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Abstract. Using a consistent purely kinetic model we show that Young's condition at a

trijunction results from a chemical and not a mechanical equilibrium, as is often believed in the

literature. In an out-of equilibrium situation this condition is altered in a way such that the

triple point acquires an effective mobility. The order of magnitude of the mobility is fixed by a

velocity scale iatt associated with chemical attachment at the interface, and not by the sound

speed. While for ordinary eutectics ttt is large (except in rapid solidification experiments) in

comparison to the growth speed, implying a quasi-instantaneous mobility, finite mobility effects

should show up for faceted eutectics as well as for eutectoid transformations.

1. Introduction

This note is concerned with a question which is in principle well understood ill, but in practice

seems to give rise to systematic confusion namely the physical origin of Young's equilibrium

condition at a trijunction, I.e. a contact point between three phases of a binary mixture. This,
typically, happens, for lamellar eutectics growing from the melt, at the triple point where the

interfaces between the two solid phases
a and fl emerge on the growth front. The point which

we want to illustrate here with the help of a simple model of isothermal kinetically-limited
eutectics growth is the following: contrary to what is usually stated, Young's condition at the

triple point does not express mechanical equilibrium, but chemical equilibrium. Consequently,

any departure from thermodynamic equilibrium leads to a
velocity-dependent correction to

this condition, which can be interpreted in terms of an effective mobility of the triple point.

While this effect is in practice small enough to be neglected in the case of growth of a

metallic eutectics from the liquid phase (except under conditions of rapid solidification), it is

certainly important when dealing with the growth of faceted eutectics as well as for eutectoid
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Fig. I. A schematic view of the tri-junction.

transformations (from
a

homogeneous mother solid phase into a two-phase daughter alloy),
due to the slowness of diffusion in solids [2j.

Indeed, in this latter situation, growth is commonly controlled by interface kinetics and for
diffusion, while diffusion lengths in the bulk may become comparable with interface thicknesses.

Then, one expects on the one hand triple point mobility effects to become important. On the

other hand, stress effects, which play
an important role in solid /solid transformations, must be

taken into account when imposing mechanical equilibrium of the interfaces, which gives rise to

an independent condition.

2. The Model

Figure I displays the geometry of the tri-junction. We use here the model of reference [3j, in

which:

.
The solid-liquid interface is considered to be sharp, with isotropic surface tension ~.

.
The growing solid eutectics is treated in the Cahn-Hilliard representation. Namely, the

Helmholtz free energy of a volume V of the solid is given by

F
"

/
dvlflT, C, P) +

&IVC)~l,
II)

NA and NE will denote the numbers of A and B atoms in the binary mixture. For a

homogeneous solid the solute concentration c and the number density p of the mixture

~~~

~ NA~NB ~

~~ ~~
~~~

Since we only consider here isothermal solidification, temperature is a passive parameter,

which we will omit from now on.
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.
The two solid phases are assumed, for the sake of simplicity, to have identical physical
properties f(c)

=
f(I c)j and the partial volumes of the two species are taken equal [4j:

VA(C) "
UB(C).

.
The liquid concentration is assumed to be constant and equal to 1/2. These assumptions

are consistent both with the situation of global equilibrium of the three phases, and with

kinetically controlled growth. We shall consider a linear kinetic law

JA
"

W(@FA @SA)I ~B
~

fl~(@FB /~SB) (3)

where JA,B are the mass currents of the two substances across the solid-liquid interfaces, W is a

phenomenological kinetic coefficient, and ~tFA, tIFB are the (constant) fluid chemical potentials.
The mass currents are related to the normal growth velocity in by

J~
=

ii c)tn; J~
=

ctn. j4)

The chemical potentials are related to the Helmholtz free energy by

JtsA =

-j(~()+(~))
15)

T,p T,c

JtsB =

j ~ (~( + ~) (6)
T,p T,~

Because
we

consider a symmetric model with the liquid concentration equal to 1/2,
we must

have ~tFA = tIFB % tlF. Equations (1-4) describe completely the growth dynamics of a diffusion-

less eutectic, if ~ts(A,Bj(c) are known as a function of the 'order-like' parameter c.
Therefore,

we must relate explicitly the chemical potentials with the solid composition field. For an

inhomogeneous solid phase, and taking into account the Laplace capillary pressure, we obtain

from (6) (where derivatives are now interpreted in the functional sense)

/LsA -
IIIll

~

i7~Cl
+

Ill
~

+ ~l~~ Ill
~

+ vsA~~ 17)

/LsB =

~ IIIll
~

i7~Cl
+

Ill
~

+ ~l~~ Ill
~

+ vsB~~ 18)

where ~ is the interface curvature, and vsA, vsB are the specific volumes of the two substances

in the solid phase. Note at this point that expressions (7, 8) differ from the corresponding
equations (3, 4) ofreference [3j. Indeed,in that work, a confusion was made between Helmholtz

and Gibbs energies, leading to erroneous expressions of the chemical potentials. While the

qualitative conclusions of that work about the existence of steady and modulated solutions

remain valid, the quantitative results about interface shapes, are incorrect.

