Wigner time as a function of disorder. The energy-dependent parametric
correlations in the localized regime follow closely the behavior of the Wigner time.

An experimental check of some of the ideas developed in this work has become possible
with the fabrication of very short insulating wires [55, 56j. In particular, the Breit-Wigner
line shape characteristic of resonant tunneling has been established and the statistics of peak

position (as
a

function of Fermi energy or gate voltage) has been shown to display level repul-

sion [56j. This peculiar finding can be been understood within a resonant-tunneling picture
if the observed peaks correspond to states well connected to the leads, which are confined

to a small region in center of the strip and which are therefore not necessarily separated
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from each other by distances much larger than the localization length. But the experimental
study of short wires poses also the question of whether the single-particle approach that we

have pursued in this work is valid. At least in a strictly one-dimensional sample it is known [57j
that two-body potentials drive the system to a non-Fermi liquid behavior, leading to a more

sensitive dependence on weak disorder [58j. Moreover, given the recent developments stressing
the interplay between disorder and interactions in the localized regime [59-61], it would be

interesting to extend the present study in order to incorporate the effects of electron-electron

interactions in the energy-dependent parametric correlations.
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Appendix A

Statistical Properties of the Wigner-Smith Matrix

In this appendix we study the statistical distribution of the Wigner-Smith matrix in order to

investigate more carefully the applicability of a unitary Brownian-motion model to the energy
dependence of the scattering matrix.

For a small energy displacement, the evolution of the scattering matrix can be written as

SjE + bE)
=

SjE) exp jibK), jA.I)

where bK is required to be an infinitesimal Hermitian matrix to preserve the unitarity of S.

To first order in bE, we can write

bK
=

-I St ~~)~ bE
=

~/ Q bE. (A.2)

Consequently, considering now the form (2.7) of the allowed infinitesimal variations in the

neighborhood of S, we can identify

Q bE
=

~ Yf (bji) Y, (A.3)

showing that the eigenvalues of Q and bH are proportional to each other. Moreover, if S has

an isotropic distribution at a given E and remains isotropically distributed for each energy in

the interval bE,
one can see that this property should characterize Q as well. The isotropy of

S and Q are related. We now try to determine which are the requirements on the probability
distribution of Q necessary for the validity of the BMM (Eqs. (2.8)) at least in an approximate

sense and for a sufficiently small bE.

We have investigated the probability distribution of the eigenvalues of Q by a numerical

simulation on weakly-disordered metallic strips. Under these conditions, the correlations of the

eigenphases of S are well approximated by those of the CUE (or COE) ensemble ill], and the

eigenphase velocity correlation agrees well with those found for chaotic Hamiltonian systems.
In Figure 6 we present the mean density of eigenvalues of Q and its nearest-neighbor spacing



N°10 PARAMETRIC STATISTICS OF THE SCATTERING MATRIX 1291

8

~s
~

Pw

4
0

0 2 3

s

0
0 lo 20

q

Fig. 6. Distribution of the eigenvalues of the Wigner-Smith matrix in the weakly-disordered metallic

regime. The thick and thin lines correspond to the presence or absence of a magnetic field, respectively.
The inset shows the nearest-neighbor spacing histogram for the same eigenvalues (similar convention

for the line widths). The Wigner surmises for the GUE and GOE (thick and thin dashed lines,
respectively)

are shown for comparison.

distribution (inset) for the cases without and with a time-symmetry breaking magnetic field.

Notice that, within
our convention, all eigenvalues of Q are positive, consistently with their

interpretation as typical traversal times through the disorder region. Due to this symmetry
requirement (that rules out the usual Gaussian ensembles),

one of the simplest possible random-

matrix description of Q is provided by the Laguerre ensembles. The observed eigenvalue density
and the nearest-neighbor distribution (after unfolding [3]) are not incompatible with such an

ensemble at first sight. Indeed, one can see a clear le,>el repulsion and a good agreement
with the Wigner's surmise of the appropriate symmetry class. Notice that although Q is not

symmetric, the nearest-neighbor distribution in the time-reversal-symmetric case is given by
the fl

=
I Wigner surmise. This is because the submanifold of allowed Q matrices in the

presence of time-reversal symmetry can be mapped into that of the real symmetric ones by

a transformation that leaves the eigenvalues unchanged [63j. It is important to remember

that the other set of characteristic times, the energy derivatives of the phase shifts (d61/dE)
associated with the eigenchannels of S, do not exhibit nearest-neighbor repulsion. Both sets

are, however, obviously related since their sum is simply Tw.

For a disordered wire, S is not isotropic. (However, the circular ensembles give a good
description of the phase shift fluctuations in the metallic regime. Since the isotropy of S and

Q are related, Q cannot be isotropic for a disordered wire. But one can hope that this does

not matter for the spectral fluctuations of Q, in analogy with what happens for the spectral
fluctuations of S. This leads us to consider a distribution for the Wigner-Smith matrix that is

invariant under unitary (orthogonal) transformations, and to propose a simplified maximum-

entropy ansatz [4, 62j; in other words, we adopt
a maximum-entropy distribution for Q, given

the observed mean density of eigenvalues. This will yield a logarithmic interaction between

eigenvalues and consequently the observed level repulsion. In the usual Coulomb gas analogy,

one would have a certain (non-parabolic) confining potential for this ansatz giving the observed

mean density of positive eigenvalues. The problem we face is then quite analogous to that of

the probability distribution of the radial parameters of the transfer matrix [4, 5j.
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It is well known that a maximum-entropy approach with an arbitrary confining potential
leads to correlations between matrix elements [64j. The eigenvector isotropy assumption allows

us to average over the unitary group [13, 65j, yielding

lov)
=

do ~V~ lA.4a)