The basic source of the above mentioned confusion lies in the fact that expression (I) implies
that variations such as those needed to define chemical potentials are made at constant volume

and not constant pressure. One could of course recover the correct result in terms of the

Gibbs free enthalpy density (as used in Ref. [2]) provided one would enforce the condition of a

constant volume by means of a Lagrange multiplier, namely the pressure.

We now specify for f the usual generic form:

f=fo-h4~+lj4; j=c-j.
j9j
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The three coefficients b, I, & are functions of the density p (and of the passive parameter T,
which we omit).

Our assumption of a completely symmetric model entails, in particular, that the partial
volumes v~ are equal. It is shown in the appendix that this is true provided that b, I,

are

proportional to the density p, so that, for example: fi&/tip
=

Alp. So finally, we get for the

chemical potentials on the solid side of the curved L IS interface

~tsA =

' ~~ 12di 411i3 + iiv211 +
[)

+ pi1-d1i2 + i14 +
( iv~)2j + ~p-i~ jio)

/lsB =

~~
~~12d4 4iil~ + &i7~41 +

~~
+ p-~ l-d4~ + l1j4 +

(i7J~)~j
+ ~p-i~. iii

Note that fi lo lap
=

~ts(c
=

1/2).
We find it convenient to use, rather than equations (3) separately, the two linear combinations

[(I c)3(a) + c3(b)j and [3(a)-3(b)j, which yield, upon use of equations (10, II),

l/" + 2l/ 2l/~
= l/

/~
l12)

+ y

~~ ~ ~
~,, ~r

~~ ~~ ~ ~ ~°
(i + y,2)3/2

~ ~
~

fi~~~~ ~ ~~ ~' ~~~~

~~~~~

~

i d~~)(, lc~
(, V~fi

~~~~~J (j /2i)~/2 a
C

and the dimensionless undercooling b is given by

b
= ~(lJts(1/2) JtL@/2)1. lis)

Note that we specialize our calculation to the case where a one-dimensional front [ji(f)j is

growing steadily along § at the physical velocity I. In equations (12, 13) the a-dimensional

quantities are measured in units of tc.

3. Equilibrium versus Moving Trijunction

We first consider the case where the system is in thermodynamical equilibrium. Equations
(12, 13) then reduce to

1/" + 21/ 21/~ =
0 (16)

,,

~'~ 2~~ + ~~ do
ji

~j,2)3/2
+ /~

=
°. Ii?)

When each solid phase is in equilibrium with the liquid
one

with a planar interface equa-

tions (16, 17) possess the following solutions
1/ =

+I and b
=

I. When the three phases
coexist, a planar front is no longer a solution (because of the tri-junction). Equation (16)
admits the following solution

1/(~)
=

tanh(x). (18)
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Plugging this solution into equation (17), integrating from 0 to cc (this is taken to mean from

0 to distances much larger than tc; recall that lengths are reduced by t~), and taking advantage
of the symmetry of y(x)

we readily obtain

where 6 designates the usual contact angle. Note that this relation relates the contact angle
to the liquid-solid surface tension (the surface tension ~ enters in the definition of do)- What

remains to be shown is that the contact angle is related to the solid /solid wall energy as well,
and this leads precisely to Young's condition. For that purpose we calculate the ~wall' (or
surface) energy starting from the Gibbs definition, and it will appear clearly that the capillary

condition is intimately related to the fact that tc is finite. Let fw denote that energy. The

Gibbs definition reads (in physical units)

fw
= ~lim

/
dilf~o h4~ + '4~ + )4'~l Llf14eq) + fl-4eq)1 120)

where the last term represents the energy in the case where each solid phase would be alone ire-