and

~~"~~~~
if2~_1 ~°~kl ~~~~~"~ ~~~~~

~~l~J~
~~~~~ ~~~~"~~~

mn n n mn (A.4b)
Above, brackets on the left-hand sides imply averages over the probability distribution of Q,
while brackets

on the right-hand sides indicate averages over the eigenvalue distribution. Equa-
tion (A.4a)

can be trivially set to zero once we suppress the constant drift of the eigenphases
with energy (or

use the convention (Tw)
"

0, like in Subsection 2.3). The non-vanishing
correlations of equation (A.4b)

are

lQSl
= ~

) [lN 1)lqiq21 + 21qllj
,

lA.5a)

iouojji
= ~

)
lNiqiq~i + iqiil i # J, iA.sbi

lo~jojil
= ~

[tall lqiq21j I # J. lA.5Cl

It is only in the case of the quadratic confinement potential that we
have the GUE re-

sult (qiq2)
=

-(q))/N implying a vanishing correlation between different diagonal elements

(Eq. (A.5b)) and the usual correlation ((Q~joji)
=

(q)) IN) between symmetric matrix ele-

ments (Eqs. (A.5a, A.5c)). Other confining potentials, like the one compatible with the ob-
s~rved

mean density, result in different two-point correlation functions (qiq2) and nonvanishing
matrix element correlations in all equations (A.5).

If we assume that the eigenvectors of bH are also isotropically distributed, equations (A.3,
A.5) show that there exist correlations between different matrix elements of bH. Therefore,
equations (2.8) cannot be verified exactly and their validity is actually approximate. On

the other hand, the correlations of the type of equation (A.5b) decrease with N and in the

large N limit the maximum-entropy ensembles provide a local approximation to the Gaussian

ones [3, 66j. Therefore, it is only in the large N limit that the BMM for S can be appropriate.
Assuming a nearly Gaussian behavior and comparing equations (A.5a, A.5c) with equa-

tion (2.8) allows the identifications

dt
=

idE)2 iA-6)

and

~

=
~~ (TrQ~), (A.7)

f h

of the fictitious time and the friction coefficient of the BMM with the energy and Wigner-Smith
matrix associated with the scattering process.
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Appendix B

Scattering in the Or~e,Char~r~el Case

In this appendix we calculate the energy dependence of the eigenphases around a resonance

for the one channel case. The starting point is the S-matrix expression [51]

Sab(E)
=

e~~~al~~bab 27ri e~~a~~~+~~b~~~ ~j W]~(E)[D~~(E)]~~Wb~(E), (B.I)

vp

with

D~~(E)
=

Eb~~ H~~ +17r ~ W]~(E)Wc~(E). (B.2)

c

Wa~(E) represents the overlap between the external wave functions (plane waves) and the

internal eigenfunctions of H (for a time-reversal symmetric system we can choose Wa~ to be

real). The usual approximation is to assume that the energy dependence of the phases ~Ja(E)
and matrix elements Wa~(E) is smooth over the interval where there are many resonances

(poles) in D~~(E). Moreover, if )Wa~)~ is typically much smaller than the average distance

between poles, we can expand [D~~(E)] and perform a unitary transformation in the wave

functions to obtain

~~~~~~ ~~~ ~" ~j
E

~)~ii~
/2 ~ ~~~~~~' ~~'~~

where r~
=

27r £~ )W~~)~. Now, specializing for a one-dimensional system (therefore N
=

I)
and looking at energies close to a certain resonance, we can get explicit expressions for the

coefficients

~
~ l

/)~~~i)
/r~

~~'~~~

~~ ~ l-2~)~~~i)/r~ ~~'~~~

~
l 2i(E~ E~) /r~ ~~'~~~

~'
~ l

2i(~~ E~) /r~' ~~'~~~

with a =

47rW]~WRV/r~. Notice that (B.3) keeps S unitary only to lowest order in r16.
It is useful to introduce the following parameterization for S:

~ =

@~m+x

~* fi~~-x

t
=

ifie~~+~~

t*
=

ifie~~~~~, (B.5)

with R + T
=

I. The various quantities appearing above can be determined through equa-

tion (B.4); in particular,
1/lE)

m
arCtanl2lE Eu)/rut lB.6)

and
~

~~~~
l +

(E~~~
E~)2 /r~ ~~'~~
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For time-reversal symmetric systems (~
=

0), it is easy to find an expression for the eigenphases
of S in terms of the new parameters, namely,

6~
= 1/ + arctan

II
,

mod(7r). (B.8)

Using equations (B.6, B.7),
we then have

~j2 1/2

6~(E) m
arctan[2(E E~)/r~] + arctan

,

mod(7r). (B.9)
1 )a)2 + 4(E E~)2/r~

Notice that, in general, rR # rL and )a)~ < l. This means that the second term on the r.h.s

of equation (B.9) varies slower than the first and the difference between eigenphases around a

resonance is approximately 7r
(Eq. (3.36) ).

Note added: While finishing this manuscript, we learnt from C. Beenakker that an exact

random-matrix description of the distribution of the Wigner-Smith matrix Q can be obtained

in the case that either S remains distributed according to Dyson's circular ensembles as E

varies, or the underlying Hamiltonian is a member of the Gaussian ensembles [67j. This

can be applied to ballistic chaotic cavities, but not to the disordered wires which we study.
However, the result is very similar to the maximum-entropy description which we proposed in

the Appendix A, notably as far the level repulsion is concerned. The extension of the derivation

made by Beenakker and co-workers for ballistic cavities to disordered wires should allow us to

see which corrections to the maximum-entropy ansatz proposed in Appendix A are required.
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