member that ijeq =

/~).
Upon substitution of expression (18) into (20) a simple calculation

provides us with
~

fw
=

~~~~
=

2~sin(6) (21)
3b

where use has been made of the definition of do together with relation jig). This is precisely
the Young condition for a symmetric model. Had we taken

a non-symmetric model we
would

then have obtained the general form of Young's condition: ~i sin(61) + ~2 sin(62)
=

fw, and

~i cos(61)
= ~2 cos(62), where ~i and ~2 are the surface tension between the liquid phase and

the two solid ones, 61 and 62 are the two contact angles. For a
tilted pattern the extension

should be feasible along the same lines.

We now consider the case of a growing solid and derive the dynamical Young condition. The

nonlinear terms due to y in equations (12, 13) preclude an exact analytical solution. If y'2 < 1,

however, an exact solution is obtained for1/ (see also Ref. [3])

1/ =

lltanh(xfij
(22)

2 2

with the condition V < 2. Far away from the triple point a planar front solution exists with

composition 1/o =
+(I V/2), and b

=
1 V2 /4 + 2V[1 2(h16) (1 V/2)]. Equation (13)

can be rewritten as

doY"
~

ll'~ 21~~ ~() + l~~ ~(). 123)

Integrating from 0 to cc and using equation (22), we obtain the dynamical Young condition

2~sin(6)
=

fwfi(1+ ~
(24)

2 4

where fw is the eq~tilibri~tm wall energy (which enters Eq. (21)). For small V we can write

2~sin(6) fw ci
-fwV2/16. This is a simple dynamical equation for the motion of the

trijunction. Remember that the physical velocity is reduced by Wh /p, and from a dimensional

analysis this is a velocity related to the molecular attachment, and not to the sound speed
which involves the compressibility constant.
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4. Discussion

We have shown that

.
The two solid phases at thermodynamic equilibrium with the liquid at the eutectic com-

position have front profiles which satisfy asymptotically Young's condition, and that this

simply follows from imposing the condition of chemical equilibrium only. By asymptotic

we mean for distances larger than l~.

.
Although it is clear in some papers ill that Young's condition follows from chemical

equilibrium, confusions are still present in the literature. It must be emphasized that

expressing chemical equilibrium does not imply at all, that mechanical equilibrium is

satisfied. To make this point stronger let us consider the following case. For example,
in the presence of

a
mechanical stress, surface energy does not affect mechanical equi-

librium (its contribution is negligible except for very large stress values which are of the

order of the Young modulus~ that is close to the fracture threshold). Thus at a trijunc-
tion, the mechanical condition in the presence of stress would simply involve the stress

tensor and not surface energy!! The surface energy would in turn be essential in the

chemical eq~tilibTi~tm (chemical and mechanical forces or stresses have different nature! ).
A typical example is the Asaro-Tiller-Grinfeld problem. For further considerations, see

reference ill.

At finite growth velocities, the Young condition is altered by kinetic effects; the trij unction

acquires a finite mobility. Moreover, when diffusion in the liquid phase is the limiting
factor,

we expect Young's condition to be modified by a contribution which is of the

order of the Peclet number. This reinforces the fact that Young's condition is affected

by any departure from global chemical equilibrium. The non-equilibrium modification of

Young's condition is not only an interesting fact in itself on the conceptual level, but also

is expected to play a practical role at least in the three following situations: (I) at large
enough growth velocities where kinetics together with finite Peclet effects are decisive,
(it) at small growth rates in faceted eutectics, (iii) in eutectoid transformations.

.
A point worth of mention, in view of the recent development of phase field models [5, 7, 8]
is that we derived Young's condition withofit resorting to the sharp interface limit, in

the spirit of what may be termed the physicists' point of view [6, 7]. In this approach,

one keeps in mind the fact that interfaces associated with a first order phase transition

have finite, though, usually, atomically small thickness. This underlies the very Gibbs

definition of surface (extensive) thermodynamic quantities such as the surface energy. In

this perspective, the so-called sharp interface equations, one of which is precisely Young's
condition, only make physical sense on "outer" length sales much larger than the physical
length l~, and do not depend structurally on the details of the interface shape on the

inner l~ scale. The mathematical question, formulated in the frame of phase field models,
of formally recovering the sharp interface description via an asymptotic (multi-scale)
expansion in the l~ ~ 0 limit is, from this point of view, irrelevant.

Appendix

In this appendix we derive the condition under which the specific volumes in both solid

Phases are equal. The specific volume is related to the chemical potential by v~ = fi~t~ /tip)T,c
Ii

=

A,B). Because
~t~ =

~t~(T,p,c) we can write that v~ =
fi~t~/tip)T,clip/tip)T,c. Using
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the definition of the pressure P
=

f + pa f lap,
we can rewrite the specific volume as

a~l~ 1
~~ aP T,cPa~flaP~' ~~~~

The relation between the chemical potential and f is given in equations (7, 8), so that the

expression for the two specific volumes take the form

~~
p2 tic p ficfip pfi2 f/fip2 ~

p
~~~~

"~
P~ tic

~
P

icfiP~
Pfi~f/fiP~ ~

P
~~~~

Imposing that VA = vB, then implies

~
=

H(c, T), (28)
P C

where H is a
function which depends on c and T only. Using the definition of f (Eq. (9), we

immediately get that h, b, &
-J p. In order that v be independent on c we must then have

p =
p(T, P). Using the above definition of the pressure and the fact that the phenomenological

constants that enter f are proportional to p, we obtain P
=

-fso + pfifso/tip, which is a

function of p and T only. Since P does not depend on c, and that the system is isothermal, we

conclude that p does not depend on c. This completes our proof.
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